Triadic closure Strength of Weak Ties Structural Holes

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

Networks: Flow of information

- How information flows through the network?
- How different nodes can play structurally distinct process in roles in this process?
- How different links (short range vs. long range) play different roles in diffusion?
- How this shapes the evolution of the network over time?

Strength of weak ties

- How people find out about new jobs?
- Mark Granovetter, part of his PhD in 1960s
- People found the information through personal contacts
- But: contacts were often acquaintances rather than close friends
 - This is surprising:
 - One would expect your friends to help you out more than casual acquaintances when you are between the jobs
- Why is it that distance acquaintances are most helpful?

Granovetter's answer

- Two perspectives on friendships
 - Structural:
 - Friendships span different portions of the network
 - Interpersonal:
 - Friendship between two people is either strong or weak

Triadic closure

Which edge is more likely A-B or A-D?

 Triadic closure: If two people in a network have a friend in common there is an increased likelihood they will become friends themselves

Triadic closure

- Triadic closure == High clustering coefficient Reasons for triadic closure:
- If B and C have a friend A in common, then:
 - B is more likely to meet C (since they both spend time with A)
 - B and C trust each other (since they have a friend in common)
 - A has incentive to bring B and C together (as it is hard for A to maintain two disjoint relationships)
- Empirical study by Bearman and Moody:
 - Teenage girls with low clustering coefficient are more likely to contemplate suicide)

Bridges and Local Bridges

 Edge (A,B) is a bridge if deleting it would make A and B in be in two separate connected components.

Bridges and Local Bridges

- Edge (A,B) is a local bridge A and B have no friends in common.
- Span of a local bridge is the distance of the edge endpoints if the edge is deleted.

(local bridges with long span are like bridges)

Strong Triadic Closure

- Links in networks have strength:
 - Friendship
 - Communication
- We characterize links as either Strong (friends) or Weak (acquaintances)
- Strong Triadic Closure Property: If A has strong links to B and C, then there must be a link (B,C) (that can be strong or weak)

Local Bridges and Weak ties

If node A satisfies Strong Triadic Closure and is involved in at least two strong ties, then any local bridge adjacent to A must be a weak tie.

Proof by contradiction:

- A satisfies Strong Triadic Closure
- Let A-B be local bridge and a strong tie
- Then B-C must exist because of Strong Triadic Closure
- But then (A,B) is not a bridge

Summary of what we just did

- Defined Local Bridges:
 - Edges not in triangles
- Set two types of edges:
 - Strong and Weak Ties
- Defined Strong Triadic Closure:
 - Two strong ties imply a third edge
- Local bridges are weak ties

Tie strength and structure in real data

- For many years the Granovetter's theory was not tested
- But, today we have large who-talks-to-whom graphs:
 - Email, Messenger, Cell phones, Facebook
- Onnela et al. 2007:
 - Cell-phone network of 20% of country's population

Neighborhood Overlap

Overlap:

$$O_{ij} = \frac{n(i) \cap n(j)}{n(i) \cup n(j)}$$

- n(i) ... set of neighbors of A
- Overlap = 0 when an edge is a local bridge

fure Leskovec, Silvi 09

Mobile phones: Overlap vs. Weight

- Permuted weights:
 keep the structure
 but randomly
 reassign edge
 weights
 - Betweenness
 centrality: number of
 shortest paths going
 through an edge

Real network tie strengths

Real edge strengths in mobile call graph

Permuted tie strenghts

- Same network, same set of edge strengths
- But now strengths are randomly shuffled over the edges

Edge betweenness centrality

 Edges labeled based on betweenness centrality (number of shortest paths going through an edge)

Link removal: Weight

- Removing links based on strength
 - Low to high
 - High to low

Link removal: Overlap

- Removing links based on overlap
 - Low to high
 - High to low

Another example: Facebook

Facebook: Number of ties

Active Network Sizes

Twitter: Strong ties vs. Followers

Number of followers

Structural Holes

Social Capital Matters

