Announcement:
Final Exam Logistics

_



Final: Logistics

Date:

Monday, March 11 2:00 PM -
Wednesday, March 13, 2:00 PM Pacific Time

Logistics:
Administered on Gradescope

3 hours long (timer starts once you open the exam)

Submitting answers (all questions visible at the same time):
One PDF for the entire exam (uploaded at the top of the exam)
One PDF for each question (uploaded to each question)

You can do this as you go through the questions (do not need to
wait until the end)

Write answers directly in text boxes

Please budget your time for submission (~10 min) and solve

qguestions you find easy first — the exam tends to be on the
longer side
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Final: Logistics

If you think a questionisn't clear on the
exam...

Ask on Ed or state your (reasonable
and valid) assumptions in your answer

We will actively monitor Ed on...
Monday: 2 PM —-10 PM PT
Tuesday: 8 AM -3 PM,5PM—-10 PM PT
Wednesday: 8 AM —2 PM PT
We will answer clarifying questions only

Exam Review Session: Friday, 6 PM -7 PM PT
via Zoom (see Ed, Canvas for details)
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Final: Instructions

Final exam is open book and open notes
A calculator or computer is REQUIRED

You may only use your computer to do arithmetic
calculations (i.e., the buttons found on a standard
scientific calculator)

You may also use your computer to read course
notes or the textbook

No use of Al chatbots (including, but not limited
to, ChatGPT)

No collaboration with other students
Practice finals are posted on Ed, Gradescope

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 4



Good Luck!

Good luck with the exam! ©

You Have Done a Lot!!!
And (hopefully) learned a lot!!!

Answered questions and
proved many interesting results

Implemented a number of methods

Thank You for the
Hard Work!
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Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to

modify them to fit your own needs. If you make use of a significant portion of these slides

in yourown lecture, please include this message, or a link to our web site: http://www.mmds.org

Optimizing Submodular
Functions



http://www.mmds.org/

Recommendations: Diversity

Redundancy leads to a bad user experience

Obama Calls for Broad Action on Guns

Obama unveils 23 executive actions,
calls for assault weapons ban

Obama seeks assault weapons ban,
background checks on all gun sales

Uncertainty around information need => don’t
put all eggs in one basket

How do we optimize for diversity directly?

3/7/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu



Covering the day’s news
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Covering the day’s news
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Encode Diversity as Coverage

Idea: Encode diversity as coverage problem
Example: Word cloud of news for a single day

Want to select articles so that most words are
“covered”
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Diversity as Coverage



What is being covered?

Q: What is being covered?
A: Concepts (In our case: Named entities)

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

D D D D D D D

[

Hagel expects fight

Q: Who is doing the covering?
A: Documents
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Simple Abstract Model

Suppose we are given a set of documents D

Each document d covers a set X; of
words/topics/named entities W

For a set of documents A <D we define

F(A) = Ux,.

IEA

Goal: We want to

max F(A)

Note: F(A) is a set function: F(A): Sets - N
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Maximum Coverage Problem

Given universe of elementsW = {w,,...,w,}
andsets X, ..., X,,c W

Goal: Find k sets X; that cover the most of W

More precisely: Find k sets X; whose size of the
union is the largest

Bad news: A known NP-complete problem
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Simple Greedy Heuristic

Simple Heuristic: Greedy Algorithm:
Start with 4, = { }
Fori=1..k

Find set d that max F(4;_1 U {d})

Let Ai — Ai—l W, {d} ro)

.

deA

Example:
Eval. F({d}), ..., F({d,}), pick best (say d)
Eval. F{d{} U {d,}), ..., F({d{} U {d,,}), pick best (say d>)
Eval. F({d4,d,} U {d3}), ..., F({d{,d>} U {d,,}), pick best
And so on...
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Simple Greedy Heuristic

Goal: Maximize the covered area
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Simple Greedy Heuristic

Goal: Maximize the covered area
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When Greedy Heuristic Fails?

Goal: Maximize the size of the covered area
Greedy first picks A and then C
But the optimal way would be to pick B and C
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Approximation Guarantee

Greedy produces a solution A
where: F(A) >(1-1/e)*OPT (F(A) =20.63*0OPT)

[Nemhauser, Fisher, Wolsey '78]

Claim holds for functions F(-) with 2 properties:

F is monotone: (adding more docs doesn’t decrease coverage)
if A < B then F(A) < F(B) and F({})=0

F is submodular:
adding an element to a set gives less improvement
than adding it to one of its subsets
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Submodularity: Definition

Definition:
Set function F(-) is called submodular if:
For all A, BcW:
F(A) + F(B) = F(AU_B) + F(AN B)

C® D +
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Submodularity: Or equivalently

Diminishing returns characterization
Equivalent definition:

Set function F(-) is called submodular if:

For all AcB:

F(A U{d})-F(A) 2 F(B _{d})—-F(B)

Gain of adding d to a smallset Gain of adding d to a large set

+ o (d < Large improvement I

+ o d < small improvement
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Example: Set Cover

F(-) is submodular:Ac B
F(A u{d})-F(A) 2 F(B U{d}) - F(B)

Gain of addingd to a small set Gain of addingd to a large set
Natural example: I —

Sets d, ..., d,, P\ . J

F(A) = |Ujea d;| @

(size of the covered area) B

Claim:
F(A) is submodular! d
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Submodularity— Diminishing returns

Submodularity is discrete analogue of
concavity

F(:)
|

VAcB

Adding d to B helpsless
than adding it to A!

FIA U{d}) - F(A) > F(B C{d})— F(B)

Gain of adding X4 to a smallset Gain of adding X4 to a large set
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Submodularity & Concavity

Marginal gain:
Ap(d|A) = F(AU {d}) — F(A)
Submodular: AcB

F(Au{d}) —F(A) = F(Bu{d}) — F(B)
Concavity:

fla+d)—f(a) = f(b+d)— f(b)

a<b

F(A)
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Submodularity: Useful Fact

Let Fq ... F,,, be submodularand 44 ...4,, > 0
then F(A) = ). 1 A;F;(A) is submodular

Submodularity is closed under non-negative
linear combinations!

This is an extremely useful fact:

Average of submodular functions is submodular:
F(A) = X P(i) - F;(A)
Multicriterion optimization: F(A4) = ); 4;F;(A)
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Back to our problem

N
= A: Concepts (In our case: Named entities)

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Hagel expects fight

= A: Documents



Back to our Concept Cover Problem

Objective: pick k docs that cover most concepts
France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

=

D

B

g A

Enthusiasm for Inauguration wanes | | Inauguration weekend

F(A): the number of concepts covered by A
Elements...concepts, Sets ... concepts in docs
F(A) is submodular and monotone!

We can use greedy algorithm to optimize F
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The Set Cover Problem

Objective: pick k docs that cover most concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

N =

D D D

B

g A

Enthusiasm for Inauguration wanes | | Inauguration weekend

The good: The bad:
Penalizes redundancy Conceptimportance?

Submodular All-or-nothing too harsh
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Probabilistic Set Cover



Concept importance?

Objective: pick k docs that cover most concepts

| 1. & 1s

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

2 22 E gfg =

Enthusiasm for Inauguration wanes | | Inauguration weekend

Each concept ¢ has importance weight w,
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All-or-nothing too harsh

Document coverage function
covery(c) = probability document d covers

conceptc
[e.g., how strongly d covers c]

Obama Romney

[~

B

g

Enthusiasm for Inauguration wanes
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Probabilistic Set Cover

Document coverage function:
covery(c) = probability document d covers
conceptc

Covery(c) can also model how relevant is concept ¢ for user u
Set coverage function:

cover 4(c) =1 — H (1 — covery(c))

de A
Prob. that at least one document in A covers ¢

Objective: /" concept weights I I [ I

max F'(A Zw cover 4(c
A A< - (€)
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Optimizing F(A)

F(A) = . COVe
max, F(A) z;w ver 4(c)

The objective function is also submodular

Intuitively, it has a diminishing returns property

Greedy algorithm leads toa (1 —1/e) ~ 63%
approximation, i.e., a near-optimal solution
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Summary: Probabilistic Set Cover

Objective: pick k docs that cover most concepts

| 1. & 1s

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

2 28 E gfg =

Enthusiasm for Inauguration wanes | | Inauguration weekend

Each concept ¢ has importance weight w,
Documents partially cover concepts: coverg(c)
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Lazy Optimization of
Submodular Functions



Submodular Functions

Greedy Greedy algorithm is slow!

Marginal gain: At each iteration we need to
FIALUX)-F(A) re-evaluate marginal gains of
all remaining documents

b Runtime O(|D| - K) for

c selecting K documents out of the
set of D of them

a

d

e

Add document with
highest marginal gain
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[Leskovec et al., KDD ‘o07]

Speeding up Greedy

In round i: So far we have A;_1 = {d4,...,d;j_1}

Now we pick d; = arg Igea}(F(Ai—l U {d}) —F(A4;_1)

Greedy algorithm maximizes the “marginal benefit”
Ai(d) =F(A;i—1 U {d}) —F(A;_1)

By submodularity property:
F(A;u{d}) —F(A) = F(A;u{d}) — F(4;) fori < j

Observation: By submodularity:
Foreveryd € D
Ai(d) = A;(d) fori < jsince A;C A

A(d) 2A ()
Marginal benefits A;(d) only shrink! d ]
(as igrows) Selecting document d in step i covers

more words than selecting d at step j (j>i)
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:
.. (Upper bound on)
Use A, as upper-bound on A; (j > i) Marginal gain A,

Lazy Greedy: a A=(a)
Keep an ordered list of marginal b

benefits A; from previous iteration

C

Re-evaluate A; only for top
element

Re-sort and prune

F(A u{df)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:
.. Upper bound on
Use A, as upper-bound on A; (j>1i)  \arginal gaina,

Lazy Greedy: a A=(a)
Keep an ordered list of marginal b

benefits A; from previous iteration

C

Re-evaluate A; only for top
element

Re-sort and prune

F(A u{df)—F(A) 2 F(B U{d})—F(B) ace
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[Leskovec et al., KDD ‘o07]

Lazy Greedy

Idea:
Use A, as upper-bound on A; (j > i) m‘?s,ﬁ;?ﬂ?

Lazy Greedy: a A={a)
Keep an ordered list of marginal d A,={a,b}

benefits A; from previous iteration

Re-evaluate A; only for top element

Re-sort and prune

F(A u{df)—F(A) 2 F(B U{d})—F(B) ace
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Summary so far

Summary so far:
Diversity can be formulated as a set cover
Set cover is submodular optimization problem
Can be (approximately) solved using greedy algorithm
Lazy-greedy gives significant speedup

400 — \ \ \ \ \ \ \ \ ]
exhaustive search
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) yol
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But what about
personalization?

—————————

Election trouble

\
I
I
] . 'j
: » Songs of Syria l‘
I
I
I
]

Sandy delays

3
O
o
o

_________

Recommendations



Concept Coverage

We assumed same concept weighting for all users

| 1. & 1s

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

P
[

N e S S o S

France intervenes

Chuck for Defense

Argo wins big
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Personal Concept Weights

Each user has different preferences over
concepts

- -0 1 - e -

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

politico

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

movie buff
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Personal concept weights

Assume each user u has different preference
vector w ¥ over concepts ¢

Aﬂnj}ék F(A) = EC: wlc cover 4(c)

F(A) = (u)
A?j}ék (A) Z;wc cover 4(c)

Goal: Learn personal concept weights from
user feedback
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Interactive Concept Coverage

UUU 1 1. UD

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

B
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Multiplicative Weights (MW)

Multiplicative Weights algorithm
Assume each concept ¢ has weight w,.
We recommend document d and receive feedback,
sayr =+1or-1
Update the weights:
Foreachc € X ;setw, = f'w,

If concept ¢ appears in doc d and we received positive feedback r=+1
then we increase the weight w, by multiplying itby g (f > 1)
otherwise we decrease the weight (divide by 8)

Normalize weights so that ), . w,. =1
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Summary of the Algorithm

Steps of the algorithm:
ldentify items to recommend from
ldentify concepts [what makes items redundant?]
Weigh concepts by general importance
Define item-concept coverage function
Select items using probabilistic set cover
Obtain feedback, update weights
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