Macroscopic Evolution of Networks

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

Macroscopic Evolution

- How do networks evolve at the macroscopic level?
- Are there global phenomena of network evolution?
- What are analogs of the "small world" and "power-law degrees"

Three questions

- What is the relation between the number of nodes n(t) and number of edges e(t) over time t?
- How does diameter change as the network grows?
- How does degree distribution evolve as the network grows?

Network Evolution

- -N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

Q: what is

$$E(t+1) = 2 \subseteq (+)$$

- A: over-doubled!
 - But obeying the Densification Power Law

Densification – Physics Citations

- Citations among physics papers
- **1992**:
 - 1,293 papers,2,717 citations
- **2003**:
 - 29,555 papers,352,807 citations
- For each month
 M, create a graph
 of all citations up
 to month M

Densification Power Law

- Densification Power Law
 - the number of edges grows faster than the number of nodes – average degree is increasing

$$E(t) \propto N(t)^a$$
 or $\frac{\log(E(t))}{\log(N(t))} = const$

- a ... densification exponent: $1 \le a \le 2$:
- a=1: linear growth constant out-degree (traditionally assumed)

a=2: quadratic growth – clique

Evolution of the Diameter

- Prior work on Power Law graphs hints at Slowly growing diameter:
 - diameter ~ O(log N)
 - diameter ~ O(log log N)

What is happening in real data?

Diameter – ArXiv citation graph

- Citations among physics papers
- 1992 –2003
- One graph per year

Diameter of a densifying

Is shrinking diameter just a consequence of densification?

Diameter of a rewired network

Is it the degree sequence? 11

Compare diameter of a:

- True network (red)
- Random network with the same degree distribution (blue)

Densification + degree sequence give shrinking diameter

Connecting Degrees & Densification

- How does degree distribution evolve to allow for densification?
- 2 Options:
- 1) Degree exponent γ is constant:

■ Fact 1: For degree exponent $1 < \gamma < 2$: $a = 2/\gamma$

Connecting Degrees & Densification

How does degree distribution evolve to allow for densification?

2 Options:

 \blacksquare 2) Exponent γ_n evolves with graph size n:

Patterns Hold in Many Graphs

Densification and Shrinking diameter can be observed in many real life graphs:

Dataset	Nodes	Edges	Time	DPL EXPONENT
Arxiv HEP-PH	30,501	347,268	124 months	1.56
Arxiv HEP-TH	29,555	$352,\!807$	124 months	1.68
Patents	3,923,922	16,522,438	37 years	1.66
AS	$6,\!474$	$26,\!467$	785 days	1.18
Affiliation ASTRO-PH	57,381	133,179	10 years	1.15
Affiliation COND–MAT	62,085	108,182	10 years	1.10
Affiliation GR-QC	19,309	26,169	10 years	1.08
Affiliation HEP-PH	51,037	89,163	10 years	1.08
Affiliation HEP-TH	45,280	68,695	10 years	1.08
Email	35,756	$123,\!254$	18 months	1.12
IMDB	1,230,276	3,790,667	114 years	1.11
Recommendations	3,943,084	15,656,121	710 days	1.26

Densification – Possible Explanation

- What explains the Densification Power Law and Shrinking diameters
- Can we find a simple model of local behavior, which naturally leads to the observed phenomena?
- Yes! Community Guided Attachment

Community structure

- Let's assume the community structure
- One expects many within-group friendships and fewer cross-group ones
- How hard is it to cross communities?

Self-similar university community structure

Main Assumption

- Assume the cross-community linking probability of nodes at tree-distance h is scale-free
- Then the cross-community linking probability is:

$$f(h) = c^{-h}$$

where: $c \ge 1$... the *Difficulty constant* h ... tree-distance

Community guided attachment

• $n = 2^k$ nodes reside in the leaves of the b-way community hierarchy (assume b=2)

- Each node then independently creates edges based the community hierarchy, $f(h) = c^{-h}$
- How many edges m are in a graph of n nodes?

Densification Power Law

 <u>Claim:</u> Community Guided Attachment random graph model, the expected outdegree of a node is proportional to

1.
$$n^{1 - \log_b(c)}$$
 if $1 \le c < b$

- 2. $\log_b(n)$ if c = b
- 3. constant if c > b

What is expected out-degree of a node x?

$$\sqrt{\lambda} = \sum_{N \neq \lambda} \left(L(N, \lambda) \right)^{2} = \sum_{N \neq \lambda} \frac{1}{N} \left(L(N, \lambda) \right)^{2}$$

However, where N is the second of line to N .

$$\sum_{k=1}^{\infty} (\lambda - 1) h^{\lambda - 1} \cdot (\lambda - 1) = \lim_{k=1}^{\infty} \lim_{k \to 1} h^{\lambda - 1}$$

Proof

15	C> b	then day	$\frac{1}{2}\left(\frac{1}{2}\right)$	ren	whyls	
	$C \subset L$	then	- -	× lung	gert elen	rent
	$\langle (\frac{k}{c})^{\ell}$	eg n		FOX	T'.	lvzX
$\overline{\mathcal{M}}$	$\propto \int_{M} h$	- L =	M 1-1			OPLEXP;
	$E = \Lambda$	N · M 1-	bagge 5	m 2-	- logh C	

Densification Power Law (2)

 <u>Claim:</u> The Community Guided Attachment leads to Densification Power Law with exponent

$$a = 2 - \log_b(c)$$

lacksquare a ... densification exponent $\ E(t) \propto N(t)^a$

b ... community tree branching factor

• c ... difficulty constant, $1 \le c \le b$

Difficulty Constant

DPL:

$$a = 2 - \log_b(c)$$

Gives any non-integer Densification exponent

- If c = 1: easy to cross communities
 - Then: a=2, quadratic growth of edges near clique
- If c = b: hard to cross communities
 - Then: $\underline{a=1}$, linear growth of edges constant out-degree

Extension of the model

- Community tree evolves by a complete new level of nodes being added in each time step
 - Now nodes also reside in non-leafs of the tree

- Can show:
 - Densification + power-law degree distribution

B-way Branching Tree

- Topics of web pages:
 - Each node represents k pages
 - Nodes everywhere in the tree
 - Link up h levels with prob. $\sim \gamma^{-h}$

Simplification: only bottom level creates links

Expected degree at height h

Expected degree of a node at height h:

Fraction of nodes with degree >d as a function of d?

nction of
$$d$$
?

$$\lambda = (x)^{\lambda}$$

Power-laws vs. Log-normal

Normal N(x) =
$$\sqrt{\frac{1}{2\pi}} \ell^{-\frac{(x-M)^2}{2\sigma^2}}$$

- Limit of avg. of indep. draws from a random var from any distribution
- X is lognormally distributed if $Y = \ln X$ is normally distributed

Log-normal density
$$f(x) = \frac{1}{\sqrt{2} \pi G} e^{-\frac{(\sqrt{M} \times - M)^2}{2 G^2}} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G} \int_{\mathbb{R}^2} (\sqrt{M} \times x) dx = \frac{1}{\sqrt{2} \pi G}$$

Lognormal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \frac{1}{x} e^{-(\ln x - \mu)^2 / 2\sigma^2}$$

- Properties:
 - Finite mean/variance.
 - Skewed: mean > median > mode
 - Multiplicative:
 - X_1 lognormal, X_2 lognormal implies X_1X_2 lognormal.

Power-law – Lognormal: similarities

- Looks similar to power-law on log-log plot:
- Power-law has linear log-density

$$\ln f(x) = -\alpha \ln x + \ln c$$

 For large σ, lognormal has nearly linear logdensity:

$$\ln f(x) = -\ln x - \ln \sqrt{2\pi}\sigma - \frac{(\ln x - \mu)^2}{2\sigma^2}$$

- Similarly, both have near linear log-ccdfs.
- Question: how to differentiate them empirically?

Lognormal vs. Power Law

- Question: Is this distribution lognormal or a power law?
 - Reasonable follow-up: Does it matter?
- Generative model:
 - Size-independent + growth
 - Size (e.g., popularity, degree) start at one and changes in each step by a random multiplicative factor F

Generative Models: Lognormal

- Start with an organism of size X_0 .
- At each time step, size changes by a random multiplicative factor. $X_t = F_{t-1} X_{t-1}$
- Claim: If F_t is taken from a lognormal distribution, each X_t is lognormal.

Generative Models: Lognormal

- Claim: If F_t is taken from a lognormal distribution, each X_t is lognormal.
- $\ln X_t$ = size at time $t = \ln F_1 + \ln F_2 + ... + \ln F_t$
- $\ln X_t = \sum \ln F_j$ ~ normal dist $\rightarrow X_t$ is lognormal

BUT!

If there exists a lower bound:

$$X_t = \max(\varepsilon, F_{t-1}X_{t-1})$$

- then X_t converges to a power law distribution [Champernowne, 1953]
- Lognormal model easily pushed to a power law model

Double Pareto Distributions

- Consider continuous version of lognormal generative model:
 - At time t, $\log X_t$ is normal with mean μt and variance $\sigma^2 t$
- Suppose observation time is distributed exponentially
 - E.g., When Web size doubles every year.
- Resulting distribution is Double Pareto.
 - Between lognormal and Pareto.
 - Linear tail on a log-log chart, but a lognormal body.

Lognormal vs. Double Pareto

More of power-laws

- Hierarchical model that produces power-laws
- Zipf's law how does the frequency of a word depend on its rank?
- Empirically: rank ~1/freq

Rank vs. freq of words on Wikipedia

Optimization Model: Power Law

- Mandelbrot experiment: design a language over a d-ary alphabet to optimize information per character.
 - Probability of jth most frequently used word is p_i.
 - Length of jth most frequently used word is c_i.
- Average information per word:

$$H = -\sum_{j} p_{j} \log_{2} p_{j}$$

Average characters per word:

$$C = \sum_{j} p_{j} c_{j}$$

Optimization leads to power law.

Explanation: Miller '57

- Alphabet of c letters plus spacebar
- Monkey sits at a typewriter and randomly pushes keys
 - Uniformly random sequence of c+1 symbols spaces mark word boundaries
- Word ranks

$$-$$
 c+1, ..., c²+c+1

$$^{\circ}$$
 c²+c+1+1, ...

Explanation

Each j-letter word has frequency (c+1)-(j+1)

- Pick representative point c^j for j-letter word
- Rank c^j is a j-letter word with freq (c+1)^{-(j+1)}

Explanation

■ Write (c+1)^{-(j+1)} as a function of rank