Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to

modify them to fit your own needs. If you make use of a significant portion of these slides

in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Scaling Deep Learning
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Large Language Models
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more about the promise and peril of artificial intelligence here: https: on.trib.al/adSOON;
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a g lant exercise in statistics natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate

improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.
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Foundation Models for Cell Biology
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Foundation Models for Cell Biology

UCE creates universal representations of cells
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Foundation Models for Cell Biology
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Infer Hierarchies
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Training Large Models

3/14

Modern Al trains very large models with a huge
amount of data

GPT-3 is trained with 500B tokens, more than 600
GB of Data

The model has 175B parameters, requiring 350 GB
of storage space

The memory capacity of modern GPUs is 10-80 GB

There is need for developing large-scale methods
that can train such models

/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu



Today’s Lecture

How to train large deep learning models?
Memory Optimization Methods

Parallel and distributed training with multiple
GPUs

Model Parallel Training
Data Parallel Training
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SM SM SM

Shared Shared Shared
Memory: L1 Memory, L1 Memory L1

L2 cache memory

Global memory

Memory Optimization




GPU Architecture hierarchy

SM SM SM

Shared L1 Shared L1

Shared
Memory Memory L1

Memory,

L2 cache memory

Global memory

RTX 3090: 7GPU clusters, 84 SMs per cluster, 24 GB memory

H100: 8 GPU clusters, 144 SMs per cluster, 80 GB memory
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Sources of Memory Consumption

Input Data: sequencies, images, graphs, etc.
Trainable parameters

Auxiliary optimization variables
Intermediate activation values and gradients

Training Deep Nets with Sublinear Memory Cost
[Chen et al., 2016]

https://arxiv.org/pdf/1604.06174.pdf
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Computation graph

Input Linear RelLU Linear Softmax Output
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Computing Gradients

Input

Linear RelLU Linear Softmax
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Checkpointing
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Checkpointing with backprop
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Checkpointing with backprop
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Checkpointing with backprop
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Checkpointing with backprop
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Checkpointing with backprop
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Sublinear Memory Cost

The memory cost of the previous approach is:

O (%) for N Neural Network Layers and

O(1) for additional computations.

If we checkpoint every K layers, the total

memory cost is:
N
0(%)+ 0k
=) +0(K)

For K = VN we reach sublinear memory
cost!
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Sublinear Memory Cost
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Source: Training Deep Nets with Sublinear Memory Cost [Chen et al., 2016]
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Model Parallel Training




Model Parallelism

What if the model does not fit into GPU
memory?

ldea: Split the model into submodels and fit each
submodel into a different GPU
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Model Parallel Training

Layer 1

Layer 2

Layer 3
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GPU3

L2 cache memory
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Global memory
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Parallel Training

Layer 2

Layer 3

Loss

Move input data GPU1

Run forward pass
Move activations from GPU1 to GPU2

Run forward pass
Move activations from GPU2 to GPU3

Run forward pass
Compute loss

Run backward pass
Move gradients from GPU3 to GPU2

Run backward pass
Move gradients form GPU2 to GPU1

Run backward pass
Apply gradient descent step
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Challenges

How to move activations and gradients?
Via CPU: bad idea
Move things between GPUs

How to reconcile for dependencies?
Pipelining

3/14/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 25



Model Parallel Training

Layer 1 Layer 2 Layer 3

Loss
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Other ways to do model parallelism

DaE saan \dense
2048 204
48 044 _8
55
3 L
. dense dense|
--"-,:-:'“55 1000
X7 192 192 128 Max n L
oo 2048 2048
Stride Max 128 Max pooling
U nf 4 pooling pooling
3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and

the number of neurons in the network’s remaining layers is given by 253,440-186,624—64,896-64,896-43,264—
4096—-4096-1000.

Source: Imagenet classification with deep convolutional neural networks
[Krizhevsky et al., 2012]
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Model parallel training recap

3/1

4/24

Works for models that do not fit GPU memory

Requires pipeline design to reconcile for
dependencies

Pipelining requires synchronization
Not always that easy



Data Parallel Training




Data Parallelism

What if the model fits into GPU memory, but
minibatches do not fit?

Use ideas from HPC

ldea: Split minibatches into smaller batches and
feed each of them into a different GPU
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Data Parallelism

For each minibatch we need to compute
0=06 - = VL(fp(x), %)
=1

Split each minibatch to K smaller batches
n/K

0 =0 — = > VL(fp(x), )

1 K
ZEZ
First idea: Use the AllReduce framework
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sM SM sMm SM SM sm
=R o] =R ]
L2 cache memory > L2 cache memory
| Global memo ry | | Global memo ry |

Each GPU communicates d derivatives to K-1
GPUs

3/14/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu



AllIReduce

Total communication cost per GPU is
d (K-1)
Linear scaling with the number of GPUs

Communication becomes a bottleneck

3/14/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 33



Parameter Server

GPU1

\ GPU4 (server)

Each GPU communicates d derivates to 1 server
Server broadcasts d derivatives to K servers:
Communication cost: d K for the server

3/14/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu
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Parallel Parameter Server

GPU1

GPU4 (server)

GPU4 (server)

SMm SM sm
=R =
w L2 cache memory

. | Global memol y |

L |

Each GPU communicates d derivatives to 1 server
Server broadcasts d derivatives to K / M servers
Communication cost: d K / M for server
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Breaking the Limits of Param. Server

3/1

4/24

Can we do better?

ldea: Decompose the all-reduce operations into
separate reduce-scatter and all-gather
operations



Ring-AllReduce

All Reduce Reduce- Scatter All-gather
GPUs GPUs GPUs
AO BO (o{0) A
a1 | PET S B
A B c

A2 B2 c2

A3 B3 C3

} | |——
A1+B1+
C1+D1

B B B B
A2+B2+ =
C2+D2 -
A3+B3+
C3+D3

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/

A A A A

O+0 + T+ >
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Ring-AllReduce

Phase 1: Reduce-scatter
We divide the array in each GPU into chunks
The gradients corresponding to the same
chunkindex are sequentially summed across all
GPUs
Each GPU has a fully aggregated gradient for
one chunk

Phase 2: All-gather

The fully aggregated gradients on each GPU are
made available to all GPUs.

3/14/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu



Ring-AllReduce

Arrays Being Summed

=N by Cp dy €

ay b, Cy dy €4
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Ring-AllReduce

Send

\ »

Send

Receive

Receive

Send Receive

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Reduce-Scatter

Arrays Being Summed

a by Co d,
U
34 b, C. d,
I
a, b, Cy d,
!
aq b, Cy dq
U
a b, Cq d,

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Reduce-Scatter

Arrays Being Summed

o bg Co
a,+ag b, Cy
a, b,+b;, Cy
a, b, Cqy+Co
a, b, Cy

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Reduce-Scatter

- a bg Co d,+ds+d, Bgt+ey
4
i
- a,+ay+a, b,+b, Co d, e,
[l
- ag b,+b;+bg C3+Cy dq eq
U
- a, b, Ca+Co+Cy d,+d, €4

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Reduce-Scatter

ag Cq+C5+C4+Cy
[
a,+ay b, oF dy+dy+dy+d, eyt+e,+e,
4
a,+ag+a, b,+b, Cy d, eg+e,+€e,+e5
U
a,+ag+a,+a, b,+b,+by Ca+Co dq e,

U

a, b,+b,+bs+b,

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Reduce-Scatter

a b2+b1+b3+b4+bu| C3+Cy+C4+Cp d,+ds+d, €y+€,
a,+a, b, IC;3+32+’34+'3G+'31| d,+dy+dy+d, €p+e,+e,
a,+a,+a, b,+b;, Cy Id4+d3+dn+d,+d2| Ep+€,+e,+8,
a,+agt+a,+a, by+b,+by Ca+Co dy I e+ +e +E5+E,

a,+ag+a,+az+a, | by+b +by+b, C3+Cy+Cy d,+d, 8y

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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All-gather

b2+b1+b3+b4+bﬂ| Ca+Co+Cy+Cy

g

a;+ag b, Ca+Co+Cy+Cyt+Cy | d,y+da+dy+d, ey t+e,+ey
U
a,+ag+a, b,+b, Co dy+dy+dg+dy+d, | €gt+E,+E+ES
4
a;+ag+as+a, b,+b,+b; C3+Cs d, eyt+ey+e +E,+E,
U
a,+ag+a,+az+a, | by,+b+by+b, Ca+Co+Cy dy+ds B,

/
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All-gather

a,+agtas+ag+a, | by+b+batby+by | Ca+Cy+C4+Cy dy+da+d, €gt+€y
I
a,+a, byt+by+batb,+by | Ca+Co+Cy+CytCy | dy+da+dy+d, ep+e ey

!
a,+agta, b,+b, C3+Co+Cy+Cq+Cy d4+d3+dn+d,+d2| Bp+€8,+e,+€;
l
a,+agta,+a, by+b4+bg Ca+Co dy+dz+dg+d+d; I ete+e +es+e,
4
a,+agta,+az+a, | by+bi+by+b, C3+Cy+Cy dy+dq Its}ﬂ+t:}4+e1+Ez+e3

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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All-gather

|a1+aﬂ+ae+a3+a4| by+by+bg+b,+by | Ca+Co+Cy+Cy+C, | dytds+dy+dy+d, Ieﬂ+ed+e1+e2+e3|

dy+d;+dy+d +d, I Egte, te +e,+e, I

| a,+agt+ar,+ay+a, | ba+b+by+bs+by | C3+Co+Cy+C+Cy

dy+dg+dy+d,+dy | egte,te +e,+e, |

| a,+agtay+ag+a, | by+b+bs+b,+bg Ica+c2+c4+cﬂ+c1 I d+dy+dy+d,+d, |9n+'3‘4+31 +52+53|

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Cost of Ring-AllReduce

3/1

4/24

Each GPU sends and receives values K-1 times
for reduce-scatter, and K-1 times for the all-

gather.
Each time, the GPUs will send d / K values

The total cost for every GPU is  2d KT_I



Ring-AllReduce In practice

Data Parallelism Speed-up with Ring Allreduce

1600

1400

Samples Processed Per Second

400

0 5 10 15 20 25 30 35 40
Number of GPUs

The number of samples processed per second with a 300-million parameter language model scales
linearly with the number of GPUs concurrently doing synchronous training.

Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Data parallelism recap

AllReduce
Cost per GPU: d (K—1)

Parameter Server
Cost per GPU: d
Cost per Server: d (K —1)/M

Ring-AllReduce
K-1

Cost per GPU: 2d T
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