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Finding influencers

Which are the influential/infectious blogs?

Who are the trendsetters?

Influential people?

Where to place monitoring stations to detect
epidemics?

11/3/2009 Jure Leskovec, Stanford CS322: Network Analysis 3



Most Influential Subset of Nodes

set S of k nodes
producing largest
expected cascade size

f(S) if activated
[Domingos-Richardson ‘01]

Optimization problem: MaX f (S)

Sof sizek
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Problem structure: Submodularity

fis ST

fs wAuf)=1(S) 2 AT {u}) = f(T)
Gain of adding a node to a small set Gain of adding a node to a large set
Natural example: B

Sets A, A,,.., A, A

f(A) = size of union of A,
(size of covered area)

If f,,....f are submodular,
then Jp,f;is submodular
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Hill climbing

Start with Sy={}

For i=1...k J5i20v)
Choose node v that max f(S, ,U{v}) d a
Let S, =S, ,LU{V} b . ;
Hill climbing produces a C S
solution S where f(S) >(1-1/e) e

of optimal value (~63%)

when f is monotone and submodular
[Hemhauser, Fisher, Wolsey '78]

11/3/2009 Jure Leskovec, Stanford CS322: Network Analysis



[Leskovec et al., KDD ‘o07]

Lazy evaluation

Lazy hill-climbing:

Marginal gain

Keep an ordered list of marginal . !
benefits b; from previous )
iteration b a
Re-evaluate b; only for top ¢ c ©
node d

Re-sort and prune e
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[Leskovec et al., KDD ‘o07]

Problem: Water Network

Given a real city water
distribution network

And data on how
contaminants spread
in the network

Problem posed by US
Environmental
Protection Agency
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[Leskovec et al., KDD ‘o07]

Problem Setting

Given a graph G(V,E)
and a budget B for sensors
and data on how contaminations spread over
the network:
for each contamination 1 we know the time T(i,u)
when it contaminated node u
Select a subset of nodes A that maximize the
expected reward

Imax R(A) = ZL: P(i)\Ri(ng, A)),

Reward for detecting
contamination i

subject to cost(A) <B
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[Leskovec et al., KDD ‘o07]

Structure of the Problem

Observation: Diminishing returns

New sensor:
S)
Placement A={Sll Sz} Placement B={Sll Szl S3’ 54}
Adding S'helps a lot | Adding S"helps
very little
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[Leskovec et al., KDD ‘o07]

Reward function is submodular

Claim:
Reward function is submodular

Consider cascade i:
f.(u,) = set of nodes saved from u,
f.(A) = size of union f(u,), u €A
f.is

Global optimization:
f(A) = 2. Prob(i) f.(A)

—fis
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[Leskovec et al., KDD ‘o07]

Towards a New Algorithm

Consider: hill-climbing ignoring the cost

lgnore sensor cost. Repeatedly select
sensor with highest marginal gain

It always prefers more expensive sensor with
reward rto a cheaper sensor with reward r-¢
— For variable cost it can fail arbitrarily badly

Idea: What if we optimize benefit-cost ratio?
R(Ap—1 U R(A
S, = argmax k=1 U 1s}) — k—1)
sEV\Ap_q c(s)
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[Leskovec et al., KDD ‘o07]

Benefit-Cost: More Problems

Benefit-cost ratio can fail arbitrarily badly
Consider: budget B:
2 locations s, and s,:
Costs: ¢(s,)=¢, c(s,)=B
Only 1 cascade: R(s,)=2¢, R(s,)=B
Then benefit-cost ratio is
bc(s;)=2 and bc(s,)=1

So, we first select s, and
then can not afford s,

—>We get reward 2¢ instead of B
Now send € to 0 and we get
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[Leskovec et al., KDD ‘o07]

Solution: CELF Algorithm

CELF (cost-effective lazy forward-selection):
A two pass greedy algorithm:

Set (solution) A: use benefit-cost greedy
Set (solution) B: use unit cost greedy

Final solution: argmax(R(A), R(B))

Theorem: CELF is near optimal
CELF achieves ¥2(1-1/e) factor approximation

11/3/2009 Jure Leskovec, Stanford CS322: Network Analysis 16



[Leskovec et al., KDD ‘o07]

Case study: Water Network

Real metropolitan area
water network

V =21,000 nodes
E = 25,000 pipes

< Use a cluster of 50 machines for a month\
Simulate 3.6 million epidemic scenarios
(152 GB of epidemic data)

By exploiting sparsity we fit it into main

\_ memory (16GB) Y,
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[Leskovec et al., KDD ‘o07]

Water: Solution Quality

1.4
1ol offline bound- . Offline bound: OPT/(1-1/e)
11 online bound |
Ve Online bound on OPT
0.8+ [Leskovec et al., KDD '07]

CELF

Reduction of population affected

0. '|
CELF
0.4 solution
0.2+
0 5 10 15 20

Number of sensors selected

The online (data dependent) bound gives much
better estimate of how far from unknown
optimal solution is the CELF solution
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[Leskovec et al., KDD ‘o07]

Water: Heuristic Placement
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Heuristics placements perform much worse
One really needs to consider the spread of

epidemics
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[Leskovec et al., KDD ‘o07]
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[Leskovec et al., KDD ‘o07]

Water: Algorithm Scalability
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CELF is an order of magnitude faster than
hill-climbing
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Question...

?
®
-
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Detecting information outbreaks
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[Leskovec et al., KDD ‘o07]

Blogs: Solution Quality

Online bound [Leskovec et al., KDD "07] is
much tighter
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[Leskovec et al., KDD ‘o07]

Blogs: Cost of a Blog

Unit cost:

=
0

algorithm picks large
popular blogs:

instapundit.com,
michellemalkin.com

o
(o))
|

Variable cost:

proportional to the
number of posts

o
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[Leskovec et al., KDD ‘o07]

Blogs: Cost of a Blog

But then algorithm
picks lots of small
blogs that participate
in few cascades

300
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that interpolates
between the costs 501
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o
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Each curve represents solutions with
blogs and few posts P

same final reward
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[Leskovec et al., KDD ‘o07]

- Heuristic Selection

Reduction in population affected

_~Random
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Number of blogs

Heuristics perform much worse
One really needs to perform optimization
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Blogs: Scalability

Running time (seconds)
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[Leskovec et al., KDD ‘o07]

CELF runs 700
times faster than

simple hill-
climbing algorithm
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Finding communities/clusters
In networks




[Onnela et al. ‘o7]

Strength of weak ties
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Network communities

Findings so far suggest
that

Sets of nodes with of
connections and

to (the rest
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Finding network communities

|deally such automatically
detected clusters would
then correspond to real
groups
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Social Network Data

Observe social ties and rivalries in a university karate club
During his observation, conflicts led the group to split
Split could be explained by a minimum cut in the network
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Micro-markets in sponsored search

Find micro-markets by partitioning the “query x
advertiser” graph:

query

e © — sports
gt : betting .

advertiser
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Clustering and Community Finding

11/3/2009

If Gaussian, then low-rank space is good

If low-dimensional manifold, then kernels are good
Top-down and bottom-up — common in social sciences

Define “edge counting” metric — conductance,
expansion, modularity, etc. —and optimize!
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Hierarchically nested communites




[Girvan-Newman PNAS ‘02]

Algorithm of Girvan-Newman

Divisive hierarchical clustering based on the
notion of edge

Remove edges in decreasing betweenness

11/3/2009 Jure Leskovec, Stanford CS322: Network Analysis



[Girvan-Newman PNAS ‘02]

Algorithm of Girvan-Newman

(a) Step 1 (b) Step 2
o
o @ C ®
@
OO, ONO
®

(c) Step 3
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[Newman-Girvan PhysReVE ‘03]

Girvan-Newman: Results

hierarchic

decomposition

[ — 1 Pl e e e .
- M Rl B m o ka ™ g B

|_—| |ﬁ| |-E DDEIDDH{K

g Pl Pl = = = Bd Ld Pd P Pd PBE g
) - [FERE - - N S S LA -

11/3/2009 Jure Leskovec, Stanford CS322: Network Analysis



[Newman-Girvan PhysReVE ‘03]

Girvan-Newman: Results
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Communities in physics collaborations
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How to compute betweenness (1)




How to compute betweenness

# shortest A-J paths =
# shortest A-G paths +
# shortest A-H paths

# shortest A-l paths =
# shortest A-F paths +
# shortest A-G paths

# shortest A-K paths
= # shortest A-| paths
+ # shortest A-J paths
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How to compute betweenness (3)

If
there are multiple paths count them fractionally

2 2 4 2
1 é“ (c) 1 @ 1\® !
1 L 2 1 1
1+1 pathsto H

é 2 @ ! @ 2 Splitevenly
e Repeat the BFS 1 12 2 1
procedure for each 3 d b . ;+<i.5 paths to J
node of the network ; plit1:2
» Add edge scores 12

b ¢ 1pathtoK
Split evenly
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