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Web: Source of information
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Web: Source of false information
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Types of false information
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Misinformation

honest mistake

Disinformation

deliberate lie to mislead



Reviews
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Impact of Fake Reviews

7Makhija et al, 2016, Luca et al., 2011
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+1 increase in star rating 

increases revenue by 5-9%

Flipkart
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Characteristics of fake reviews 

and reviewers



9Ott et al., 2011, Yoo et al., 2009
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Fake reviewers are more opinionated

Genuine

Fake

Kumar et al., 2017
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Fake reviewers

Mukherjee et al., 2013
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fewer reviews

Fake reviewers write 

shorter reviews
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Fake reviewers are faster and have 

bimodal rating pattern 

Kumar et al., 2017, Li et al., 2017

Genuine

Fake



Fake reviewers collude
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Kumar et al., 2017



14

Detecting fake reviewers
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• User is suspicious if his behavior deviates

substantially from that of the global model

• Global Model:

• Users belong to different cluster, each

representing a different behavior

• Each cluster is associated with a

common Dirichlet prior, to model the

common behavior of users in the cluster

• The property is drawn using a

multinomial derived from the cluster’s

Dirichlet prior

BIRDNEST

Hooi et al., SDM 2016



BIRDNEST

16

Cluster 1

User 1 User 2

Cluster 2

User 3

1  2  3  4 5 1  2  3  4 5

1  2  3  4 5

1  2  3  4 5

1  2  3  4 5

Each user has a multinomial rating distribution vector, drawn from a 

cluster-specific Dirichlet prior

Hooi et al., SDM 2016



BIRDNEST
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Cluster 1 Cluster 2

Time difference 

distributions

Time difference 

distributions

Hooi et al., SDM 2016
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BIRDNEST Results

Hooi et al., SDM 2016



Intuition: Fair reviewers upvote and fake reviewers

downvote good products. Fair reviewers downvote

bad products and fake reviewers upvote bad

products.

Unsupervised Loopy Belief Propagation algorithm

Add behavior property: include a prior to indicate its

suspiciousness

Use cumulative distribution of the property over all

users
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Fake reviewers

Benign

SpEagle

Rayana et al., KDD 2015
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SpEagle Results

Rayana et al., KDD 2015

Behavior is more important than text, but it still helps



Iterative algorithm to compute 3 inter-

dependent measures:

Trustworthiness of reviewer which 

depends (non-linearly) on its reviews’ 

honesty scores;

Reliability of store depending on the 

trustworthiness of the reviewers 

writing reviews for it and the score; 

Honesty of review which is a function 

of reliability of the store and 

trustworthiness of store reviewers.
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Trustiness

Wang et al., ICDM 2011



Iteratively calculate three interdependent metrics:

Fairness of each user who writes a review: how fair is the user

in giving correct reviews?

Reliability of each review: how trustworthy is each review itself?

Goodness of each product: what is the quality of the product?
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FairJudge

Kumar et al., 2017



FairJudge
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Goodness

G(p)

[-1,1]

Fairness

F(u)

[0,1] Reliability

R(u,p)

[0,1]

Kumar et al., 2017



Fairness

24

Goodness

G(p)

Reliability 

R(u,p)

Fairness

F(u)

Kumar et al., 2017



Goodness
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Goodness

G(p)

Reliability 

R(u,p)

Fairness

F(u)

Kumar et al., 2017



Reliability
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Goodness

G(p)

Reliability 

R(u,p)

Fairness

F(u)

Kumar et al., 2017

How fair is the user who 

gives the rating

How far is the rating from the 

goodness of product



Initialization
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G(p) = 1

G(p) = 1

G(p) = 1

F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

R(u,p) = 1 R(u,p) = 1

R(u,p) = 1 R(u,p) = 1



Updating Goodness - Iteration 1

28F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

R(r) = 1 R(r) = 1

G(p) = 0.67

G(p) = 0.67

G(p) = -0.67

R(r) = 1 R(r) = 1



Updating Reliability - Iteration 1

29F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

F(u) = 1

R(r) = 0.92 R(r) = 0.92

R(r) = 0.92R(r) = 0.58

R(r) = 0.58

G(p) = 0.67

G(p) = 0.67

G(p) = -0.67



Updating Fairness - Iteration 1

30F(u) = 0.92

F(u) = 0.92

F(u) = 0.58

F(u) = 0.92

F(u) = 0.92

F(u) = 0.92

R(r) = 0.92

R(r) = 0.92R(r) = 0.58

R(r) = 0.58

R(r) = 0.92

G(p) = 0.67

G(p) = 0.67

G(p) = -0.67



FairJudge - After convergence
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F(u) = 0.83

F(u) = 0.83

F(u) = 0.17

F(u) = 0.83

F(u) = 0.83

F(u) = 0.83

R(r) = 0.83 R(r) = .83

R(r) = 0.83

R(r) = 0.17 R(r) = 0.83

R(r) = 0.17

G(p) = 0.67

G(p) = 0.67

G(p) = -0.67
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Cold Start Problem

Most reviewers give few ratings

and

most products receive few ratings.

Solution: add Bayesian priors

Kumar et al., 2017



Incorporating Behavioral Properties
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Rating distribution Timestamp distribution

Use BIRDNEST score of reviewers and products



FairJudge
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k is the number of iterations, which is bounded. |E| is the number of edges.

Time complexity O(k|E|)

Kumar et al., 2017



Detecting Fair Reviewers
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Kumar et al., 2017
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Detecting Fake Reviewers

36
Kumar et al., 2017

80 of 100 reported fake reviewers in Flipkart correct.

FairJudge is in use at Flipkart.
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N = Network

C = Cold Start Solution

B = Behavior

Importance of components

Kumar et al., 2017



Summary: Fake Reviewers
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• Fake Reviewers: Users who write non-

truthful reviews for products

• Fake reviews are worse: shorter, more 

positive, use more “I”s and more verbs and 

adverbs

• Fake reviewers are deceptive: they collude 

among themselves and are faster

• Textual, behavioral and network based 

algorithms can detect fake reviewers 

• Combination of several components 

performs the best
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Additional slides
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Textual Properties
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Yoo et al., 2009
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Fake reviews are more positive
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Yoo et al., 2009



FairJudge Convergence Theorem

44

Lemma:

Error bound:

The error between iterations is bounded, and as t increases, the rating 

scores converge. The error bound is given by:

As t increases, 

Kumar et al., 2017


