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We will be releasing practice exam problems this 
weekend

We will hold extra office hours next week for 
exam preparation
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 Prediction at round 𝒕 is:
 Goal: Find tree 𝒇𝒕(⋅) that minimizes:

 The optimal objective is:

▪ 𝐺𝑗 , 𝐻𝑗  depend on the loss function, T= # of leaves.

In principle we could:
 Enumerate possible tree structures 𝑓 and take 

the one that minimizes o𝑏𝑗
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 In practice we grow tree greedily:

▪ Start with tree with depth 0

▪ For each leaf node in the tree, try to add a split

▪ The change of the objective after adding a split is:

▪ Take the split that gives best gain

 Next: How to find the best split?
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 For each node, enumerate over all features

▪ For each feature, sort the instances by feature value

▪ Use a linear scan to decide the best split along that 
feature

▪ Take the best split solution along all the features

 Pre-stopping:

▪ Stop split if the best split have negative gain

▪ But maybe a split can benefit future splits.

 Post-Prunning: 

▪ Grow a tree to maximum depth, recursively prune 
all the leaf splits with negative gain.
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 Add a new tree 𝒇𝒕(𝒙) in each iteration

▪ Compute necessary statistics for our objective

▪ Greedily grow the tree that minimizes the objective:

 Add 𝒇𝒕(𝒙) to our ensemble model

 Repeat until we user 𝑴 ensemble of trees
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𝜖 is called step-size or shrinkage, 

usually set around 0.1

Goal: prevent overfitting



 XGBoost: eXtreme Gradient Boosting
▪ A highly scalable implementation of gradient boosted 

decision trees with regularization

Widely used by data scientists and provides state-of-the-
art results on many problems!

 System optimizations:
▪ Parallel tree constructions using column block 

structure
▪ Distributed Computing for training very large models 

using a cluster of machines.
▪ Out-of-Core Computing for very large datasets that 

don’t fit into memory.
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 So far we have worked datasets or data bases 
where all data is available

 In contrast, in data streams, data arrives one 
element at a time often at a rapid rate that:

▪ If it is not processed immediately it is lost forever.

▪ It is not feasible to store it all
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 In many data mining situations, we do not 
know the entire data set in advance

 Stream Management is important when the 
input rate is controlled externally:
▪ Google queries

▪ Twitter posts or Facebook status updates

▪ e-Commerce purchase data.

▪ Credit card transactions
 Think of the data as infinite and 

non-stationary (the distribution changes 
over time)
▪ This is the fun part and why interesting algorithms 

are needed
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 Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)

▪ We call elements of the stream tuples

 The system cannot store the entire stream 
accessibly

 Q: How do you make critical calculations 
about the stream using a limited amount of 
(secondary) memory?
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 Stochastic Gradient Descent (SGD) is an 
example of a streaming algorithm

 In Machine Learning we call this: Online Learning
▪ Allows for modeling problems where we have 

a continuous stream of data 

▪ We want an algorithm to learn from it and 
slowly adapt to the changes in data

 Idea: Do small updates to the model
▪ SGD makes small updates

▪ So: First train the classifier on training data

▪ Then: For every example from the stream, we slightly 
update the model (using small learning rate)
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 Types of queries one wants to answer on 
a data stream: 

▪ Sampling data from a stream

▪ Construct a random sample

▪ Filtering a data stream

▪ Select elements with property x from the stream

▪ Counting distinct elements

▪ Number of distinct elements in the last k elements 
of the stream

▪ Finding most frequent elements
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 Mining query streams

▪ Google wants to know what queries are 
more frequent today than yesterday

 Mining click streams

▪ Wikipedia wants to know which of its pages are 
getting an unusual number of hits in the past hour

 Mining social network news feeds

▪ Look for trending topics on Twitter, Facebook
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As the stream grows the sample 
also gets bigger



 Why is this important?
▪ Since we cannot store the entire stream, a 

representative sample can act like the stream

 Two different problems:
▪ (1) Sample a fixed proportion of elements 

in the stream (say 1 in 10)

▪ (2) Maintain a random sample of fixed size s 
over a potentially infinite stream
▪ At any “time” k we would like a random sample 

of s elements of the stream 1..k
▪ What is the property of the sample we want to maintain?

For all time steps k, each of the k elements seen so far must have 
equal probability of being sampled
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 Problem 1: Sampling a fixed proportion
▪ E.g. sample 10% of the stream

▪ As stream gets bigger, sample gets bigger

 Naïve solution:
▪ Generate a random integer in [0...9] for each query

▪ Store the query if the integer is 0, otherwise discard  

 Any problem with this approach? 
▪ We have to be very careful what query we answer 

using this sample
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 Scenario: Search engine query stream
▪ Stream of tuples: (user, query, time)
▪ Question: What fraction of unique queries by an average 

user are duplicates?
▪ Suppose each user issues x queries once and d queries twice (total of 

x+2d query instances) then the correct answer to the query is d/(x+d)

▪ Proposed solution: We keep 10% of the queries
▪ Sample will contain (x+2d)/10 elements of the stream
▪ Sample will contain d/100 pairs of duplicates
▪ d/100 = 1/10 ∙ 1/10 ∙ d

▪ There are (10x+19d)/100 unique elements in the sample
▪ (x+2d)/10 - d/100 = (10x+19d)/100

▪ So the sample-based answer is 
𝑑

100
10𝑥

100
+

19𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅
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Solution:
 Don’t sample queries, sample users instead
 Pick 1/10th of users and take all their 

search queries in the sample

 Use a hash function that hashes the 
user name or user id uniformly into 10 
buckets
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 Stream of tuples with keys:

▪ Key is some subset of each tuple’s components

▪ e.g., tuple is (user, search, time); key is user

▪ Choice of key depends on application

 To get a sample of a/b fraction of the stream:

▪ Hash each tuple’s key uniformly into b buckets

▪ Pick the tuple if its hash value is at most a
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Hash table with b buckets, pick the tuple if its hash value is at most a.

How to generate a 30% sample? 

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets



The sample is of fixed size s
time t
time t+1
time t+2

Stream



 Problem 2: Fixed-size sample
 Suppose we need to maintain a random

sample S of size exactly s tuples

▪ E.g., main memory size constraint

 Why? Don’t know length of stream in advance
 Suppose by time n we have seen n items

▪ Each item is in the sample S with equal prob. s/n
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How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen 
so far and out of them pick s at random



 Algorithm (a.k.a. Reservoir Sampling)

▪ Store all the first s elements of the stream to S

▪ Suppose we have seen n-1 elements, and now 
the nth element arrives (𝒏 > 𝒔)

▪ With probability s/n, keep the nth element, else discard it

▪ If we picked the nth element, then it replaces one of the 
s elements in the sample S, picked uniformly at random

 Claim: This algorithm maintains a sample S
with the desired property:

▪ After n elements, the sample contains each 
element seen so far with probability s/n
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 We prove this by induction:
▪ Assume that after n elements, the sample contains 

each element seen so far with probability s/n

▪ We need to show that after seeing element n+1 
the sample maintains the property
▪ Sample contains each element seen so far with 

probability s/(n+1)

 Base case:
▪ After we see n=s elements the sample S has the 

desired property
▪ Each out of n=s elements is in the sample with 

probability s/s = 1
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 Inductive hypothesis: After n elements, the sample 
S contains each element seen so far with prob. s/n

 Inductive step: 
▪ New element n+1 arrives, it goes to S with prob s/(n+1)
▪ For all other elements currently in S:
▪ They were in S with prob. s/n
▪ The probability that they remain in S:

▪ tuples stayed in S with prob. n/(n+1)

 So, P(tuple is in S at time n+1) = 
𝒔

𝒏
⋅

𝒏

𝒏+𝟏
=

𝒔

𝒏+𝟏
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 Each element of data stream is a tuple
 Given a list of keys S (which is our filter)
 Determine which tuples of stream have key in S

 Obvious solution: Hash table

▪ But suppose we do not have enough memory to 
store all of S in a hash table

▪ E.g., we might be processing millions of filters 
on the same stream
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 Example: Email spam filtering

▪ 1 million users, each user has 1000 “good” email 
addresses (trusted addresses)

▪ If an email comes from one of these, it is NOT spam

 Example: Content filtering

▪ You want to make sure the user does not see the 
same ad/recommendation multiple times 
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Given a set of keys S that we want to filter
 Create a bit array B of n bits, initially all 0s
 Choose a hash function h with range [0,n) 
 Hash each member of s S to one of 

n buckets, and set that bit to 1, i.e., B[h(s)]=1
 Hash each element a of the stream and 

output only those that hash to bit that was 
set to 1

▪ Output a if B[h(a)] == 1
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 Creates false positives 
▪ Items that are hashed to a 1 bucket may or may not be in S

 but no false negatives
▪ Items that are hashed to 0 bucket are surely not in S

32

Item

0010001011000

Output the item since it may be in S.

Item hashes to a bucket that at least 

one of the items in S hashed to.

Hash 
func h

Drop the item.

It hashes to a bucket set 

to 0 so it is surely not in S.

Bit array B
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 |S| = 1 billion email addresses 
|B|= 1GB = 8 billion bits

 If the email address is in S, then it surely 
hashes to a bucket that has the bit set to 1, 
so it always gets through (no false negatives)

 Approximately 1/8 of the bits are set to 1, so 
about 1/8th of the addresses not in S get 
through to the output (false positives)
▪ Actually, less than 1/8th, because more than one 

address might hash to the same bit
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 Let’s do a more accurate analysis of number 
of false positives, we know that:

▪ Fraction of 1s in array B = prob. of false positive

 Darts & Targets: If we throw m darts into n 
equally likely targets, what is the probability 
that a target gets at least one dart?

 In our case:

▪ Targets = bits/buckets

▪ Darts = hash values of items
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 We have m darts, n targets
 What is the probability that a target gets at 

least one dart?

35

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n( / n)

Equivalent
Equals 1/e
as n →∞

1 – e–m/n
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when n is large



 Fraction of 1s in the array B =
probability of false positive = 1 – e-m/n

 Example: 109 darts, 8∙109 targets

▪ Fraction of 1s in B = 1 – e-1/8 = 0.1175

▪ Compare with our earlier estimate: 1/8 = 0.125

 To reduce false positive rate of bloom filter 
we use multiple hash functions
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 Consider: |S| = m keys, |B| = n bits
 Use k independent hash functions h1 ,…, hk

 Initialization:

▪ Set B to all 0s

▪ Hash each element s S using each hash function hi, 
set B[hi(s)] = 1   (for each i = 1,.., k)

 Run-time:

▪ When a stream element with key x arrives

▪ If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
▪ That is, x hashes to a bucket set to 1 for every hash function hi(x)

▪ Otherwise discard the element x
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(note: we have a 

single array B!)



 What fraction of the bit vector B are 1s?

▪ Throwing k∙m darts at n targets

▪ So fraction of 1s is (1 – e-km/n)

 But we have k independent hash functions
and we only let the element x through if all k 
hash element x to a bucket of value 1

 So, false positive probability = (1 – e-km/n)k
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 m = 1 billion, n = 8 billion

▪ k = 1: (1 – e-1/8) = 0.1175

▪ k = 2: (1 – e-1/4)2 = 0.0489

 What happens as we 
keep increasing k?

 Optimal value of k:
𝒏

𝒎
𝑙𝑛 𝟐

▪ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

▪ Error at k = 6: (1 – e-3/4)6 = 0.0216
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 Problem:
▪ Data stream consists of a universe of elements 

chosen from a set of size N

▪ Maintain a count of the number of distinct 
elements seen so far

 Obvious approach: 
Maintain a dictionary of elements seen so far
▪ keep a hash table of all the distinct elements seen so far

▪ What if number of distinct elements are huge?

▪ What if there are many streams that need to be processed 
at once?
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 How many unique users a website has seen in 
each given month?
▪ Universal set = set of logins for that month

▪ Stream element = each time someone logs in

 How many different words are found at a site 
which is among the Web pages being crawled?
▪ Unusually low or high numbers could indicate artificial 

pages (spam?)

 How many distinct products have we sold in the 
last week?
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 Real problem: What if we do not have space 
to maintain the set of elements seen so far in 
every stream?
▪ We have limited working storage

 We use a variety of hashing and randomization to 
get approximately what we want

 Estimate the count in an unbiased way

 Accept that the count may have a little error, but 
limit the probability that the error is large
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 Estimates number of distinct elements by 
hashing elements to a bit-string that is 
sufficiently long
▪ The length of the bit-string is large enough that it 

produces more result that size of universal set.

 Idea: the more different elements we see in 
the stream, the more different hash values we 
shall see.
▪ Number of trailing 0s in these hash values 

estimates number of distinct elements.
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 Pick a hash function h that maps each of the 
N elements to at least  log2 N  bits

 For each stream element a, let r(a) be the 
number of trailing 0s in h(a)

▪ r(a) = position of first 1 counting from the right

▪ E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

 Record R = the maximum r(a) seen

▪ R = maxa r(a),  over all the items a seen so far

 Estimated number of distinct elements = 2R
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 Very rough and heuristic intuition why 
Flajolet-Martin works:
▪ h(a) hashes a with equal prob. to any of N values

▪ All elements have equal prob. to have a tail of r zeros

▪ That is 2-r fraction of all as have a tail of r zeros 
▪ About 50% of as hash to ***0

▪ About 25% of as hash to **00

▪ So, if we saw the longest tail of r=2 (i.e., item hash 
ending *100) then we have probably seen 
about 4 distinct items so far

▪ So, it takes to hash about 2r items before we 
see one with zero-suffix of length r
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 Now we show why Flajolet-Martin works

 Let 𝒎 be the number of distinct elements 
seen so far in the stream 

 We show that probability of finding a tail of r 
zeros:

▪ Goes to 1 if 𝒎 ≫ 𝟐𝒓

▪ Goes to 0 if 𝒎 ≪ 𝟐𝒓

 Thus, 2R  will almost always be around m!
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 What is the probability that a given h(a) ends 
in at least r zeros? It is 2-r

▪ h(a) hashes elements uniformly at random

▪ Probability that a random number ends in 
at least r zeros is 2-r

 Then, the probability of NOT seeing a tail 
of length r among m elements: 

𝟏 − 𝟐−𝒓 𝒎

48

Prob. that given h(a) ends 

in fewer than r zeros
Prob. all end in 

fewer than r zeros.
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 Note: 
 Prob. of NOT finding a tail of length r is:

▪ If m << 2r, then prob. tends to 1

▪                                                   as  m/2r→ 0

▪ So, the probability of finding a tail of length r tends to 0 

▪ If m >> 2r, then prob. tends to 0 

▪                                                  as  m/2r →  

▪ So, the probability of finding a tail of length r tends to 1

 Thus, 2R  will almost always be around m!

49
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 E[2R] is actually infinite

▪ Probability halves when R → R+1, but value doubles 

 Workaround involves using many hash 
functions hi and getting many samples of Ri

 How are samples Ri combined?

▪ Average? What if one very large value 𝟐𝑹𝒊?

▪ Median? All estimates are a power of 2

▪ Solution:

▪ Partition your samples into small groups

▪ Take the median of groups

▪ Then take the average of the medians
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 New Problem: Given a stream of itemsets, 
which itemsets appear more frequently?

 Application:
▪ What are most frequent products bought together?

▪ What are some “hot” gift items bought together?

 Solution: Exponentially decaying windows
▪ We first use it to count singular items
▪ Popular movies, most bought products, etc.

▪ Then we extend it to counting itemsets
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 Exponentially decaying windows: A heuristic 
for selecting likely frequent items (itemsets)

▪ What are “currently” most popular movies?

▪ Instead of computing the raw count in last N elements

▪ Compute a smooth aggregation over the whole stream

 Smooth aggregation: If stream is a1, a2,… then the 

smooth aggregation at time t: σ𝒕=𝟏
𝑻 𝒂𝒕 𝟏 − 𝒄 𝑻−𝒕

▪ c is a constant, presumably tiny, like 10-6 or 10-9

▪ at is a non-negative integer in general

 When new at+1 arrives: 
Multiply current sum by (1-c) and add at+1
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 Think of the stream of itemsets as one binary 
stream per item

▪ For every item, form a binary stream 

▪ 1 = item present; 0 = not present
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Binary stream for “b”

Stream of items:



 If each at is an “item” we can compute the 
characteristic function of each item x as an 
Exponentially Decaying Window:

▪ That is: σ𝒕=𝟏
𝑻 𝜹𝒕 ⋅ 𝟏 − 𝒄 𝑻−𝒕

where 𝜹𝒕 = 𝟏 if 𝒂𝒕 = 𝒙, and 𝟎 otherwise

▪ In other words: Imagine that for each item 𝒙 we 
have a binary stream (𝟏 if 𝒙 appears, 𝟎 if 𝒙 does 
not appear)

▪ Then, when a new item at arrives:
▪ Multiply the summation of each item by (𝟏 − 𝒄)

▪ Add +1 to the summation of item 𝒙 = at

 Call this sum the “weight” of item 𝒙
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 Important property: Sum over all weights 
σ𝒕 𝟏 ⋅ 𝟏 − 𝒄 𝒕 = 1/[1 – (1 – c)] = 𝟏/𝒄
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1/c

. . .



 What are “currently” most popular movies?
 Suppose we want to find movies of weight > ½
▪ Important property: Sum over all weights

σ𝑡 𝛿𝑡 ⋅ 1 − 𝑐 𝑡 is 1/[1 – (1 – c)] = 𝟏/𝒄
▪ That means that no item can have weight greater than 1/c
▪ The item will have weight 𝟏/𝒄 if its stream is [1,1,1,1,1…]. Note 

we have a separate binary stream for each item. So, at a given 
time only one item will have a 𝛿𝑡=1, and for other items: 𝛿𝑡= 0.

 Thus:
▪ There cannot be more than 𝟐/𝒄 movies with weight of ½ 

or more
▪ Why? Assume weight of item is ½. How many items n can we 

have so that the sum is <1/c; Answer: ½n<1/c → 𝑛 < 2/𝑐
 So, 𝟐/𝒄 is a limit on the number of movies being 

counted at any time
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 Extension: Count (some) itemsets

▪ What are currently “hot” itemsets?

▪ Problem: Too many itemsets to keep counts of 
all of them in memory

 When a basket 𝑩 comes in:

▪ Multiply all counts by (𝟏 − 𝒄)

▪ For uncounted items in 𝑩, create new count

▪ Add 𝟏 to count of any item in 𝑩 and to any itemset 
contained in 𝑩 that is already being counted

▪ Drop counts < ½

▪ Initiate new counts (next slide)
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 Start a count for an itemset S ⊆ B if every 
proper subset of S had a count prior to arrival 
of basket B.
▪ Intuitively: If all subsets of S are being counted 

this means they are “frequent/hot” and thus S has 
a potential to be “hot”

 Example: 
▪ Start counting S={i, j} iff both i and j were counted 

prior to seeing B

▪ Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k} 
were all counted prior to seeing B
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 Counts for single items <  (2/c)∙(avg. number 
of items in a basket)

 Counts for larger itemsets = ??

 But we are conservative about starting 
counts of large sets

▪ If we counted every set we saw, one basket 
of 20 items would initiate 1M counts
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 Sampling a fixed proportion of a stream

▪ Sample size grows as the stream grows

 Sampling a fixed-size sample

▪ Reservoir sampling

 Check existence of a set of keys in the stream

▪ Bloom filter

 Counting distinct elements in a stream

▪ Flajolet-Martin algorithm

 Counting frequent elements in a stream

▪ Exponentially decaying window
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