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Web: Source of information




Web: Source of false information
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Types of false information

Misinformation
honest mistake

Disinformation
deliberate lie to mislead
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Conversion

Impact of Fake Reviews
Flipkart

Mean
conversion rate

/_/Conversion
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Makhija et al, 2016, Luca et al., 2011



Characteristics of fake reviews

and reviewers




STRONG DECEPTIVE INDICATORS

A focus on who Greater use of Direct mention of

they were with first-person singular where they stayed

In this example, "My Fake reviews tend touse  Hotel and city names were less
husband;” also words “I” and "me” more often. common in truthful reviews, which
like “family.” focus more on details about the hotel

itself, like "small” or “bathroom.”

“My husband and I stayed in the [hotel name] Chicago
and had a very nice stay! The rooms were large and
comfortable. The view of Lake Michigan from our room
was gorgeous. Room service was really good and quick,
eating in the room looking at that view, awesome! The
pool was really nice but we didn’t get a chance to use it.
Great location for all of the dowatown Chicago attractions
such as theaters and museums. Very friendly staff and
knowledgable, you can’t go wrohg staying here.”

SLIGHT High High verb use Use of “I” and

DECEPTIVE adverb use "Get", “go”, “use”, positive emotion

INDICATORS “Very" and ‘can't’, “didn't’, Deceptive reviews tend
“really” are both “eating”, “had", to use exclamation
used “looking”, “stayed”, points, while truthful
twice; “here” is "was” (three times), reviews used more
used once. "were." punctuation of other

kinds, including “$."
Ott et al., 2011, Yoo et al., 2009



Fake reviewers are more opinionated
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Fraction of reviewers

Fake reviewers
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Fake reviewers are faster and have
bimodal rating pattern
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Fake reviewers collude

Kumar et al., 2017
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Detecting fake reviewers
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BIRDNEST

« User is suspicious if his behavior deviates
substantially from that of the global model
* Global Model:

Users belong to different cluster, each
representing a different behavior

Each cluster is associated with a
common Dirichlet prior, to model the
common behavior of users in the cluster
The property is drawn wusing a
multinomial derived from the cluster’s
Dirichlet prior

Hooi et al., SDM 2016
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BIRDNEST

Each user has a multinomial rating distribution vector, drawn from a
cluster-specific Dirichlet prior

Cluster 1 Cluster 2
12345 12345
<i i A <' Datmg
User 1 User 2 User 3
12345 12345 12 345
Rating Rating Rating

Hooi et al., SDM 2016 16



BIRDNEST
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Hooi et al., SDM 2016
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BIRDNEST Results

Precision at k of BIRD (Flipkart)

n
100% h‘_‘——"_—\\\_\\
precision
0.8 @ top 50
i AWESOMEApp4FreeMoney!!! $$%$%%
i All first time users will need a
@ CODE after downloading this app. So
£0.4 download it now and use my CODE for
o bonus points. CODE: ...
ity 50 100 150 200 250

Hooi et al., SDM 2016
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SpEagle

Intuition: Fair reviewers upvote and fake reviewers
downvote good products. Fair reviewers downvote
bad products and fake reviewers upvote bad

products.
Unsupervised Loopy Belief Propagation algorithm

Add behavior property: include a prior to indicate its
suspiciousness

Use cumulative distribution of the property over all Fake reviewers
users
Flzis) = {})— P(X; <), if high :.q suspicious (H) S =1 \/zf;l fla1i)?
(X: < xp), otherwise (L) F

Rayana et al., KDD 2015 19



SpEagle Results
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Trustiness

Iterative algorithm to compute 3 inter-

dependent measures:

REVIEW 1
Trustworthiness of reviewer which REVIEWER 1
depends (non-linearly) on its reviews’ Q<REV'EW2
honesty scores; = . roey

Reliability of store depending on the
trustworthiness of the reviewers
writing reviews for it and the score,

\7/ —
REVIEW

7/

REVIEWER N(R)
REVIEW N(Re)

@ "\"\Q T e

Honesty of review which is a function 4

of reliability of the store and

trustworthiness of store reviewers.

Wang et al., ICDM 2011
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Fairdudge

Iteratively calculate three interdependent metrics:

Fairness of each user who writes a review: how fair Is the user
In giving correct reviews?

Reliability of each review: how trustworthy is each review itself?

Goodness of each product: what is the quality of the product?

Kumar et al., 2017 22



Fairness
F(u)
[0,1]

Fairdudge

Reliability
R(u,p)

Goodness

G(p)
[-1.1]

Kumar et al., 2017
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Goodness
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Initialization

R(u,p) = 1

F(u) =1

~ N “‘«‘;
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Updating Goodness -

> R(u,p)-score(u,p)
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Updating Reliability - Iteration 1
R(u,p) = 3(Fu) + (1~ 22reP) Z G0,
- B\ / N
R() =002 | ===
G(p) = 0.67 Fu) =1
M =
G(p) = 0.67 F(u) =1
— ) @ ¢ N\~
— 0082 R(r) = 0.92 \—"
= -0.67
/ N ) F(u) =1
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Updating Fairness - Iteration 1

2
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FairJudge - After convergence

31



Cold Start Problem

Most reviewers give few ratings

and

most products receive few ratings.

Solution: add Bayesian priors

F(u) =

0.5 - {¥ ‘I_ Z(u,,p)EDut(u) R(U,p)

Y

+ |Out (u) |

_ Z(“;P)EIn{p) R(u:p) - Score (U:P)

Ge) | B+ |In(p)]

Kumar et al., 2017
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Incorporating Behavioral Properties
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Fairdudge

0.5-a1 + as - IBIRDNES]}RTDU (u.) —+ Z(u,p)(—_’ﬂut(u) R(L‘:,p)

F(u) - X1 + 2 + |D'th('ll)|
1 score(u,p) — G(p)]
Rup) = 5(F@)+(1- I )
G B2 - IBIRDNESTirrDp(P) + 2 (4p)cmep L2(U,P) - score(u,p)
p p—

f1 + B2 + |In(p)|

Time complexity O(K|E|)

kis the number of iterations, which is bounded. |E| is the number of edges.

Kumar et al., 2017 34



Average Precision
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Detecting Fake Reviewers

OTC Network Flipkart Network
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SpamBehavior =—= Spamicity == [CWSM'13 ==== FairJudge

80 of 100 reported fake reviewers in Flipkart correct.
FairJudge is in use at Flipkart.

Kumar et al., 2017 36



Importance of components
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Summary: Fake Reviewers

Fake Reviewers: Users who write non-
truthful reviews for products

Fake reviews are worse: shorter, more
positive, use more “I’s and more verbs and
adverbs

Fake reviewers are deceptive: they collude
among themselves and are faster

Textual, behavioral and network based
algorithms can detect fake reviewers
Combination of several components
performs the best

38
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Textual Properties
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Yoo et al., 2009
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Fake reviews are more positive
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FairdJudge Convergence Theorem

Lemma: IG>=(p) — Gp)| <1

Error bound:
The error between iterations is bounded, and as fincreases, the rating

scores converge. The error bound is given by:

o] t 3t

) — P ()| < 2

o ¢ 3¢

R<(r) -~ R(r)| <2
(t—1)

G=(p) - G'(p)| <

As tincreases, F'(u) — F>(u),G'(p) = G=(p), R'(r) — R™(r)

Kumar et al., 2017



