Spectral graph partitioning & Community structure of networks

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

Announcements

Task:

Find coalitions in signed networks

Awards:

Extra credit: 10%, 6%, 4%

• European chocolates!

Graph partitioning

Graph G(V,E):

- Bi-partitioning task:
 - Divide vertices into two disjoint groups (A,B)

- Questions:
 - How can we define a "good" partition of the graph?
 - How can we efficiently identify such a partition?

Graph partitioning

- Maximize the number of within-group connections
- Minimize the number of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition.
- Cut: Set of edges with only one vertex in a group. $cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$

Graph Cut Criteria

- Criterion: Minimum-cut
 - Minimise weight of connections between groups $min \ cut(A,B)$

Degenerate case:

Optimal cut

Minimum cut

- Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster density

Graph Cut Criteria

- Criterion: Normalised-cut [Shi-Malik, '97]
 - Consider the connectivity between groups relative to the density of each group

$$\min Ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

- Normalize the association between groups by volume.
 - Vol(A): The total weight of the edges originating from group A.
- Why use this criterion?
 - Minimizing the normalized cut is equivalent to maximizing normalized association.
 - Produces more balanced partitions

Question

- How do we efficiently find a good partition?
- Problem:
 - Computing optimal cut is NP-hard

Spectral Graph Partitioning

- A = adjacency matrix of G
 - $A_{ij} = 1$ if (i,j) is an edge 0 else
- x is a vector in $R^n = (x_1, ..., x_n)$
 - (just a labeling of the vertices of G)
- What is the meaning of Ax?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

What is the meaning of Ax?

- Each entry x_j is a sum of labels x_i of all neighbors
- jth coordinate of Ax:

- $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$
- Sum of the x-values at all neighbors of node j.
 Make this a new value at node j
- Spectral Graph Theory:
 - Analyse the "spectrum" of matrix representing a graph.
 - Spectrum : The eigenvectors of a graph, ordered by the magnitude(strength) of their corresponding eigenvalues. $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$

Example

- Suppose all nodes in G have degree d (G is dregular) and G is connected
- What are some eigenvalues/vectors of G?
- $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

Example

- What if G is not connected?
 - Say G has 2 components
- What are some eigenvectors?
 - All 1 on A and 0 on B or vice versa

Matrix Representations

- Adjacency matrix (A):
 - n x n matrix
 - A=[a_{ij}], a_{ij}=1 if edge between node i and j

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

- Important properties:
 - Symmetric matrix
 - Eigenvectors are real and orthogonal

Matrix Representations (continued)

- Degree matrix (D)
 - n x n diagonal matrix
 - $D=[d_{ii}]$, d_{ii} = degree of node i

	1	2	3	4	5	6
1	თ	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

- Laplacian matrix (L):
 - n x n symmetric matrix

What is trivial eigenvector?

•			4
-	 /)		Λ
L		_	\Box

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

- Important properties:
 - Eigenvalues are non-negative real numbers
 - Eigenvectors are real and orthogonal

λ₂ as optimization problem

For symmetric matrix M:

$$\lambda_2 = \min \frac{x^T M x}{x^T x} = x^T M x$$

What is the meaning of min x^TLx on G?

$$x^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2$$

λ₂ as optimization problem

- What else do we know about x?
 - x is unit vector $\leq \chi_i^2 = 1$
 - x is orthogonal to first eigenvector (1,...,1)

All labelings of nodes so that $sum(x_i)=0$

Find Optimal Cut (Hall'70, Fiedler'73)

Express partition (A,B) as a vector

$$x_i = \begin{cases} +1 & \text{if } i \in A \\ -1 & \text{if } j \in B \end{cases}$$

• We can minimize the cut of the partition by finding a non-trivial vector x that minimizes:

$$f(x) = \sum_{(i,j)\in E} (x_i - x_j)^2$$

Rayleigh Theorem

$$f(x) = \sum_{(i,j)\in E} (x_i - x_j)^2 = x^T L x$$

- The minimum value is given by the 2nd smallest eigenvalue λ₂ of the Laplacian matrix L
- The optimal solution for x is given by the corresponding eigenvector λ₂, referred as the Fiedler Vector

So far...

- How can we define a "good" partition of a graph?
 - Minimise a given graph cut criterion.
 - How can we efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph.
 - Spectral Clustering (Simon et. al,'90)

Spectral Clustering Algorithms

Three basic stages:

- 1. Pre-processing
 - Construct a matrix representation of the graph
- Decomposition:
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors

3. Grouping:

 Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

- Pre-processing
 - Build Laplacian matrix L of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

- Decomposition
 - Find eigenvalues λ
 and eigenvectors x
 of the matrix L

X =

1	0.3
2	0.6
3	0.3
4	-0.3
5	-0.3
6	-0.6

0.4	0.3	-0.5	-0.2	-0.4	-0.5
0.4	0.6	0.4	-0.4	0.4	0.0
0.4	0.3	0.1	0.6	-0.4	0.5
0.4	-0.3	0.1	0.6	0.4	-0.5
0.4	-0.3	-0.5	-0.2	0.4	-0.5
0.4	0.6	-0.4	-0.4	-0.4	0.0

How do we find the clusters?

Spectral Partitioning (continued)

- Grouping
 - Sort components of reduced 1-dimensional vector.
 - Identify clusters by splitting the sorted vector in two.
- How to choose a splitting point?
 - Naïve approaches:
 - Split at 0, mean or median value
 - More expensive approaches
 - Attempt to minimise normalized cut criterion in 1-dimension

Split at o

Cluster A: Positive points

Cluster B: Negative points

1	0.3
2	0.6
3	0.3

Example

Community structure in networks

- What is the cluster structure of networks?
- How does it scale from small to very large networks?
- How to think about clusters in large networks?

Part of a large social network

Objective function

What is a good cluster?

- Many edges internally
- Few pointing outside

Formally, conductance/ normalized cut:

 $\Phi(S) = \# \text{ edges cut } / \# \text{ edges inside}$

Small $\Phi(S)$ corresponds to good clusters

What method to use to optimize the objective function?

What is "best" community of 5 nodes?

What is "best" community of 5 nodes?

Quantifying community structure

 So far we defined the measure that quantifies how cluster-like is a set of nodes

 Now, we want to define a measure of how expressed are the clusters in the network overall

Network Community Profile Plot

Define:

Network community profile (NCP) plot

Plot the score of best community of size *k*

$$\Phi(k) = \min_{S \subset V, |S| = k} \phi(S)$$

Network Community Profile Plot

Probing networks

- Computing NCP is NP-hard
- Use algorithms to extract clusters:
 - Spectral clustering
 - Girvan-Newman/Modularity optimization: popular heuristics
 - Metis (multi-resolution heuristic): common in practice [Karypis
 - Local Spectral connected and tighter sets
 [Andersen-Chung 07]

NCP plot: Meshes

Meshes, grids, dense random graphs:

California road network

NCP plot: Small social networks

Zachary's university karate club social network

NCP plot: Network Science

 Collaborations between scientists in networks [Newman, 2005]

NCP plot: Hierarchical networks

[Clauset-Moore-Newman o8]

Natural hypothesis

Natural hypothesis about NCP:

- NCP of real networks slopes downward
- Slope of the NCP corresponds to the dimensionality of the network

What about large networks?

• Social nets	Nodes	Edges	Description			
LIVEJOURNAL EPINIONS CA-DBLP	4,843,953 75,877 317,080	42,845,684 405,739 1,049,866	Blog friendships [5] Trust network [28] Co-authorship [5]			
• Information (citation) net	works				
Cit-hep-th AmazonProd	27,400 524,371	352,021 1,491,793	Arxiv hep-th [14] Amazon products [8]			
• Web graphs						
Web-google Web-wt10g	855,802 1,458,316	4,291,352 6,225,033	Google web graph TREC WT10G			
 Bipartite affil 	iation (auth	ors-to-papers)	networks			
ATP-DBLP ATM-IMDB	615,678 2,076,9	944,456	DBLP [21]			
• Internet networks We examined more than						
AsSkitter Gnutella	1,719,0 62,5 100 large networks					

Large networks: Very different

Typical example: General Relativity collaborations (n=4,158, m=13,422)

