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Three questions
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[Leskovec et al. KDD o5]

Network Evolution

N(t) ... nodes at time ¢
E(t) ... edges at time ¢

Suppose that
N(t+1) =2 * N(t)
Q: what is

E(+1) =70 € (+)
A: over-doubled!

But obeying the Densification Power Law
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[Leskovec et al. KDD o5]

Densification — Physics Citations
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[Leskovec et al. KDD o5]

Densification Power Law

the number of edges grows faster than the
number of nodes —

or log ;
E(t) ¢ N ()] ED _

... densification exponent: 1 <a < 2:
. linear growth — constant out-degree 4 H‘

: quadratic growth — clique
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[Leskovec et al. KDD o5]

Evolution of the Diameter

Prior work on Power Law graphs hints at

diameter ~ O(log N)
diameter ~ O(log log N)
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[Leskovec et al. KDD o5]

Diameter — ArXiv citation graph
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[Leskovec et al. TKDD o07]

Diameter of a densifying G,,,

Erdos-Renyi
random graph

diameter
W
Q0
|

Densification
exponent a =1.3

37 L 1

1 2 3 4 5.10°
size of the graph

10/15/2009 Jure Leskovec, Stanford CS322: Network Analysis



[Leskovec et al. TKDD o07]

Diameter of a rewired network
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[Leskovec et al. TKDD o07]

Connecting Degrees & Densification
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[Leskovec et al. TKDD o07]

Connecting Degrees & Densification
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[Leskovec et al. TKDD o07]

Patterns Hold in Many Graphs

DATASET NODES EDGES TivE DPL EXPONENT
Arxiv HEP-PH 30,501 347.268 | 124 months 1.56
Arxiv HEP-TH 29.555 352,807 | 124 months 1.68
Patents 3,923,922 16,522,438 37 years 1.66
AS 6,474 26,467 785 days 1.18
Affiliation ASTRO-PH 57,381 133,179 10 years 1.15
Affiliation COND-MAT 62,085 108,182 10 years 1.10
Affiliation GR-QC 19,309 26,169 10 years 1.08
Affiliation HEP-PH 51,037 89.163 10 years 1.08
Affiliation HEP-TH 45,280 68.695 10 years 1.08
Email 35.756 123,254 18 months 1.12
IMDB 1,230,276 3,790,667 114 years 1.11
Recommendations 3.943.084 | 15,656,121 710 days 1.26
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Densification — Possible Explanation

What explains the

and

Can we find a simple model of behavior,
which naturally leads to the observed
phenomena?

Yes!
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[Leskovec et al. TKDD o07]

Community structure

Let’s assume the

University

Science Arts

One expects many 3
within-group / \ L / \‘
friendships and
fewer cross-group
ones

CS Math Drama Music

How hard is it to Self-similar university
? community structure
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Main Assumption

Assume the cross-community linking

probability of nodes at tree-distance / is
scale-free

Then the cross-community linking
probability is:

f(h)=c¢"

where: c>1 ... the
h ... tree-distance
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Community guided attachment

n = 2% nodes reside in the leaves of the b-way
community hierarchy (assume b=2)

Aw) MW
\@ Lx\

Each node then independently creates edges
based the community hierarchy,/(h) =c¢™"
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[Leskovec et al. TKDD o07]

Densification Power Law

Claim: Community Guided Attachment
random graph model, the expected out-
degree of a node is proportional to

1. pllosle) if 1 <e<b
2. logy(n) if c=0
3. constant if ¢ > b

10/15/2009 Jure Leskovec, Stanford CS322: Network Analysis



What is expected out-degree of a node x?
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Densification Power Law (2)

Claim: The
leads to with
exponent

a =2 —log,(c)

a ... densification exponent FE(t) oc N(t)* .~
b ... community tree branching factor o
c ... difficulty constant, / <c <b

55 EL88 T
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Difficulty Constant

DPL:

el a =2 —log,(c)
Gives any non-integer Densification
exponent M‘W»): 7,A
If : easy to cross communities
Then: a=2, quadratic growth of edges — near
clique
If : hard to cross communities

Then: a=1, linear growth of edges — constant
out-degree
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[Leskovec et al. TKDD o07]

Extension of the model

Now nodes also reside in non-leafs of the tree

Can show:

Densification + power-law degree distribution
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[Leskovec et al. TKDD o07]

B-way Branching Tree

S

Each node represents k pages
Nodes everywhere in the tree \D J
Link up /% levels with prob. ~ "

Simplification: only bottom level creates links
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[Leskovec et al. TKDD o07]

Expected degree at height h
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Power-laws vs. Log-normal
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[Mitzenmacher]

Lognormal Distribution

Properties:
Finite mean/variance.
Skewed: mean > median > mode

Multiplicative:
lognormal, .\, lognormal implies lognormal.
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[Mitzenmacher]

Power-law — Lognormal: similarities

Looks similar to power-law on log-log plot:
Power-law has linear log-density

In f(x)=—alnx+Inc

For large o, lognormal has nearly linear log-
density:

Inx—u)
In f(x)=—Inx—In270 ( 2“)
20
Similarly, both have near linear log-ccdfs.
Question: how to differentiate them empirically?
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Lognormal vs. Power Law

Question: Is this distribution lognormal or a
power law?

Reasonable follow-up: Does it matter?

Generative model:
Size-independent + growth

Size (e.g., popularity, degree) start at one and
changes in each step by a random multiplicative
factor F
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Generative Models: Lognormal

Start with an organism of size X,,.
At each time step, size changes by a random

multiplicative factor. X, =F_ X,

Claim: If F, is taken from a lognormal
distribution, each X, is lognormal.
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Generative Models: Lognormal

Claim: If F, is taken from a lognormal
distribution, each X, is lognormal.

It /", are independent, identically distributed
then (by CLT) X, converges to lognormal
distribution. o= Xyen Fpoa = TV :2/?/;
! i 4
Ko =4
InX,=sizeattime¢t=InF,+In F,+...+In F,

In X, =2 In F;~ normal dist 2 X, is lognormal
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[Mitzenmacher]

If there exists a lower bound:
X, =max(¢, F;_1 X, 1)

then X, converges to a power law distribution

Lognormal model easily pushed to a power
law model
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[Mitzenmacher]

Double Pareto Distributions

Consider continuous version of lognormal
generative model:

At time t, log X, is normal with mean ut and
variance o’t

Suppose observation time is distributed
exponentially

E.g., When Web size doubles every year.
Resulting distribution is Double Pareto.

Between lognormal and Pareto.
Linear tail on a log-log chart, but a lognormal bodly.
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[Mitzenmacher]

Lognormal vs. Double Pareto

ccdf: Lognormal and Double Pareto
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More of power-laws

Hierarchical model that produces power-laws

Empirically: rank ~1/freq
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Rank vs. freq of words on Wikipedia
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Optimization Model: Power Law

10/15

/2009

Mandelbrot experiment: design a language
over a d-ary alphabet to optimize information

per character.
Probability of jt" most frequently used word is p;-

Length of jth most frequently used word is C;.
Average information per word:

H:_ijj 10g2 P
Average characters per word:
C= ijjcj

Optimization leads to power law.



Explanation: Miller ‘57

Alphabet of c letters plus spacebar
Monkey sits at a typewriter and randomly
pushes keys

Uniformly random sequence of c+1 symbols —
spaces mark word boundaries

Word ranks
1,2, ..., C 1-letter words
c+l, ..., c2+c+l 2-letter words
cZ+c+1+1, ... 3-letter words
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Explanation

Each j-letter word has frequency (c+1)U*d)

Pick representative point c for j-letter word
Rank cl is a j-letter word with freq (c+1)-0+)
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Explanation

Write (c+1)U*1) as a function of rank
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