# Spectral graph partitioning & Community structure of networks

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University



#### **Announcements**

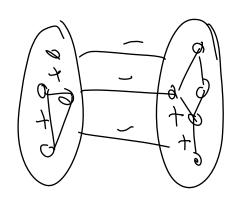
Task:

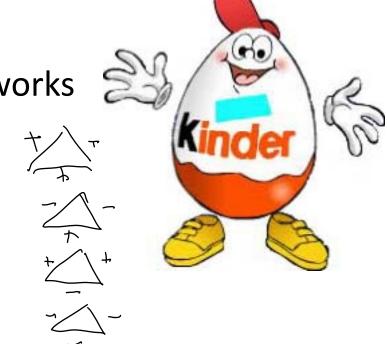
Find coalitions in signed networks

Awards:

Extra credit: 10%, 6%, 4%

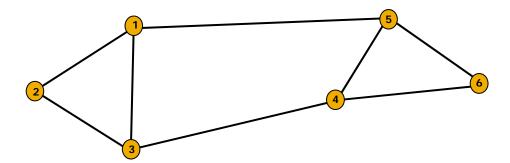
• European chocolates!



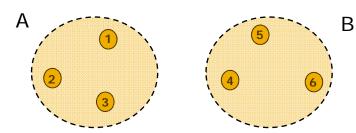


#### **Graph partitioning**

Graph G(V,E):



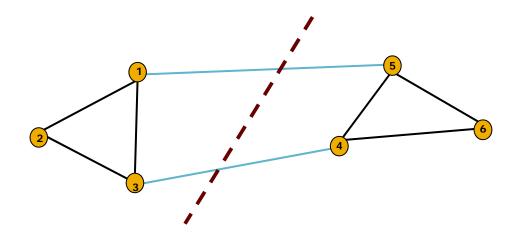
- Bi-partitioning task:
  - Divide vertices into two disjoint groups (A,B)



- Questions:
  - How can we define a "good" partition of the graph?
  - How can we efficiently identify such a partition?

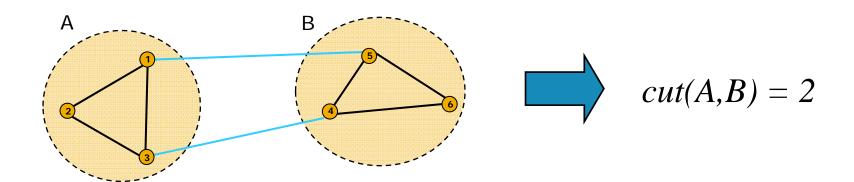
#### **Graph partitioning**

- Maximize the number of within-group connections
- Minimize the number of between-group connections



#### **Graph Cuts**

- Express partitioning objectives as a function of the "edge cut" of the partition.
- Cut: Set of edges with only one vertex in a group.  $cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$



#### **Graph Cut Criteria**

- Criterion: Minimum-cut
  - Minimise weight of connections between groups  $min \ cut(A,B)$

Degenerate case:

Optimal cut

Minimum cut

- Problem:
  - Only considers external cluster connections
  - Does not consider internal cluster density

#### **Graph Cut Criteria**

- Criterion: Normalised-cut [Shi-Malik, '97]
  - Consider the connectivity between groups relative to the density of each group

$$\min Ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

- Normalize the association between groups by volume.
  - Vol(A): The total weight of the edges originating from group A.
- Why use this criterion?
  - Minimizing the normalized cut is equivalent to maximizing normalized association.
  - Produces more balanced partitions

#### Question

- How do we efficiently find a good partition?
- Problem:
  - Computing optimal cut is NP-hard

#### **Spectral Graph Partitioning**

- A = adjacency matrix of G
  - $A_{ij} = 1$  if (i,j) is an edge 0 else
- x is a vector in  $R^n = (x_1, ..., x_n)$ 
  - (just a labeling of the vertices of G)
- What is the meaning of Ax?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

#### What is the meaning of Ax?

- Each entry x<sub>j</sub> is a sum of labels x<sub>i</sub> of all neighbors
- j<sup>th</sup> coordinate of Ax:

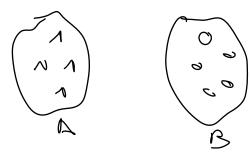
- $\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$
- Sum of the x-values at all neighbors of node j.
   Make this a new value at node j
- Spectral Graph Theory:
  - Analyse the "spectrum" of matrix representing a graph.
  - Spectrum : The eigenvectors of a graph, ordered by the magnitude(strength) of their corresponding eigenvalues.  $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$

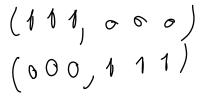
#### Example

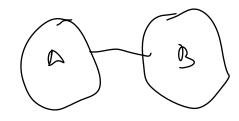
- Suppose all nodes in G have degree d (G is dregular) and G is connected
- What are some eigenvalues/vectors of G?
- $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

#### Example

- What if G is not connected?
  - Say G has 2 components
- What are some eigenvectors?
  - All 1 on A and 0 on B or vice versa

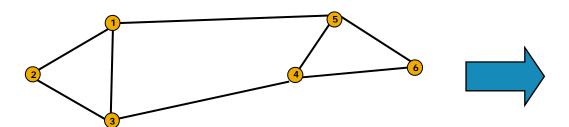






#### **Matrix Representations**

- Adjacency matrix (A):
  - n x n matrix
  - A=[a<sub>ij</sub>], a<sub>ij</sub>=1 if edge between node i and j

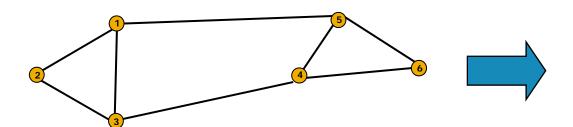


|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| 2 | 1 | 0 | 1 | 0 | 0 | 0 |
| 3 | 1 | 1 | 0 | 1 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 | 1 | 1 |
| 5 | 1 | 0 | 0 | 1 | 0 | 1 |
| 6 | 0 | 0 | 0 | 1 | 1 | 0 |

- Important properties:
  - Symmetric matrix
  - Eigenvectors are real and orthogonal

#### Matrix Representations (continued)

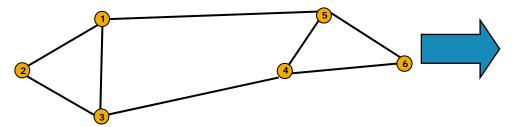
- Degree matrix (D)
  - n x n diagonal matrix
  - $D=[d_{ii}]$ ,  $d_{ii}$  = degree of node i



|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 | თ | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 2 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 3 | 0 | 0 | 0 |
| 4 | 0 | 0 | 0 | 3 | 0 | 0 |
| 5 | 0 | 0 | 0 | 0 | 3 | 0 |
| 6 | 0 | 0 | 0 | 0 | 0 | 2 |

#### **Matrix Representations**

- Laplacian matrix (L):
  - n x n symmetric matrix



What is trivial eigenvector?

| • |         |   | 4      |
|---|---------|---|--------|
| - | <br>/ ) |   | Λ      |
| L |         | _ | $\Box$ |

|   | 1  | 2  | 3  | 4  | 5  | 6  |
|---|----|----|----|----|----|----|
| 1 | 3  | -1 | -1 | 0  | -1 | 0  |
| 2 | -1 | 2  | -1 | 0  | 0  | 0  |
| 3 | -1 | -1 | 3  | -1 | 0  | 0  |
| 4 | 0  | 0  | -1 | 3  | -1 | -1 |
| 5 | -1 | 0  | 0  | -1 | 3  | -1 |
| 6 | 0  | 0  | 0  | -1 | -1 | 2  |

- Important properties:
  - Eigenvalues are non-negative real numbers
  - Eigenvectors are real and orthogonal

#### λ<sub>2</sub> as optimization problem

For symmetric matrix M:

$$\lambda_2 = \min \frac{x^T M x}{x^T x} = x^T M x$$

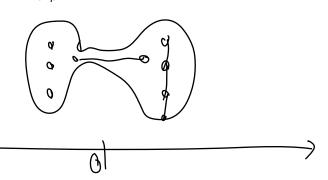
What is the meaning of min x<sup>T</sup>Lx on G?

$$x^T L x = \sum_{(i,j) \in E} (x_i - x_j)^2$$

## λ<sub>2</sub> as optimization problem

- What else do we know about x?
  - x is unit vector  $\leq \chi_i^2 = 1$
  - x is orthogonal to first eigenvector (1,...,1)

All labelings of nodes so that  $sum(x_i)=0$ 



#### Find Optimal Cut (Hall'70, Fiedler'73)

Express partition (A,B) as a vector

$$x_i = \begin{cases} +1 & \text{if } i \in A \\ -1 & \text{if } j \in B \end{cases}$$

• We can minimize the cut of the partition by finding a non-trivial vector x that minimizes:

$$f(x) = \sum_{(i,j)\in E} (x_i - x_j)^2$$

#### Rayleigh Theorem

$$f(x) = \sum_{(i,j)\in E} (x_i - x_j)^2 = x^T L x$$

- The minimum value is given by the 2<sup>nd</sup> smallest eigenvalue λ<sub>2</sub> of the Laplacian matrix L
- The optimal solution for x is given by the corresponding eigenvector λ<sub>2</sub>, referred as the Fiedler Vector

#### So far...

- How can we define a "good" partition of a graph?
  - Minimise a given graph cut criterion.
  - How can we efficiently identify such a partition?
    - Approximate using information provided by the eigenvalues and eigenvectors of a graph.
  - Spectral Clustering (Simon et. al,'90)

#### **Spectral Clustering Algorithms**

#### Three basic stages:

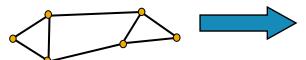
- 1. Pre-processing
  - Construct a matrix representation of the graph
- Decomposition:
  - Compute eigenvalues and eigenvectors of the matrix
  - Map each point to a lower-dimensional representation based on one or more eigenvectors

#### 3. Grouping:

 Assign points to two or more clusters, based on the new representation

## **Spectral Partitioning Algorithm**

- Pre-processing
  - Build Laplacian matrix L of the graph



|   | 1  | 2  | 3  | 4  | 5  | 6  |
|---|----|----|----|----|----|----|
| 1 | 3  | -1 | -1 | 0  | -1 | 0  |
| 2 | -1 | 2  | -1 | 0  | 0  | 0  |
| 3 | -1 | -1 | 3  | -1 | 0  | 0  |
| 4 | 0  | 0  | -1 | 3  | -1 | -1 |
| 5 | -1 | 0  | 0  | -1 | 3  | -1 |
| 6 | 0  | 0  | 0  | -1 | -1 | 2  |

- Decomposition
  - Find eigenvalues λ
     and eigenvectors x
     of the matrix L





X =

| 1 | 0.3  |
|---|------|
| 2 | 0.6  |
| 3 | 0.3  |
| 4 | -0.3 |
| 5 | -0.3 |
| 6 | -0.6 |

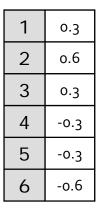
| 0.4 | 0.3  | -0.5 | -0.2 | -0.4 | -0.5 |
|-----|------|------|------|------|------|
| 0.4 | 0.6  | 0.4  | -0.4 | 0.4  | 0.0  |
| 0.4 | 0.3  | 0.1  | 0.6  | -0.4 | 0.5  |
| 0.4 | -0.3 | 0.1  | 0.6  | 0.4  | -0.5 |
| 0.4 | -0.3 | -0.5 | -0.2 | 0.4  | -0.5 |
| 0.4 | 0.6  | -0.4 | -0.4 | -0.4 | 0.0  |

How do we find the clusters?

#### Spectral Partitioning (continued)

- Grouping
  - Sort components of reduced 1-dimensional vector.
  - Identify clusters by splitting the sorted vector in two.
- How to choose a splitting point?
  - Naïve approaches:
    - Split at 0, mean or median value
  - More expensive approaches
    - Attempt to minimise normalized cut criterion in 1-dimension





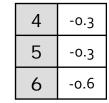


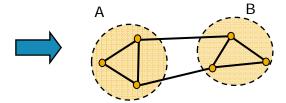
#### Split at o

Cluster A: Positive points

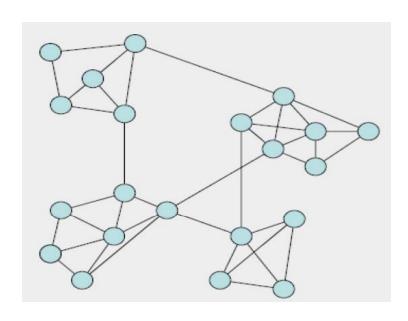
Cluster B: Negative points

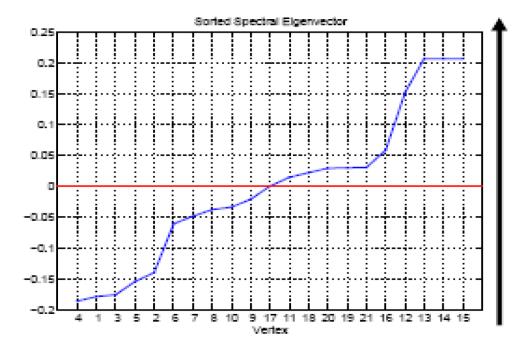
| 1 | 0.3 |
|---|-----|
| 2 | 0.6 |
| 3 | 0.3 |





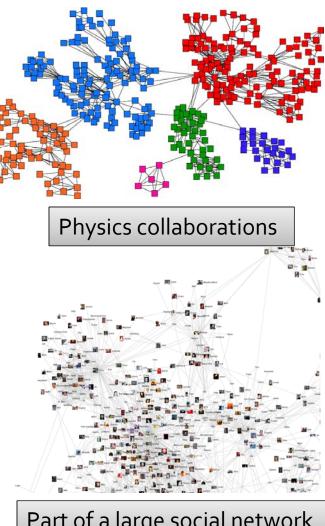
## Example





#### Community structure in networks

- What is the cluster structure of networks?
- How does it scale from small to very large networks?
- How to think about clusters in large networks?



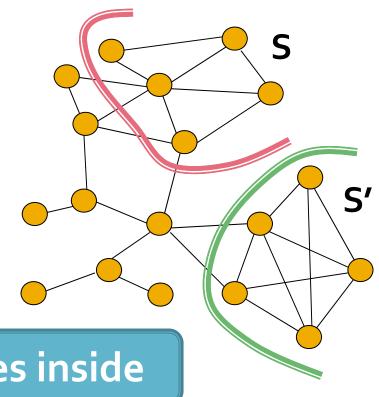
Part of a large social network

#### Objective function

#### What is a good cluster?

- Many edges internally
- Few pointing outside

Formally, conductance/ normalized cut:

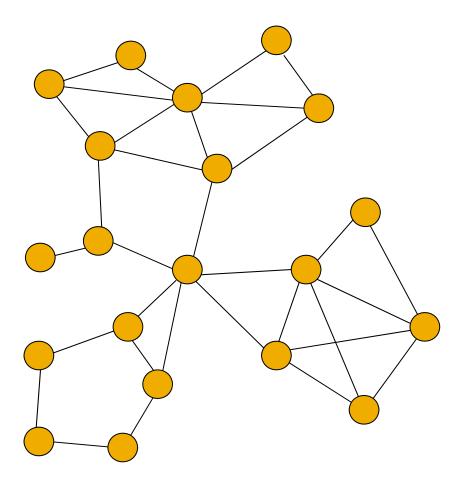


 $\Phi(S) = \# \text{ edges cut } / \# \text{ edges inside}$ 

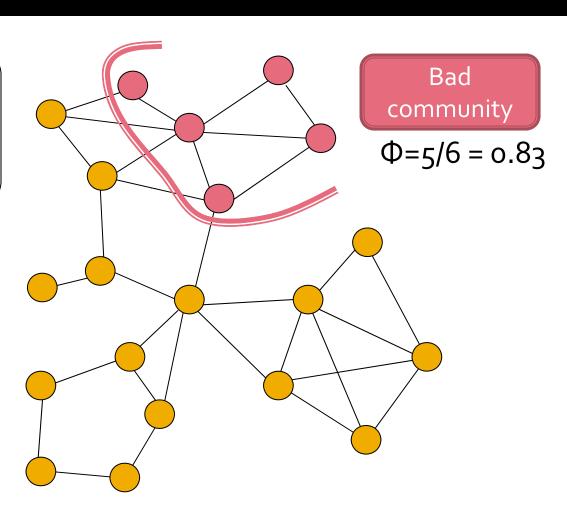
**Small**  $\Phi(S)$  corresponds to good clusters

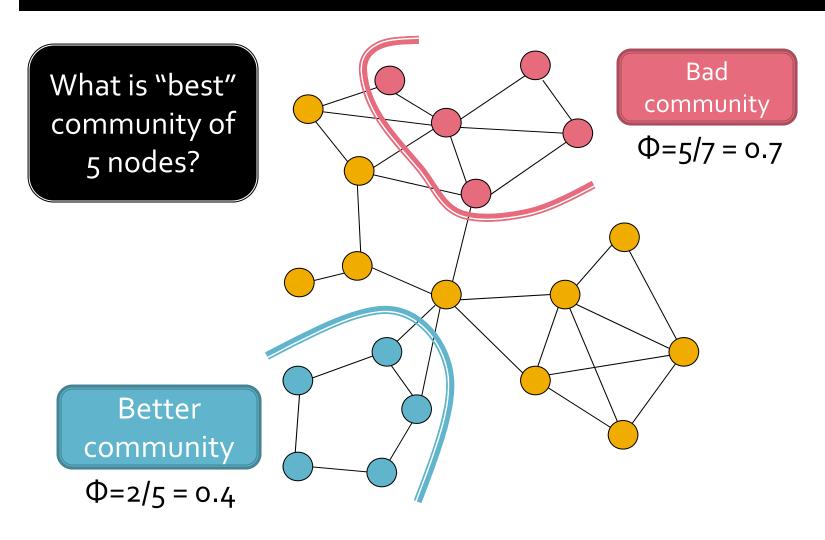
What method to use to optimize the objective function?

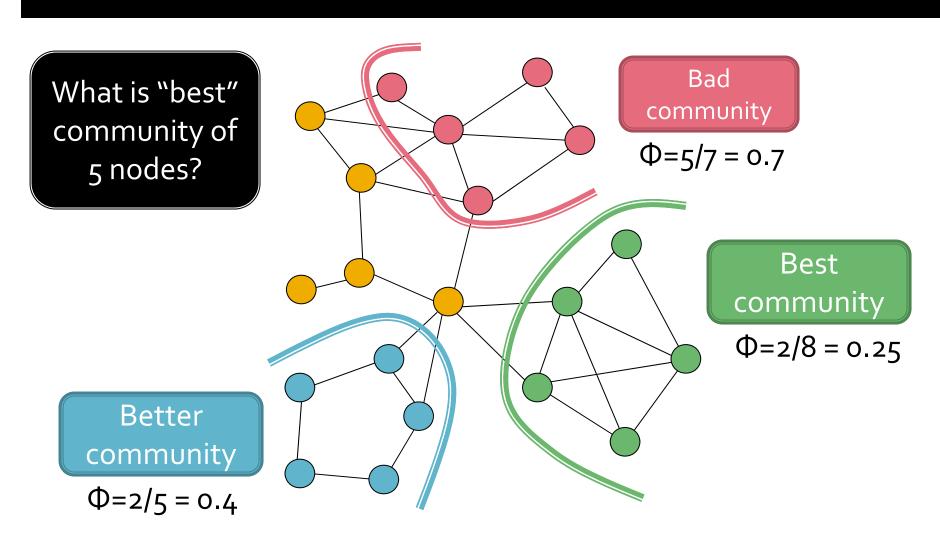
What is "best" community of 5 nodes?



What is "best" community of 5 nodes?







## Quantifying community structure

 So far we defined the measure that quantifies how cluster-like is a set of nodes

 Now, we want to define a measure of how expressed are the clusters in the network overall

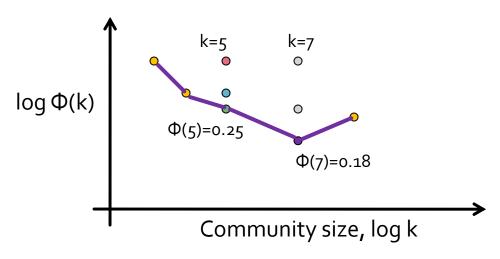
## **Network Community Profile Plot**

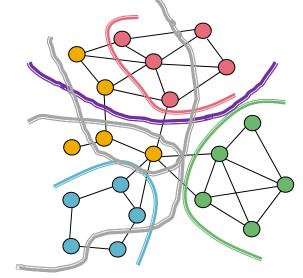
#### Define:

Network community profile (NCP) plot

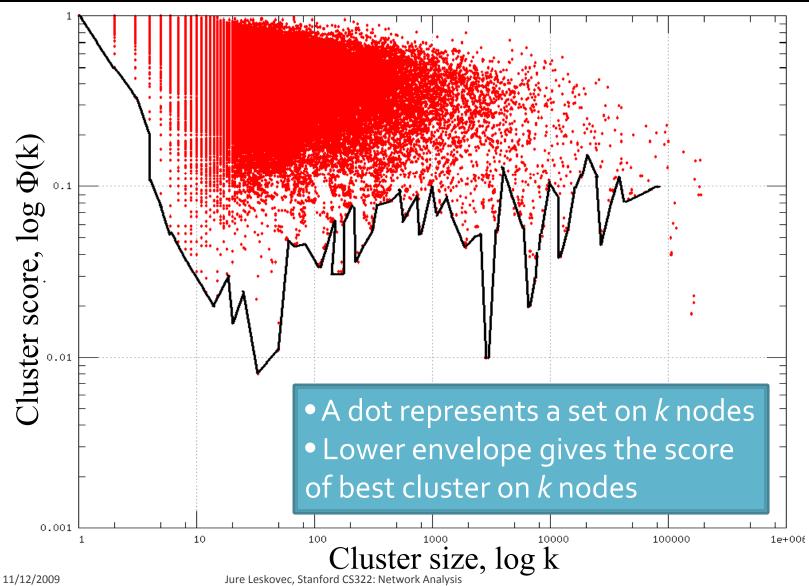
Plot the score of best community of size *k* 

$$\Phi(k) = \min_{S \subset V, |S| = k} \phi(S)$$





## **Network Community Profile Plot**

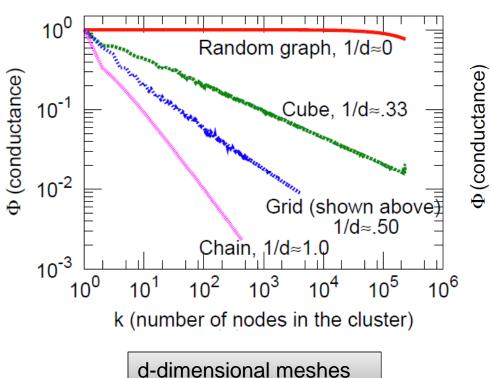


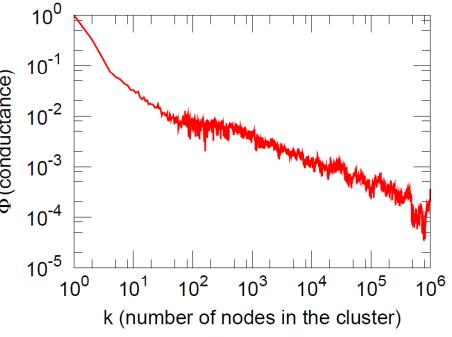
## **Probing networks**

- Computing NCP is NP-hard
- Use algorithms to extract clusters:
  - Spectral clustering
  - Girvan-Newman/Modularity optimization: popular heuristics
  - Metis (multi-resolution heuristic): common in practice [Karypis
  - Local Spectral connected and tighter sets
     [Andersen-Chung 07]

#### NCP plot: Meshes

#### Meshes, grids, dense random graphs:

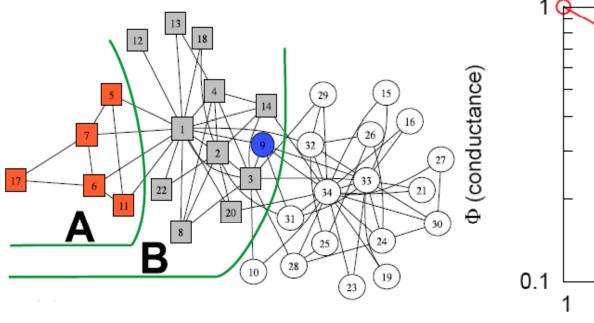


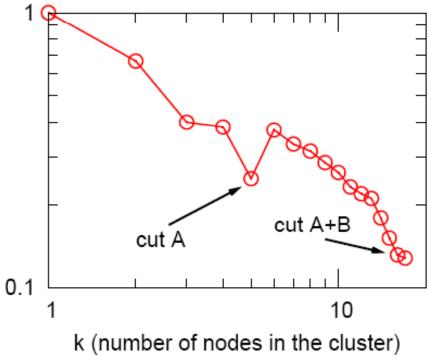


California road network

#### NCP plot: Small social networks

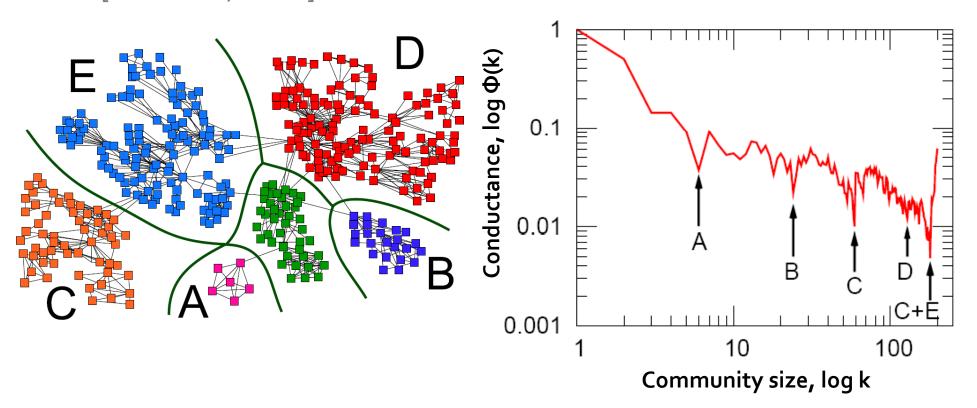
Zachary's university karate club social network



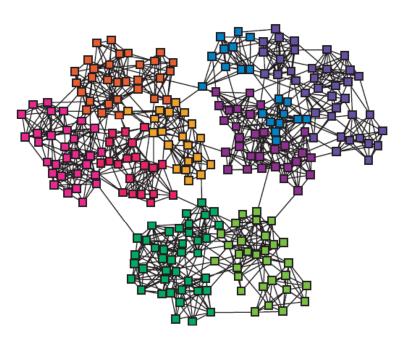


#### NCP plot: Network Science

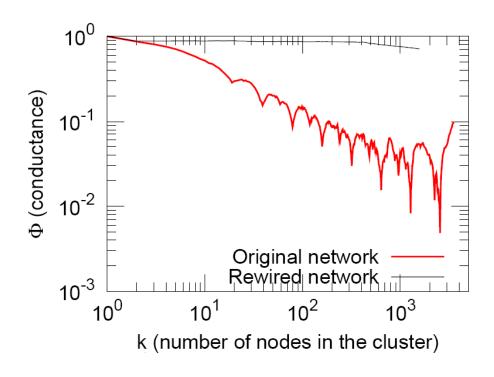
 Collaborations between scientists in networks [Newman, 2005]



#### NCP plot: Hierarchical networks



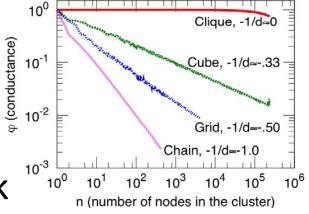
[Clauset-Moore-Newman o8]



#### Natural hypothesis

#### Natural hypothesis about NCP:

- NCP of real networks slopes downward
- Slope of the NCP corresponds to the dimensionality of the network



What about large networks?

| • Social nets                             | Nodes                              | Edges                              | Description                                               |  |  |  |
|-------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------------------|--|--|--|
| LIVEJOURNAL<br>EPINIONS<br>CA-DBLP        | 4,843,953<br>75,877<br>317,080     | 42,845,684<br>405,739<br>1,049,866 | Blog friendships [5] Trust network [28] Co-authorship [5] |  |  |  |
| • Information (                           | citation) net                      | works                              |                                                           |  |  |  |
| Cit-hep-th<br>AmazonProd                  | 27,400<br>524,371                  | 352,021<br>1,491,793               | Arxiv hep-th [14]<br>Amazon products [8]                  |  |  |  |
| • Web graphs                              |                                    |                                    |                                                           |  |  |  |
| Web-google<br>Web-wt10g                   | 855,802<br>1,458,316               | 4,291,352<br>6,225,033             | Google web graph<br>TREC WT10G                            |  |  |  |
| <ul> <li>Bipartite affil</li> </ul>       | iation (auth                       | ors-to-papers)                     | networks                                                  |  |  |  |
| ATP-DBLP<br>ATM-IMDB                      | 615,678<br>2,076,9                 | 944,456                            | DBLP [21]                                                 |  |  |  |
| • Internet networks We examined more than |                                    |                                    |                                                           |  |  |  |
| AsSkitter<br>Gnutella                     | 1,719,0<br>62,5 100 large networks |                                    |                                                           |  |  |  |

## Large networks: Very different

## Typical example: General Relativity collaborations (n=4,158, m=13,422)

