Announcements

- Homework 1 is out:
 - It is long! Start early.
 - Analyze a co-authorship network
 - Due in 1 week (Oct 8 in class)
- Project proposals are due in 2 weeks!
 - Groups of max 3 students
 - 1 proposal per group, max 3 pages
 - Read at least 3 papers from the Easley-Kleinberg book
 - Summarize them, describe strong/weak points and extensions
 - Propose what you want to do (can be one of the following):
 - Experimental evaluation
 - Theoretical project, model, simulation
 - In-depth critical survey

Small World in Real World Search in P2P Networks

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

Small-world in HP labs

Adamic-Adar 2005:

- HP Labs email logs (436 people)
- Link if u,v exchanged >5 emails each way
- Map of the organization hierarchy
- Finding: $P(u \rightarrow v) \sim 1 / \text{(size of smallest group containing } u \text{ and } v)^{3/4}$

Differences:

- Data has weighted edges
- Data has people on non-leaf nodes
- Data not b-ary or uniform depth
- Q: How can we adapt this to weighted graphs?

Small-world in HP labs

search w/ degree search w/ hierarchy ••• search w/ cubicle distance 0.25 0.2 fraction of pairs 0.15 0.1 0.05 5 10 number of steps

Search strategies using degree, hierarchy, distance between the cubicles

Small-world in LiveJournal

Liben-Nowell et al '05:

Live Journal data (blogers+zip codes)

Link length in a network of bloggers (0.5 million bloggers, 4 million links)

Solution:

Rank based friendship

Improved model

Rank based friendships

Geographic Navigation

- Decentralized search in a LiveJournal network
 - 12% searches finish, average 4.12 hops

Question:

- Why is rank exponent close to -1?
 - Why in any network? Why online?
 - How robust/reproducible?
- Conjecture [Sandbeng-Clark 2007]:
 - Nodes in a ring with random edges
 - Process of morphing links
 - Update step: Randomly choose s, t, run decentralized search alg.
 - Path compression: each node on path updates long range link to go directly to t with some small prob.
 - Conjecture from simulation: $P(u \rightarrow v) \sim dist^{-1}$

Question

Algorithmic consequence:

How to find files in Peer-to-Peer networks?

Client – Server

P2P: only clients

Napster

- Napster existed from June 1999 and July 2001
- Hybrid between
 P2P and a
 centralized network
- Once layers got the central server to shut down the network fell apart

True P2P networks

- Networks that can't be turned "off"
 - BitTorrent
 - ML-donkez
 - Kazaa
 - Gnutella

Question

Can we find a file in a network without a central server?

Bad idea: Ask everyone

Protocol Chord

- Protocol Chord consistently maps key (filename) to a node:
 - Keys are files we are searching for
 - Computer that keeps the key can then point to the true location of the file
- Keys and nodes have m-bit IDs assigned to them:
 - Node ID is a hash-code of the IP address
 - Key ID is a hash-code of the file

Chord on a cycle

- Cycle, with node ids 0 to 2^{m-1}
- Key k is assigned to a node a(k) with ID $\geq k$

Basics

- Assume we have N nodes and K keys (files). How many keys has each node?
- When a node joins/leaves the system it only needs to talk to its immediate neighbors
 - When N+1 nodes join or leave, then only O(K/N) keys need to be rearranged
- Each node know the IP address of its immediate neighbor

Searching the network

 If every node knows its immediate neighbor then use sequential search

Faster search

- A node maintains a table of m = log(N) entries
- *i*-th entry of a node n contains the address of $(n+2^i)$ -th neighbor
- Search algorithm:
 - Take the longest link that does not overshoot
 - This way with each step we half the distance to the target

i-th entry of N has the address of (N+2ⁱ)-th node

Find key with ID 54

10/1/2009

Jure Leskovec, Stanford CS322: Network Analysis

How long does it take to find a key?

- Search for a key in a network of N nodes visits O(log N) nodes
- Assume that node n queries for key k
- Let the key k reside at node t
- How many steps do we need to reach t?

Proof

- We start the search at node n
- Let *i* be a number such that *t* is contained in interval $[n+2^{i-1}, n+2^i]$
- Then the table at node n contains a pointer to node $n+2^{i-1}$ the smallest node f from the interval
- Claim: f is closer to t than n
- So, in one step we halved the distance to t
- We can do this at most log N times
- Thus, we find t in O(log N) steps

Hyper-cube

- Hypercube:
 - $N = 2^d$
 - Edge u-v if bit-string differs in 1 position
- Properties:
 - Low max-degree: log N
 - Low diameter: log N
 - Good expansion: 1 (cut out 2^{d-1} hypercube)
- Simplest graph with above three properties

