Outbreak Detection in Networks

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

Announcements

Thursday: guest lecture

Lars Backstrom (Facebook/Cornell)

on networks & geography

Finding influencers

- Blogs information epidemics
 - Which are the influential/infectious blogs?
- Viral marketing
 - Who are the trendsetters?
 - Influential people?

- Disease spreading
 - Where to place monitoring stations to detect epidemics?

Most Influential Subset of Nodes

 Most influential set of size k: set S of k nodes producing largest expected cascade size f(S) if activated [Domingos-Richardson '01]

• Optimization problem: $\max_{S \text{ of size k}} f(S)$

Problem structure: Submodularity

• f is submodular: $S \subset T$

$$f(S \cup \{u\}) - f(S) \ge f(T \cup \{u\}) - f(T)$$
Gain of adding a node to a small set
Gain of adding a node to a large set

- Natural example:
 - Sets A₁, A₂,..., A_n
 - f(A) = size of union of A_i
 (size of covered area)

If $f_1,...,f_K$ are submodular, then $\sum p_i f_i$ is submodular

Hill climbing

- Start with S₀={}
- For i=1...k
 - Choose node v that max $f(S_{i-1} \cup \{v\})$
 - $\bullet \text{ Let } S_i = S_{i-1} \cup \{v\}$
- Hill climbing produces a solution S where f(S) ≥(1-1/e) of optimal value (~63%) when f is monotone and submodular [Hemhauser, Fisher, Wolsey '78]

Lazy evaluation

- Lazy hill-climbing:
 - Keep an ordered list of marginal benefits b_i from previous iteration
 - Re-evaluate b_i only for top node
 - Re-sort and prune

Lazy evaluation

- Lazy hill-climbing:
 - lacktriangle Keep an ordered list of marginal benefits b_i from previous iteration
 - Re-evaluate b_i only for top node
 - Re-sort and prune

Lazy evaluation

- Lazy hill-climbing:
 - lacktriangle Keep an ordered list of marginal benefits b_i from previous iteration
 - Re-evaluate b_i only for top node
 - Re-sort and prune

Problem: Water Network

- Given a real city water distribution network
- And data on how contaminants spread in the network
- Problem posed by US
 Environmental
 Protection Agency

Problem Setting

- Given a graph G(V,E)
- and a budget B for sensors
- and data on how contaminations spread over the network:
 - for each contamination i we know the time T(i,u) when it contaminated node u
- Select a subset of nodes A that maximize the expected reward

$$\max_{\mathcal{A}\subseteq\mathcal{V}} R(\mathcal{A}) \equiv \sum_{i} P(i) R_i(T(i,\mathcal{A}))$$
Reward for detecting contamination i

subject to cost(A) < B

Structure of the Problem

Observation: Diminishing returns

Placement $A = \{S_1, S_2\}$

Adding S' helps a lot

New sensor:

Placement B= $\{S_1, S_2, S_3, S_4\}$

Adding S' helps very little

Reward function is submodular

Claim:

- Reward function is submodular
- Consider cascade i:
 - $f_i(u_k)$ = set of nodes saved from u_k
 - $f_i(A)$ = size of union $f_i(u_k)$, $u_k \in A$
 - ⇒f_i is submodular

- $f(A) = \sum Prob(i) f_i(A)$
- \Rightarrow f is submodular

Towards a New Algorithm

- Consider: hill-climbing ignoring the cost
 - Ignore sensor cost. Repeatedly select sensor with highest marginal gain
- It always prefers more expensive sensor with reward r to a cheaper sensor with reward r-ε
 - → For variable cost it can fail arbitrarily badly

Idea: What if we optimize benefit-cost ratio?

$$s_k = \underset{s \in \mathcal{V} \setminus \mathcal{A}_{k-1}}{\operatorname{argmax}} \frac{R(\mathcal{A}_{k-1} \cup \{s\}) - R(\mathcal{A}_{k-1})}{c(s)}$$

Benefit-Cost: More Problems

- Benefit-cost ratio can fail arbitrarily badly
- Consider: budget B:
 - 2 locations s_1 and s_2 :
 - Costs: $c(s_1)=\varepsilon$, $c(s_2)=B$
 - Only 1 cascade: $R(s_1)=2\varepsilon$, $R(s_2)=B$
 - Then benefit-cost ratio is
 - $bc(s_1)=2$ and $bc(s_2)=1$
 - So, we first select s_1 and then can not afford s_2
 - \rightarrow We get reward 2ε instead of BNow send ε to O and we get arbitrarily bad

Solution: CELF Algorithm

- CELF (cost-effective lazy forward-selection):
 - A two pass greedy algorithm:
 - Set (solution) A: use benefit-cost greedy
 - Set (solution) B: use unit cost greedy
 - Final solution: argmax(R(A), R(B))

- Theorem: CELF is near optimal
 - CELF achieves $\frac{1}{2}(1-1/e)$ factor approximation

Case study: Water Network

- Real metropolitan area water network
 - V = 21,000 nodes
 - E = 25,000 pipes

- Use a cluster of 50 machines for a month
- Simulate 3.6 million epidemic scenarios (152 GB of epidemic data)
- By exploiting sparsity we fit it into main memory (16GB)

Water: Solution Quality

 The online (data dependent) bound gives much better estimate of how far from unknown optimal solution is the CELF solution

Water: Heuristic Placement

- Heuristics placements perform much worse
- One really needs to consider the spread of epidemics

Water: Placement Visualization

Water: Algorithm Scalability

 CELF is an order of magnitude faster than hill-climbing

Question...

= I have 10 minutes. Which blogs should I read to be most up to date?

= Who are the most influential bloggers?

Detecting information outbreaks

Blogs: Solution Quality

 Online bound [Leskovec et al., KDD '07] is much tighter

Blogs: Cost of a Blog

- Unit cost:
 - algorithm picks large
 popular blogs:
 instapundit.com,
 michellemalkin.com
- Variable cost:
 - proportional to the number of posts
- We can do much better when considering costs

Blogs: Cost of a Blog

- But then algorithm picks lots of small blogs that participate in few cascades
- We pick best solution that interpolates between the costs
- We can get good solutions with few blogs and few posts

Each curve represents solutions with same final reward

Blogs: Heuristic Selection

- Heuristics perform much worse
- One really needs to perform optimization

Blogs: Scalability

CELF runs 700
 times faster than
 simple hill climbing algorithm

Finding communities/clusters in networks

Strength of weak ties

Real edge strengths in mobile call graph

Network communities

 Findings so far suggest that network groups are tightly connected

Network communities:

 Sets of nodes with lots of connections inside and few to outside (the rest of the network)

Communities, clusters, groups, modules

Finding network communities

- How to automatically find such densely connected groups of nodes?
- Ideally such automatically detected clusters would then correspond to real groups
- For example:

Communities, clusters, groups, modules

Social Network Data

- Zachary's Karate club network:
 - Observe social ties and rivalries in a university karate club
 - During his observation, conflicts led the group to split
 - Split could be explained by a minimum cut in the network

Micro-markets in sponsored search

Find micro-markets by partitioning the "query x advertiser" graph:

Clustering and Community Finding

Many methods:

- Linear (low-rank) methods:
 - If Gaussian, then low-rank space is good
- Kernel (non-linear) methods:
 - If low-dimensional manifold, then kernels are good
- Hierarchical methods:
 - Top-down and bottom-up common in social sciences
- Graph partitioning methods:
 - Define "edge counting" metric conductance, expansion, modularity, etc. – and optimize!

Hierarchically nested communites

What is a good notion that would extract such clusters?

Algorithm of Girvan-Newman

 Divisive hierarchical clustering based on the notion of edge betweenness:

Number of shortest paths passing through the edge

Remove edges in decreasing betweenness

Algorithm of Girvan-Newman

(c) Step 3

Girvan-Newman: Results

Zachary's Karate club: hierarchic decomposition

Girvan-Newman: Results

How to compute betweenness (1)

 Want to compute betweenness of paths starting at node A Breath first search starting from A:

How to compute betweenness (2)

Count the number of shortest paths from A to all other nodes of the network:

How to compute betweenness (3)

 Compute betweenness by working up the tree: If there are multiple paths count them fractionally

 Repeat the BFS procedure for each node of the network

Add edge scores