
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

Charilaos Kanatsoulis, Stanford University

http://cs246.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to
modify them to fit your own needs. If you make use of a significant portion of these slides
in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

http://www.mmds.org/

We will be releasing practice exam problems this
weekend

We will hold extra office hours next week for
exam preparation

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2

 Prediction at round 𝒕 is:
 Goal: Find tree 𝒇𝒕(⋅) that minimizes:

 The optimal objective is:

▪ 𝐺𝑗 , 𝐻𝑗 depend on the loss function, T= # of leaves.

In principle we could:
 Enumerate possible tree structures 𝑓 and take

the one that minimizes o𝑏𝑗
2/29/24 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 3

 In practice we grow tree greedily:

▪ Start with tree with depth 0

▪ For each leaf node in the tree, try to add a split

▪ The change of the objective after adding a split is:

▪ Take the split that gives best gain

 Next: How to find the best split?

2/22/22 Jure Leskovec , Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 4

Score of

left child

Score of

right child

Score if we do not split

 For each node, enumerate over all features

▪ For each feature, sort the instances by feature value

▪ Use a linear scan to decide the best split along that
feature

▪ Take the best split solution along all the features

 Pre-stopping:

▪ Stop split if the best split have negative gain

▪ But maybe a split can benefit future splits.

 Post-Prunning:

▪ Grow a tree to maximum depth, recursively prune
all the leaf splits with negative gain.

2/22/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 5

 Add a new tree 𝒇𝒕(𝒙) in each iteration

▪ Compute necessary statistics for our objective

▪ Greedily grow the tree that minimizes the objective:

 Add 𝒇𝒕(𝒙) to our ensemble model

 Repeat until we user 𝑴 ensemble of trees

2/22/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 6

𝜖 is called step-size or shrinkage,

usually set around 0.1

Goal: prevent overfitting

 XGBoost: eXtreme Gradient Boosting
▪ A highly scalable implementation of gradient boosted

decision trees with regularization

Widely used by data scientists and provides state-of-the-
art results on many problems!

 System optimizations:
▪ Parallel tree constructions using column block

structure
▪ Distributed Computing for training very large models

using a cluster of machines.
▪ Out-of-Core Computing for very large datasets that

don’t fit into memory.

2/22/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 7

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Queries on
streams

Web
advertising

Machine
learning

Decision
Trees

SVM

Parallel SGD

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 8

 So far we have worked datasets or data bases
where all data is available

 In contrast, in data streams, data arrives one
element at a time often at a rapid rate that:

▪ If it is not processed immediately it is lost forever.

▪ It is not feasible to store it all

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 9

 In many data mining situations, we do not
know the entire data set in advance

 Stream Management is important when the
input rate is controlled externally:
▪ Google queries

▪ Twitter posts or Facebook status updates

▪ e-Commerce purchase data.

▪ Credit card transactions
 Think of the data as infinite and

non-stationary (the distribution changes
over time)
▪ This is the fun part and why interesting algorithms

are needed
2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 10

11

 Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)

▪ We call elements of the stream tuples

 The system cannot store the entire stream
accessibly

 Q: How do you make critical calculations
about the stream using a limited amount of
(secondary) memory?

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Stochastic Gradient Descent (SGD) is an
example of a streaming algorithm

 In Machine Learning we call this: Online Learning
▪ Allows for modeling problems where we have

a continuous stream of data

▪ We want an algorithm to learn from it and
slowly adapt to the changes in data

 Idea: Do small updates to the model
▪ SGD makes small updates

▪ So: First train the classifier on training data

▪ Then: For every example from the stream, we slightly
update the model (using small learning rate)

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 12

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 13

Processor

Limited

Working

Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
 time

Streams Entering.

Each stream is

composed of
elements/tuples

Ad-Hoc

Queries

Output

Archival

Storage

Standing

Queries

 Types of queries one wants to answer on
a data stream:

▪ Sampling data from a stream

▪ Construct a random sample

▪ Filtering a data stream

▪ Select elements with property x from the stream

▪ Counting distinct elements

▪ Number of distinct elements in the last k elements
of the stream

▪ Finding most frequent elements

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 14

 Mining query streams

▪ Google wants to know what queries are
more frequent today than yesterday

 Mining click streams

▪ Wikipedia wants to know which of its pages are
getting an unusual number of hits in the past hour

 Mining social network news feeds

▪ Look for trending topics on Twitter, Facebook

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 15

As the stream grows the sample
also gets bigger

 Why is this important?
▪ Since we cannot store the entire stream, a

representative sample can act like the stream

 Two different problems:
▪ (1) Sample a fixed proportion of elements

in the stream (say 1 in 10)

▪ (2) Maintain a random sample of fixed size s
over a potentially infinite stream
▪ At any “time” k we would like a random sample

of s elements of the stream 1..k
▪ What is the property of the sample we want to maintain?

For all time steps k, each of the k elements seen so far must have
equal probability of being sampled

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 17

 Problem 1: Sampling a fixed proportion
▪ E.g. sample 10% of the stream

▪ As stream gets bigger, sample gets bigger

 Naïve solution:
▪ Generate a random integer in [0...9] for each query

▪ Store the query if the integer is 0, otherwise discard

 Any problem with this approach?
▪ We have to be very careful what query we answer

using this sample

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 18

 Scenario: Search engine query stream
▪ Stream of tuples: (user, query, time)
▪ Question: What fraction of unique queries by an average

user are duplicates?
▪ Suppose each user issues x queries once and d queries twice (total of

x+2d query instances) then the correct answer to the query is d/(x+d)

▪ Proposed solution: We keep 10% of the queries
▪ Sample will contain (x+2d)/10 elements of the stream
▪ Sample will contain d/100 pairs of duplicates
▪ d/100 = 1/10 ∙ 1/10 ∙ d

▪ There are (10x+19d)/100 unique elements in the sample
▪ (x+2d)/10 - d/100 = (10x+19d)/100

▪ So the sample-based answer is
𝑑

100
10𝑥

100
+

19𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 19

 Scenario: Search engine query stream
▪ Stream of tuples: (user, query, time)
▪ Question : What fraction of unique queries by an average

user are duplicates?
▪ Suppose each user issues x queries once and d queries twice (total of

x+2d query instances) then the correct answer to the query is d/(x+d)

▪ Proposed solution: We keep 10% of the queries
▪ Sample will contain (x+2d)/10 elements of the stream
▪ Sample will contain d/100 pairs of duplicates
▪ d/100 = 1/10 ∙ 1/10 ∙ d

▪ There are (10x+19d)/100 unique elements in the stream
▪ (x+2d)/10 - d/100 = (10x+19d)/100

▪ So the sample-based answer is
𝑑

100
10𝑥

100
+

19𝑑

100

=
𝒅

𝟏𝟎𝒙+𝟏𝟗𝒅

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 20

Sample

underestimates

Solution:
 Don’t sample queries, sample users instead
 Pick 1/10th of users and take all their

search queries in the sample

 Use a hash function that hashes the
user name or user id uniformly into 10
buckets

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 21

 Stream of tuples with keys:

▪ Key is some subset of each tuple’s components

▪ e.g., tuple is (user, search, time); key is user

▪ Choice of key depends on application

 To get a sample of a/b fraction of the stream:

▪ Hash each tuple’s key uniformly into b buckets

▪ Pick the tuple if its hash value is at most a

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 22

Hash table with b buckets, pick the tuple if its hash value is at most a.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

The sample is of fixed size s
time t
time t+1
time t+2

Stream

 Problem 2: Fixed-size sample
 Suppose we need to maintain a random

sample S of size exactly s tuples

▪ E.g., main memory size constraint

 Why? Don’t know length of stream in advance
 Suppose by time n we have seen n items

▪ Each item is in the sample S with equal prob. s/n

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 24

How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

 Algorithm (a.k.a. Reservoir Sampling)

▪ Store all the first s elements of the stream to S

▪ Suppose we have seen n-1 elements, and now
the nth element arrives (𝒏 > 𝒔)

▪ With probability s/n, keep the nth element, else discard it

▪ If we picked the nth element, then it replaces one of the
s elements in the sample S, picked uniformly at random

 Claim: This algorithm maintains a sample S
with the desired property:

▪ After n elements, the sample contains each
element seen so far with probability s/n

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 25

 We prove this by induction:
▪ Assume that after n elements, the sample contains

each element seen so far with probability s/n

▪ We need to show that after seeing element n+1
the sample maintains the property
▪ Sample contains each element seen so far with

probability s/(n+1)

 Base case:
▪ After we see n=s elements the sample S has the

desired property
▪ Each out of n=s elements is in the sample with

probability s/s = 1

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 26

 Inductive hypothesis: After n elements, the sample
S contains each element seen so far with prob. s/n

 Inductive step:
▪ New element n+1 arrives, it goes to S with prob s/(n+1)
▪ For all other elements currently in S:
▪ They were in S with prob. s/n
▪ The probability that they remain in S:

▪ tuples stayed in S with prob. n/(n+1)

 So, P(tuple is in S at time n+1) =
𝒔

𝒏
⋅

𝒏

𝒏+𝟏
=

𝒔

𝒏+𝟏
2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 27

1

1

11
1

+
=







 −









+
+








+
−

n

n

s

s

n

s

n

s

Element n+1 discarded Element n+1

not discarded

Element in the

sample not picked

 Each element of data stream is a tuple
 Given a list of keys S (which is our filter)
 Determine which tuples of stream have key in S

 Obvious solution: Hash table

▪ But suppose we do not have enough memory to
store all of S in a hash table

▪ E.g., we might be processing millions of filters
on the same stream

2/29/2024 29Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Example: Email spam filtering

▪ 1 million users, each user has 1000 “good” email
addresses (trusted addresses)

▪ If an email comes from one of these, it is NOT spam

 Example: Content filtering

▪ You want to make sure the user does not see the
same ad/recommendation multiple times

2/29/2024 30Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Given a set of keys S that we want to filter
 Create a bit array B of n bits, initially all 0s
 Choose a hash function h with range [0,n)
 Hash each member of s S to one of

n buckets, and set that bit to 1, i.e., B[h(s)]=1
 Hash each element a of the stream and

output only those that hash to bit that was
set to 1

▪ Output a if B[h(a)] == 1

312/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Creates false positives
▪ Items that are hashed to a 1 bucket may or may not be in S

 but no false negatives
▪ Items that are hashed to 0 bucket are surely not in S

32

Item

0010001011000

Output the item since it may be in S.

Item hashes to a bucket that at least

one of the items in S hashed to.

Hash
func h

Drop the item.

It hashes to a bucket set

to 0 so it is surely not in S.

Bit array B

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

 If the email address is in S, then it surely
hashes to a bucket that has the bit set to 1,
so it always gets through (no false negatives)

 Approximately 1/8 of the bits are set to 1, so
about 1/8th of the addresses not in S get
through to the output (false positives)
▪ Actually, less than 1/8th, because more than one

address might hash to the same bit

332/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Let’s do a more accurate analysis of number
of false positives, we know that:

▪ Fraction of 1s in array B = prob. of false positive

 Darts & Targets: If we throw m darts into n
equally likely targets, what is the probability
that a target gets at least one dart?

 In our case:

▪ Targets = bits/buckets

▪ Darts = hash values of items
342/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 We have m darts, n targets
 What is the probability that a target gets at

least one dart?

35

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n(/ n)

Equivalent
Equals 1/e
as n →∞

1 – e–m/n

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Approximation is

especially accurate

when n is large

 Fraction of 1s in the array B =
probability of false positive = 1 – e-m/n

 Example: 109 darts, 8∙109 targets

▪ Fraction of 1s in B = 1 – e-1/8 = 0.1175

▪ Compare with our earlier estimate: 1/8 = 0.125

 To reduce false positive rate of bloom filter
we use multiple hash functions

362/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Consider: |S| = m keys, |B| = n bits
 Use k independent hash functions h1 ,…, hk

 Initialization:

▪ Set B to all 0s

▪ Hash each element s S using each hash function hi,
set B[hi(s)] = 1 (for each i = 1,.., k)

 Run-time:

▪ When a stream element with key x arrives

▪ If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
▪ That is, x hashes to a bucket set to 1 for every hash function hi(x)

▪ Otherwise discard the element x
2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 37

(note: we have a

single array B!)

 What fraction of the bit vector B are 1s?

▪ Throwing k∙m darts at n targets

▪ So fraction of 1s is (1 – e-km/n)

 But we have k independent hash functions
and we only let the element x through if all k
hash element x to a bucket of value 1

 So, false positive probability = (1 – e-km/n)k

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 38

 m = 1 billion, n = 8 billion

▪ k = 1: (1 – e-1/8) = 0.1175

▪ k = 2: (1 – e-1/4)2 = 0.0489

 What happens as we
keep increasing k?

 Optimal value of k:
𝒏

𝒎
𝑙𝑛 𝟐

▪ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6

▪ Error at k = 6: (1 – e-3/4)6 = 0.0216

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 39

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

F
a
ls

e
 p

o
s
it

iv
e
 p

ro
b

.

Optimal k: k which gives the lowest false positive probability

 Problem:
▪ Data stream consists of a universe of elements

chosen from a set of size N

▪ Maintain a count of the number of distinct
elements seen so far

 Obvious approach:
Maintain a dictionary of elements seen so far
▪ keep a hash table of all the distinct elements seen so far

▪ What if number of distinct elements are huge?

▪ What if there are many streams that need to be processed
at once?

412/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 How many unique users a website has seen in
each given month?
▪ Universal set = set of logins for that month

▪ Stream element = each time someone logs in

 How many different words are found at a site
which is among the Web pages being crawled?
▪ Unusually low or high numbers could indicate artificial

pages (spam?)

 How many distinct products have we sold in the
last week?

422/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Real problem: What if we do not have space
to maintain the set of elements seen so far in
every stream?
▪ We have limited working storage

 We use a variety of hashing and randomization to
get approximately what we want

 Estimate the count in an unbiased way

 Accept that the count may have a little error, but
limit the probability that the error is large

432/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Estimates number of distinct elements by
hashing elements to a bit-string that is
sufficiently long
▪ The length of the bit-string is large enough that it

produces more result that size of universal set.

 Idea: the more different elements we see in
the stream, the more different hash values we
shall see.
▪ Number of trailing 0s in these hash values

estimates number of distinct elements.

442/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Pick a hash function h that maps each of the
N elements to at least log2 N bits

 For each stream element a, let r(a) be the
number of trailing 0s in h(a)

▪ r(a) = position of first 1 counting from the right

▪ E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

 Record R = the maximum r(a) seen

▪ R = maxa r(a), over all the items a seen so far

 Estimated number of distinct elements = 2R

452/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Very rough and heuristic intuition why
Flajolet-Martin works:
▪ h(a) hashes a with equal prob. to any of N values

▪ All elements have equal prob. to have a tail of r zeros

▪ That is 2-r fraction of all as have a tail of r zeros
▪ About 50% of as hash to ***0

▪ About 25% of as hash to **00

▪ So, if we saw the longest tail of r=2 (i.e., item hash
ending *100) then we have probably seen
about 4 distinct items so far

▪ So, it takes to hash about 2r items before we
see one with zero-suffix of length r

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 46

 Now we show why Flajolet-Martin works

 Let 𝒎 be the number of distinct elements
seen so far in the stream

 We show that probability of finding a tail of r
zeros:

▪ Goes to 1 if 𝒎 ≫ 𝟐𝒓

▪ Goes to 0 if 𝒎 ≪ 𝟐𝒓

 Thus, 2R will almost always be around m!

472/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 What is the probability that a given h(a) ends
in at least r zeros? It is 2-r

▪ h(a) hashes elements uniformly at random

▪ Probability that a random number ends in
at least r zeros is 2-r

 Then, the probability of NOT seeing a tail
of length r among m elements:

𝟏 − 𝟐−𝒓 𝒎

48

Prob. that given h(a) ends

in fewer than r zeros
Prob. all end in

fewer than r zeros.

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Note:
 Prob. of NOT finding a tail of length r is:

▪ If m << 2r, then prob. tends to 1

▪ as m/2r→ 0

▪ So, the probability of finding a tail of length r tends to 0

▪ If m >> 2r, then prob. tends to 0

▪ as m/2r → 

▪ So, the probability of finding a tail of length r tends to 1

 Thus, 2R will almost always be around m!

49

rrr mmrmr e −− −−− −=− 2)2(2)21()21(

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

1)21(2 =−
−−− rmmr e

0)21(2 =−
−−− rmmr e

rrr mmrmr e
−− −−− −=− 2)2(2)21()21(

 E[2R] is actually infinite

▪ Probability halves when R → R+1, but value doubles

 Workaround involves using many hash
functions hi and getting many samples of Ri

 How are samples Ri combined?

▪ Average? What if one very large value 𝟐𝑹𝒊?

▪ Median? All estimates are a power of 2

▪ Solution:

▪ Partition your samples into small groups

▪ Take the median of groups

▪ Then take the average of the medians
502/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 New Problem: Given a stream of itemsets,
which itemsets appear more frequently?

 Application:
▪ What are most frequent products bought together?

▪ What are some “hot” gift items bought together?

 Solution: Exponentially decaying windows
▪ We first use it to count singular items
▪ Popular movies, most bought products, etc.

▪ Then we extend it to counting itemsets

522/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Exponentially decaying windows: A heuristic
for selecting likely frequent items (itemsets)

▪ What are “currently” most popular movies?

▪ Instead of computing the raw count in last N elements

▪ Compute a smooth aggregation over the whole stream

 Smooth aggregation: If stream is a1, a2,… then the

smooth aggregation at time t: σ𝒕=𝟏
𝑻 𝒂𝒕 𝟏 − 𝒄 𝑻−𝒕

▪ c is a constant, presumably tiny, like 10-6 or 10-9

▪ at is a non-negative integer in general

 When new at+1 arrives:
Multiply current sum by (1-c) and add at+1

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 53

 Think of the stream of itemsets as one binary
stream per item

▪ For every item, form a binary stream

▪ 1 = item present; 0 = not present

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 54

1001010110001011010101010101011010101010101110101010111010100010110010

brtbhbgbbgzcbabbcbdbdbnbrbpbqbbsbtbababebcbbbvbwbxbwbbbcbdbcgfbabbzdba

Binary stream for “b”

Stream of items:

 If each at is an “item” we can compute the
characteristic function of each item x as an
Exponentially Decaying Window:

▪ That is: σ𝒕=𝟏
𝑻 𝜹𝒕 ⋅ 𝟏 − 𝒄 𝑻−𝒕

where 𝜹𝒕 = 𝟏 if 𝒂𝒕 = 𝒙, and 𝟎 otherwise

▪ In other words: Imagine that for each item 𝒙 we
have a binary stream (𝟏 if 𝒙 appears, 𝟎 if 𝒙 does
not appear)

▪ Then, when a new item at arrives:
▪ Multiply the summation of each item by (𝟏 − 𝒄)

▪ Add +1 to the summation of item 𝒙 = at

 Call this sum the “weight” of item 𝒙
552/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Important property: Sum over all weights
σ𝒕 𝟏 ⋅ 𝟏 − 𝒄 𝒕 = 1/[1 – (1 – c)] = 𝟏/𝒄

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 56

1/c

. . .

 What are “currently” most popular movies?
 Suppose we want to find movies of weight > ½
▪ Important property: Sum over all weights

σ𝑡 𝛿𝑡 ⋅ 1 − 𝑐 𝑡 is 1/[1 – (1 – c)] = 𝟏/𝒄
▪ That means that no item can have weight greater than 1/c
▪ The item will have weight 𝟏/𝒄 if its stream is [1,1,1,1,1…]. Note

we have a separate binary stream for each item. So, at a given
time only one item will have a 𝛿𝑡=1, and for other items: 𝛿𝑡= 0.

 Thus:
▪ There cannot be more than 𝟐/𝒄 movies with weight of ½

or more
▪ Why? Assume weight of item is ½. How many items n can we

have so that the sum is <1/c; Answer: ½n<1/c → 𝑛 < 2/𝑐
 So, 𝟐/𝒄 is a limit on the number of movies being

counted at any time
572/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Extension: Count (some) itemsets

▪ What are currently “hot” itemsets?

▪ Problem: Too many itemsets to keep counts of
all of them in memory

 When a basket 𝑩 comes in:

▪ Multiply all counts by (𝟏 − 𝒄)

▪ For uncounted items in 𝑩, create new count

▪ Add 𝟏 to count of any item in 𝑩 and to any itemset
contained in 𝑩 that is already being counted

▪ Drop counts < ½

▪ Initiate new counts (next slide)
2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 58

 Start a count for an itemset S ⊆ B if every
proper subset of S had a count prior to arrival
of basket B.
▪ Intuitively: If all subsets of S are being counted

this means they are “frequent/hot” and thus S has
a potential to be “hot”

 Example:
▪ Start counting S={i, j} iff both i and j were counted

prior to seeing B

▪ Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k}
were all counted prior to seeing B

592/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Counts for single items < (2/c)∙(avg. number
of items in a basket)

 Counts for larger itemsets = ??

 But we are conservative about starting
counts of large sets

▪ If we counted every set we saw, one basket
of 20 items would initiate 1M counts

602/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

 Sampling a fixed proportion of a stream

▪ Sample size grows as the stream grows

 Sampling a fixed-size sample

▪ Reservoir sampling

 Check existence of a set of keys in the stream

▪ Bloom filter

 Counting distinct elements in a stream

▪ Flajolet-Martin algorithm

 Counting frequent elements in a stream

▪ Exponentially decaying window

2/29/2024 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 61

	Slide 1: Mining Data Streams
	Slide 2: Announcements
	Slide 3: Gradient Boosted Decision Trees
	Slide 4: How to find a single tree f t
	Slide 5: How to Find the Best Split?
	Slide 6: Summary: GBDT Algorithm
	Slide 7: XGBoost
	Slide 8: New Topic: Infinite Data
	Slide 9: So far
	Slide 10: Data Streams
	Slide 11: The Stream Model
	Slide 12: Side note: SGD is a Streaming Alg.
	Slide 13: General Stream Processing Model
	Slide 14: Problems on Data Streams
	Slide 15: Applications
	Slide 16: Sampling from a Data Stream: Sampling a fixed proportion
	Slide 17: Sampling from a Data Stream
	Slide 18: Sampling a Fixed Proportion
	Slide 19: Problem with Naïve Approach
	Slide 20: Problem with Naïve Approach
	Slide 21: Solution: Sample Users
	Slide 22: Generalized Solution
	Slide 23: Sampling from a Data Stream: Sampling a fixed-size sample
	Slide 24: Maintaining a fixed-size sample
	Slide 25: Solution: Fixed Size Sample
	Slide 26: Proof: By Induction
	Slide 27: Proof: By Induction
	Slide 28: Filtering Data Streams
	Slide 29: Filtering Data Streams
	Slide 30: Applications
	Slide 31: First Cut Solution (1)
	Slide 32: First Cut Solution (2)
	Slide 33: First Cut Solution (3)
	Slide 34: Analysis: Throwing Darts (1)
	Slide 35: Analysis: Throwing Darts (2)
	Slide 36: Analysis: Throwing Darts (3)
	Slide 37: Bloom Filter
	Slide 38: Bloom Filter – Analysis
	Slide 39: Bloom Filter – Analysis (2)
	Slide 40: Counting Distinct Elements
	Slide 41: Counting Distinct Elements
	Slide 42: Applications
	Slide 43: Using Small Storage
	Slide 44: Flajolet-Martin Approach
	Slide 45: Flajolet-Martin Approach
	Slide 46: Why It Works: Intuition
	Slide 47: Why It Works: More formally
	Slide 48: Why It Works: More formally
	Slide 49: Why It Works: More formally
	Slide 50: Why It Doesn’t Work
	Slide 51: Counting frequent items/itemsets
	Slide 52: Counting Itemsets
	Slide 53: Exponentially Decaying Windows
	Slide 54: A binary stream per item
	Slide 55: Counting Items
	Slide 56: Counting Items: Decaying Windows
	Slide 57: Counting Individual Items
	Slide 58: Extension to Itemsets
	Slide 59: Initiation of New Counts
	Slide 60: How many counts do we need?
	Slide 61: Summary

