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 Machine learning is about Optimization
 Three key components: 

1. Training Data D = {(𝑥1 , 𝑦1), (𝑥2 , 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)} 

2. Model 𝒇𝜽 𝒙  

3. Loss function 𝓛

 Optimize 𝒇𝜽 𝒙  on 𝐷 w.r.t loss function 𝓛: 

▪ find the parameter 𝜃 that minimizes the expected 
loss on the training data
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 Supervised learning:
▪ Given “labeled data” {𝑥, 𝑦}, learn 𝑓(𝑥) = 𝑦
▪ Ex: classification, regression
▪ In linear regression, the model 𝑓𝜃 𝑥 = 𝑊𝑥 + 𝑏
▪ Parameters are 𝜃 = {𝑊, 𝑏}
▪ The loss function is mean square error (MSE)

 Unsupervised learning:
▪ Given only “unlabeled data” {𝑥}, learn 𝑓(𝑥)
▪ Ex: Dimensionality reduction, clustering
▪ In SVD, the model is 𝑓 𝑥 = ො𝑥 = 𝑉𝑉𝑇𝑥 where V is right 

singular vectors of input matrix. 
▪ The loss function is L2 loss: 𝐿 𝑥, ො𝑥 = σ 𝑥 − ො𝑥 2
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 All ML methods work with the input feature vectors 
{𝑥1, 𝑥2, … , 𝑥𝑛} and almost all of them require input 
features to be numerical

 From ML perspective, there are four types of features:
▪ Numerical (continues or discrete)
▪ Continues: height
▪ Discrete: age

▪ Categorical (ordinal or nominal)
▪ Ordinal: level={beginner, intermediate, advanced}
▪ Nominal: gender={male, female}, color={red, blue, green}

▪ Time series:
▪ Average of home sale price over years

▪ Text 
▪ Bag of words
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 There are two ways to encode categorical var:
▪ Integer encoding

▪ One-hot encoding (and multi-hot encoding)

 Consider the following movie dataset:
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Title provider IMDB genres Release 
year

IMDB 
rating

Stranger 
Things

Netflix drama, fantasy, 
horror

2016 8.7

Cocomelon Prime 
Video

animation, 
comedy, family

2019 4.7

100 Foot 
Waves

HBO Max documentary, 
sport

2021 8.1

I, Tonya Hulu biography, 
drama, comedy

2017 7.5



 Assigns each category value with an integer 
▪ provider :=[Netflix, Prime Video, HBO Max, Hulu], we assign 

them integers 1, 2, 3 and 4 respectively. 

 Pros: dense representation
 Cons: It implies ordering 
     between different categories: 
      Netflix < Prime Video < HBO Max < Hulu

 Makes more sense to use it for ordinal variables:
▪ Such as “Education”= {Diploma, Undergrad, Masters, Phd }

▪ But still it implies values are equally spaced out
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 First do integer encoding, then create a binary 
vector that represents the numerical values
▪ Ex: following integer encoding on provider:

     Netflix -> 1, Prime Video -> 2, HBO Max ->3 , Hulu -> 4

▪ create a binary vector of length 4 for each value:
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The integer encoding is 

the index into the vector

1 0 0 0Netflix

0 1 0 0Prime Video

0 0 1 0HBO Max

0 0 0 1Hulu



 An extension of one-hot encoding when 
categorical variable can take multiple 

    values at the same time
▪ Ex: There are 28 distinct IMDB genres 

a movie can take multiple genres, e.g. stranger things 

is drama, fantasy, horror.
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Stranger 

things
0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cocomelon 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 foot 

wave 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

I, Tonya 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

IMDB genres



Stranger things
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1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2016 8.7

cocomelon 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2019 4.7

100 foot waves 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2021 8.1

I, Tonya 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2017 7.5

provider IMDB genres

 Data dimensions increased from 4 to 34.  It 
will blow up to thousands or a million if we 
multi-hot encode title!

 One-hot and multi-hot encodings are not 
practical for features with large value sets.



 One-hot/multi-hot encodings:
▪ pros: simple, robust, when trained on huge amounts of data they 

outperform complex systems trained on fewer data
▪ cons: sparse and high dimensional, don’t capture semantic similarity

 In a corpus of documents with one million distinct words:
▪ high dimensional: multi-hot encodings are 1-million dimensional
▪ Sparse: an average document contains 500 words therefore the multi-

hot encodings are > 99.95% sparse
▪ lack of semantic: encoding of two words ‘good’ and ‘great’ are as 

different as encoding of ‘good’ and ‘bad’!

 An embedding is a translation of a high-dim vector into a low-dim 
space. An embedding is a:
▪ Dense representation (floating-point value)
▪ Low-dimensional vector
▪ Captures semantic similarity
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 Standard dimensionality Reduction methods
▪ Singular value decompositions (SVD)

 A: Input data matrix: m x n matrix (e.g., m documents, n terms)
         (r : rank of the matrix A – often r < min(m,n) )
 U: Left singular vectors: m x r matrix  (m documents, r concepts)
 : Singular values: r x r diagonal matrix (strength of each ‘concept’) 
 V: Right singular vectors: n x r matrix (n terms, r concepts)
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 U, V: column orthonormal

▪ UT U = I; VT V = I  (I: identity matrix)

▪ Columns are orthogonal unit vectors hence they 
define an r-dimensional subspace

▪ U defines an r-dim subspace in Rm

▪ V defines an r-dim subspace in Rn

 Projecting A onto V and U produces embeddings:

▪ Since A = U  VT then AV = U  are row embeddings

▪ Since A = U  VT then UTA =  VT are col embeddings
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Ex: compute document & word embeddings
Step 1: given a corpus of documents convert it to 
BOW vectors   get a term-document matrix
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Step 2: apply SVD on the term-document 
matrix and pick a value 𝑟 ≤ 𝑟𝑎𝑛𝑘(𝐴)
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Step 3: compute embedding of documents as
emb = [<doc, v1> , <doc, v2> , <doc, v3>]

 <doc, v1> = <[10,15,3,0,10] , v1>= -12.7
 <doc, v2> = <[10,15,3,0,10] , v2> = 9.79
 <doc, v3> = <[10,15,3,0,10] , v3>= -13.9
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SVD is impractical on many real-world 
datasets:
 For example, there are 0.5 billion wiki pages, and 

4 billion words.
 SVD is computationally prohibitive, as it requires 

to load all data in memory
 SVD is a linear embedder
 SVD is not utilizing data sparsity
 Orthonormality constraint is an overkill
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 State of the art embedders are among 
neural networks

 Can we use neural networks to create 
non-linear embedding? 
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 A neural network is a collection of neurons 
that are connected in an acyclic graph

 Outputs of some neurons are inputs to other 
neurons, and they are organized into layers
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credit: cs231

http://cs231n.stanford.edu/


 Fully-connected layer is the most common 
layer type: 
▪ neurons between two adjacent layers are fully pairwise 

connected 

▪ neurons within a single layer share no connections

 Number of hidden layers and neurons in each hidden layer are 
hyperparameters of the network
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 A neuron is a classifier
▪ Input: [x0, x1, x2]

▪ Output =  𝑓 σ 𝑤𝑖𝑥𝑖 + 𝑏
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𝑓 is the activation function, It 
takes a single number and 
performs an operation on 
it. Some choices are:
1. Sigmoid
2. Tanh
3. Relu

Each neuron performs a dot 
product with the input and its 
weights, adds the bias and 
applies the activation function

credit: cs231

http://cs231n.stanford.edu/


 Consider two neurons in a hidden layer

▪ Each layer computes

▪ 𝑊𝑙 is weight matrix that transforms representation at layer 𝑙 to layer 𝑙 + 1

▪ 𝑏𝑙  is bias at layer 𝑙, and is added to the linear transformation of 𝒙

▪ 𝜎 is sigmoid activation function
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𝑥1

𝑥2

𝑥3

Input layer
hidden

 layer

1-dimensional 

output

𝑊0 is a 2x3 matrix

𝑏0 is a 2x1 vector

𝑊1 is a 1x2 matrix

𝒙(𝑙+1) = 𝜎(𝑊𝑙𝒙
𝑙 + 𝑏𝑙)



 This network computes

 Notice without activation functions, f(x) will be linear in x !!
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𝑥1

𝑥2

𝑥3

Input layer
hidden

 layer

1-dimensional 

output

𝑊0 is a 2x3 

matrix

𝑊1 is a 1x2 

matrix

𝑓(𝑥) = 𝑊1(𝜎 𝑊0𝒙 0 + 𝑏0 + 𝑏1)

𝑓(𝑥) = 𝑊1𝑊0𝒙 0 + 𝑊1𝑏0 + 𝑏1



 A loss function ℒ is required to train the NN.

▪ Example: L2 loss

ℒ 𝒚, 𝑓 𝒙 = 𝑦 − 𝑓 𝑥 2

 Common loss functions for regression:

▪ L2 loss, L1 loss, huber loss, …

 Common loss functions for classification:

▪ Cross entropy, max margin (hinge loss), … 

 Example
▪ See https://pytorch.org/docs/stable/nn.html#loss-

functions 
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https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html


 Common loss for classification tasks
▪ Defined between one-hot of true label and the predicted probability 

distribution over classes 

 Ex: Task = multi-class classification with 5 classes 
▪ True label 𝑦 belongs to class 3, so one-hot of 𝑦 =
▪ Predicted probability distribution ො𝑦 = 𝑓(𝑥) = 

▪ CE 𝒚, ෝ𝒚 = − σ𝑖=1
𝐶 𝑦𝑖 log ො𝑦𝑖 = −log(ෝ𝑦correct class)

▪ 𝑦𝑖 , ො𝑦𝑖 are the actual and predicted value of the 𝑖-th class.

 Intuition: the lower the loss, the closer the prediction is to 
one-hot 𝒚
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 Often model’s output is a score for each class, 
not a probability distribution

 To convert to probability distribution:
𝑓 𝒙 = Softmax 𝑔 𝒙

𝑓 𝒙 𝑖 =
𝑒𝑔(𝑥)𝑖

σ𝑗=1
𝐶 𝑒

𝑔(𝑥)𝑗

▪ It normalizes a vector into a probability distribution that sums to 1
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Output score for 

each classProbability distribution 

over classes

Cross entropy loss sometimes is 

referred to as softmax loss



 How to optimize the Loss function?
     Gradient descent:

∇Θℒ = (
𝜕ℒ

𝜕Θ1
,

𝜕ℒ

𝜕Θ2
, … )

Θ1, Θ2 … : components of Θ

 repeatedly update weights in the (opposite) direction of 
gradients until convergence

 Learning rate (LR) 𝜼:
▪ Hyperparameter that controls the size of gradient step

 Ideal termination condition: 0 gradient
▪ In practice, we stop training if it no longer improves 

performance on the validation set (part of dataset we hold 
out from training)
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Partial derivative

Θ ← Θ − 𝜂∇Θℒ



 There are much more about NN including:

▪ Minibatch Stochastic gradient descent

▪ Batch size, Epoch

▪ Learning rate scheduling

▪ Optimizers to improve over SGD

 However they are not the focus of today’s 
lecture. 

 Now that we know fundamentals, let’s use NN 
to learn embeddings
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 We will work with three examples:

1. Word embeddings produced by Word2Vec model

▪ Converts one-hot encoding to dense embedding

▪ Task independent and unsupervised

2. Movie recommendation

▪ converts one-hot encoding to embedding in supervised 
mode

3. Autoencoders:

▪ learn short representation from a large feature vector
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 There are many techniques to learn word 
embeddings:Word2Vec, Glove, BERT, fastText

 Today’s lecture: Word2Vec 

 Word2Vec was Developed at Google in 2013(paper)

 Word2Vec is a statistical method for efficiently 
learning word embedding. It is task-independent , 
and unsupervised.

https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf


 Word2Vec comes in two architectures:
▪ Continuous bag of words (CBOW)

▪ Skip Gram

   (We will discuss skip-gram model today)

▪ The two methods are very similar, both use a shallow 
neural network (only 1 hidden layer) to learn word 
representations. 

▪ The key idea of word2Vec is that words with similar 
context have similar meanings. 
▪ It learns embedding based on the usage of words.
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The key idea: The more often a word appears in the context of 

certain other words, the closer they are in meaning.

This is how we define context:
Set a window size (e.g. window=2). For any given word (aka target word), 

2 words to its left & 2 words to its right are the context words. Window 

size is a hyperparameter. 
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The key idea: The more often a word appears in the context of 

certain other words, the closer they are in meaning.

This is how we define context:
Set a window size (e.g. window=2). For any given word (aka target word), 

2 words to its left & 2 words to its right are the context words. Window 

size is a hyperparameter. 

For example, in sentence “I read sci-fi books”:

Target = “I” → context words = “read” , “sci-fi” . No words to the left of “I”.

Target = “read” → context words = “I” , “sci-fi”, “books” 



2/17/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets 37

The key idea: The more often a word appears in the context of 

certain other words, the closer they are in meaning.

Given a document, we can slide the window from left to right and 

find all pairs of (target, context) words

This is how we define context:
Set a window size (e.g. window=2). For any given word (aka target word), 

2 words to its left & 2 words to its right are the context words. Window 

size is a hyperparameter. 

For example, in sentence “I read sci-fi books”:

Target = “I” → context words = “read” , “sci-fi” . No words to the left of “I”.

Target = “read” → context words = “I” , “sci-fi”, “books” 
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I read sci-fi books and drink orange juice

I read sci-fi books and drink orange juice

I read sci-fi books and drink orange juice

I read sci-fi books and drink orange juice

I read sci-fi books and drink orange juice

I read sci-fi books and drink orange juice

I read sci-fi books and drink orange juice

I read sci-fi books and drink orange juice

Window size is a hyper-parameter. Here window size = 2

The highlighted word is the target word. Other words in the box are context words. 



 Word2Vec is a 2 layers NN (i.e. only 1 hidden layer)

 Given one-hot encoding of the target word, it predicts 
context words

▪ In our example, if target word = “I” → context = “read”, “sci-fi”

▪ Given one-hot encoding of word “I”, it predicts the context words 

 If window size = N, the model predicts the N-grams words 
except the current word as it is the input to the model, 
hence the name skip-gram.
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 We set window size = 2
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Target word at 

position t: w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Input layer Embedding 

layer

Output layer

Context words in 

history (left of target)

Context words in 

future (right of target)
Given the word at position t, it predicts the 
nearby context words both from past and 
in future.

** For simplicity, in this lecture we predict 
only one context word.



 Word2Vec is a 2 layers NN (i.e. only 1 hidden layer)
 V = size of vocabulary 
 N = embedding dimension
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 Let V = size of vocabulary and N = embedding dimension
 Two different weight matrices:

▪ WVxN : from input to hidden layer

▪ W’NxV : from hidden  to output layer
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 Let V = size of vocabulary and N = embedding dimension
 A softmax function is applied on output layer to convert 

output to probability distribution
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Probability that 

j-th word is in 
the context



 Let V = size of vocabulary and N = embedding dimension
 The hidden layer are all linear neurons, no activation!
 After training the network, embedding of a word is 

obtained by xT W i.e. matrix multiplication between word’s 
one-hot vector and learned weights WVxN
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 How is the network trained? 

▪ There are no labels. It is an unsupervised task (it is a statistical 
method based on co-occurrence of words in one window).

▪  We therefore create a fake task!

 Fake task = given a target word, predict its context words

 Decisions to make:
▪ How to make training data?

▪ What is the loss function?
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 Ex: Document = {I read sci-fi books and drink orange juice}
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(I, read) (I, sci-fi)

(read, I) (read, sci-fi) (read, books)

(sci-fi, I) (sci-fi, read) (sci-fi, books)...

(books, read) (books, sci-fi) ...

(and, sci-fi) (and, books) (and, drink)

(drink, books) (drink, and) ....

(orange, drink) (orange, juice) 

(juice, drink) (juice, orange) 

Training data (target, context)Input document (window = 2)



 Given the topology of the network, if x is the 
input and y is the output, then

 We train against target-context pairs (wt, wc), 
The context word wc represents the ideal 
prediction, given the target word  wt

 Wc is represented as one-hot, i.e. it has value 
1 at some position j and other positions are 0
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𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊′𝑇𝑊𝑇𝑥)



  The loss function needs to evaluate the 
output layer at the same position j, i.e. yj

    (remember y is a probability distribution; ideal  value of yj is being 1)

 We use cross-entropy loss function. Given two 
probability distributions p and q, it is defined:

 Since wc = [0,0,0,...,1,0,0,0..,0]
   And    y   = [0.02, 0.11,.... 0.8, 0, 0.031, ...]
   the loss value would be 
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CE 𝑤𝑐, 𝑦 =
− log(𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡

 𝑐𝑙𝑎𝑠𝑠)

𝐿 = −l𝑜𝑔(0.8)

Position j



 Now that loss function is clear, we want to 
find the values of W and W′ that minimize it.

▪ We want our model to learn the weights.

 We use gradient descent to tackle this

▪ We find derivatives              and              and update 
weights as 
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𝜕𝐿/𝜕𝑊 𝜕𝐿/𝜕𝑊’

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 −  𝜇 𝜕𝐿/𝜕𝑊



 Document = {I read sci-fi books and drink orange juice}
    Since this is only doc in our corpus, our vocab is 
      vocab = [“I”, “read”, ”sci-fi”, ”books”, “and”, “drink”, “orange”, “juice”] and V = 8

 We execute one forward pass using above document

 Step 1: assign one-hot vectors to words
I            : [1, 0, 0, 0, 0, 0, 0, 0]
read     : [0, 1, 0, 0, 0, 0, 0, 0]
sci-fi     : [0, 0, 1, 0, 0, 0, 0, 0]
books   : [0, 0, 0, 1, 0, 0, 0, 0]
and       : [0, 0, 0, 0, 1, 0, 0, 0]
drink    : [0, 0, 0, 0, 0, 1, 0, 0]
orange : [0, 0, 0, 0, 0, 0, 1, 0]
juice     : [0, 0, 0, 0, 0, 0, 0, 1]
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 size of vocabulary = 8, Let’s set embedding dim = 3
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 If target word = books and weight matrix WVxN

be as following:

𝑊𝑉 × 𝑁 =

1 2 2
−1.2 −3 −2
1.2 1.1 0.5
0.5 2.3 2

−1.1 0.6 −1
1 −1 2

0.3 1.2 0.7

 Then

0,0,0,1,0,0,0,0 ×

1 2 2
−1.2 −3 −2
1.2 1.1 0.5
0.5 2.3 2

−1.1 0.6 −1
1 −1 2

0.3 1.2 0.7

= [0.5, 2.3, 2.2]
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 If target word =books, and WVxN given:
  
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 If the weight matrix W’NxV be as following:

𝑊𝑁 × 𝑉 =
1 2 2 0 0.7 1.3 −1 −0.1

1.2 0.5 −1 1 0.3 2 .6 1
−1 1.6 −0.5 1.4 2.3 1 1 0.6

 Then

0.5,2.3,2.2 ×
1 2 2 0 0.7 1.3 −1 −0.1

1.2 0.5 −1 1 0.3 2 0.6 1
−1 1.6 −0.5 1.4 2.3 1 1 0.6

= [1.0, 5.6, −2.4, 5.3,6.1,7.4,3.0,3.5]
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 If W’NxV given:
  
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 If W’NxV given:
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 If W’NxV given:
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 If W’NxV given:
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 If W’NxV given:
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 The network learns by comparing softmax 
vector to the one-hot of true context word.

 In our example target = “books”, one correct 
context =“read” but we predicted “drink”
▪ Predicted vector = 

[0.001,0.104,0,0.077,0.177,0.627,0.008,0.013]

▪ One-hot of “read”= [0,1,0,0,0,0,0,0]

Then
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𝐿 = − ln 0.104 = 2.26



 Word2Vec comes in two architecture:

▪ CBOW: Given context words, it predicts target word 

▪ Skip-Gram: Given target word, predicts context words 

 Skip Gram method:

▪  works well with small amount of data and is found to 
represent rare words well

 CBOW method:

▪ is faster and more suitable for large data, it has better 
representations for more frequent words.

2/17/22 Jure Leskovec, Stanford CS246: Mining Massive Datasets 61



 Word2vec assigns an embedding to every word in 
the vocabulary

 Embedding dimension << size of the vocabulary
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 So far we worked with unsupervised data

▪ A corpus of documents

 We learned embeddings that was not tied to 
any classification or regression task

▪ We created a fake task of predicting nearby words

 Alternatively, we can learn embeddings for a 
specific tasks such as classification
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 Input: 1 million movies, and 500k users who have 
watched some of these movies

 Task:  recommend movies to users

 We solved this problem before using collaborative 
filtering, and latent factor models

 Here, we formulate it as multi-class classification 
where each movie is a class. We use neural network 
to learn embeddings for movies such that similar 
movies have similar embeddings.
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 Train-Test split: First split data into train and test. For 
every user, randomly hold out few movies they have 
watched as test and use the rest to build train data.
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Alice -> m1, m2, m3, m4, m5

Bob   -> m8, m9, m21

Sam  -> m2, m6, m10

Full data

split

Train Test

Alice -> m1,  m4, 
m5

Alice -> m3, m2

Bob   -> m8, m9 Bob -> m21

Sam  -> m6, m10 Sam -> m2



 Build train data: We then build train data as pairs 
(movie1, movie2) where both movies are watched 
by same user
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Prepare 

train data 

for NN

Train Test

Alice -> m1,  m4, 
m5

Alice -> m3, m2

Bob   -> m8, m9 Bob -> m21

Sam  -> m6, m10 Sam -> m2

Train Test

(m1,  m4)
(m4, m5)
...

m3, m2

(m8, m9)
(m9, m8)

m21

(m6, m10)
(m10, m6)

m2



 We then build a neural network that performs 
collaborative filtering while learning 3-dim embeddings
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One-hot of video m1 user has watched Movie features: genre, cast, director

1 million neurons

One-hot of video m2 user has watched

Probability distribution over one 

million movies

In the process of 

backpropagation the 

embedding layer is 

learned

Cross entropy loss

softmax



 How to recommend a movie to a user e.g. 
Alice? 

▪ Alice has watched m1,  m4, m5 in train

▪ Find movies that have similar embeddings to m1

▪ Similarity score = <emb(m1), emb(v)> for any movie v

▪ Find top 5 movies with highest similarity score

▪ Recommend them to Alice 

▪ Or even better: repeat above for m1, m4 and m5

▪ Recommend movies in intersection of above sets
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 So far we have seen examples of converting 
one-hot encodings to embeddings

▪ word2Vec

▪ Supervised NN with one-hot input vector

 We can use NN to learn embedding from 
dense feature vectors

▪ What other method does the same? SVD, PCA
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 Autoencoder are an extension of PCA to non-
linear space

 They are a special type of neural network that 
is trained to copy input to output except that 
it has to go through a bottleneck

▪ They are unsupervised too

 It learns to compress the data while 
minimizing the reconstruction error.
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Input layer: is input feature 
vector. It does not need to be 
one-hot vectors. Here, input 
data is 6-dim vectors

bottleneck layer: is the 
bottleneck as it projects down 
6-dim vector to 3-dim space. It 
constrains the amount of 
information that traverses the 
network

Output layer: is the 
reconstructed input from 3-
dim to 6-dim.

encoder decoder

𝑥6

𝑥5

𝑥4

𝑥3

𝑥1

𝑥2

ො𝑥6

ො𝑥5

ො𝑥4

ො𝑥3

ො𝑥1

ො𝑥2

Input layer hidden layer output layer

bottleneck



 There can be multiple hidden layers between 
Input layer and bottleneck layer, similarly 
between bottleneck layer and output layer. 
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encoder decoder
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Two main component in their architecture:

 Encoder: a function f that compresses the 
input into a latent-space representation
▪ f(x) = h such that dimension(h) < dimension(x)

 Decoder: a function g that reconstruct the 
input from the latent space representation
▪ g(h) ~ x, i.e. bring h back to the original space
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 The bottleneck is the key:
▪ Without an information bottleneck, 

   autoencoder could learn to memorize 

   the input data!!

 There are different types of autoencoders:

▪ Undercomplete, denoising, sparse, variational

▪ Today, we talk about undercomplete autoencoder

▪ i.e bottleneck dimension < input dimension
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 The loss function to train an undercomplete 
AE is reconstruction loss:

  𝐿 𝑥, ො𝑥 = 𝑥 − ො𝑥 1

 No regularization term is needed in undercomplete 
AE. To ensure the model is not memorizing the input 
data we regulate:

▪ size of the bottleneck layer

▪ number of hidden layers
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A neuron has activation 
functions. As long as 
activation function
is not Identity, we 
learn non-linear 
embedding. 

If we use Identity activation functions in hidden layers we convert 
back to PCA and produce similar dimensionality reduction as PCA.



 Non-linear PCA
 A neural network that is trained to copy input 

to output 

▪ it passes data through a bottleneck

▪ Reconstruction loss function: L1, KL divergence

▪ Unsupervised

 There are different types of autoencoders:

▪ Undercomplete, denoising, sparse, variational

▪ We studied undercomplete AE.
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 categorical variables
▪ Integer encoding

▪ One-hot encoding

▪ Multi-hot
 How to transform encodings to embeddings
▪ SVD 

▪ Neural networks

 Task independent vs task specific embedding
▪ Word2Vec architecture

▪ Autoencoder architecture
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