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 UCE creates universal representations of cells

Input:
RNA expression of a single 
cell/nucleus

Output:
Cell Embedding
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Visualize and transfer annotations Infer Hierarchies



 Modern AI trains very large models with a huge 
amount of data

 GPT-3 is trained with 500B tokens, more than 600 
GB of Data

 The model has 175B parameters, requiring 350 GB 
of storage space

 The memory capacity of modern GPUs is 10-80 GB

 There is need for developing large-scale methods 
that can train such models
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 How to train large deep learning models?

 Memory Optimization Methods

 Parallel and distributed training with multiple 
GPUs

▪ Model Parallel Training

▪ Data Parallel Training
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 RTX 3090: 7GPU clusters, 84 SMs per cluster, 24 GB memory

 H100: 8 GPU clusters, 144 SMs per cluster, 80 GB memory
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 Input Data: sequencies, images, graphs, etc.

 Trainable parameters

 Auxiliary optimization variables

 Intermediate activation values and gradients

 Training Deep Nets with Sublinear Memory Cost 
[Chen et al., 2016]
▪ https://arxiv.org/pdf/1604.06174.pdf
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Input             Linear           ReLU           Linear          Softmax        Output
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 The memory cost of the previous approach is: 

𝑂
𝑁

2
 for N Neural Network Layers and 

𝑂 1  for additional computations.
 If we checkpoint every K layers, the total 

memory cost is:

𝑂
𝑁

𝐾
+ 𝑂(𝐾)

 For 𝑲 = 𝑵 we reach sublinear memory 
cost!
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Source: Training Deep Nets with Sublinear Memory Cost [Chen et al., 2016] 
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 What if the model does not fit into GPU 
memory?

 Idea: Split the model into submodels and fit each 
submodel into a different GPU
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Loss

Layer 1                              Layer 2                              Layer 3

GPU1 GPU2 GPU3



 Move input data GPU1
▪ Run forward pass

 Move activations from GPU1 to GPU2
▪ Run forward pass

 Move activations from GPU2 to GPU3
▪ Run forward pass
▪ Compute loss
▪ Run backward pass

 Move gradients from GPU3 to GPU2
▪ Run backward pass

 Move gradients form GPU2 to GPU1
▪ Run backward pass
▪ Apply gradient descent step
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 How to move activations and gradients?

▪ Via CPU: bad idea

▪ Move things between GPUs

 How to reconcile for dependencies?

▪ Pipelining
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Source: Imagenet classification with deep convolutional neural networks 
[Krizhevsky et al., 2012] 



 Works for models that do not fit GPU memory

 Requires pipeline design to reconcile for 
dependencies

 Pipelining requires synchronization

▪ Not always that easy
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 What if the model fits into GPU memory, but 
minibatches do not fit?

 Use ideas from HPC

 Idea: Split minibatches into smaller batches and 
feed each of them into a different GPU
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 For each minibatch we need to compute

 Split each minibatch to K smaller batches

 First idea: Use the AllReduce framework
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 Each GPU communicates d derivatives to K-1 
GPUs
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GPU1 GPU2

GPU3



 Total communication cost per GPU is
  
            d (K-1)

 Linear scaling with the number of GPUs

 Communication becomes a bottleneck
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 Each GPU communicates d derivates to 1 server
 Server broadcasts d derivatives to K servers:
 Communication cost: d K for the server
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 Each GPU communicates d derivatives to 1 server
 Server broadcasts d derivatives to K / M servers
 Communication cost: d K / M for server

3/14/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 35

GPU1

GPU2

GPU3

GPU4 (server)

GPU4 (server)



 Can we do better?

 Idea: Decompose the all-reduce operations into 
separate reduce-scatter and all-gather 
operations
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Phase 1: Reduce-scatter
 We divide the array in each GPU into chunks
 The gradients corresponding to the same 

chunk index are sequentially summed across all 
GPUs

 Each GPU has a fully aggregated gradient for 
one chunk

Phase 2: All-gather
 The fully aggregated gradients on each GPU are 

made available to all GPUs.
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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 Each GPU sends and receives values K-1 times 
for reduce-scatter, and K-1 times for the all-
gather.

 
 Each time, the GPUs will send d / K values 

 The total cost for every GPU is 𝟐𝒅
𝑲 − 𝟏

𝑲
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Source: https://engineering.fb.com/2021/07/15/open-source/fsdp/
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 AllReduce

▪ Cost per GPU: 

 Parameter Server

▪ Cost per GPU:

▪ Cost per Server:  

 Ring-AllReduce

▪ Cost per GPU: 𝟐𝒅
𝑲 − 𝟏

𝑲

𝒅 (𝑲 − 𝟏)

𝒅 

𝒅 (𝑲 − 𝟏)/𝑴
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