
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

Mina Ghashami, Amazon

http://cs246.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our 
material useful for giving your own lectures. Feel free to use these slides verbatim, or to 
modify them to fit your own needs. If you make use of a significant portion of these slides 
in your own lecture, please include this message, or a link to our web site: http://www.mmds.org 

http://www.mmds.org/


 Redundancy leads to a bad user experience

▪ Uncertainty around information need => don’t 
put all eggs in one basket

 How do we optimize for diversity directly?
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Monday, January 14

France intervenes

Chuck for Defense

Argo wins big

Hagel expects fight
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Monday, January 14

France intervenes

Chuck for Defense

Argo wins big

New gun proposals
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 Idea: Encode diversity as coverage problem
 Example: Word cloud of news for a single day

▪ Want to select articles so that most words are 
“covered”
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 Q: What is being covered?
 A: Concepts (In our case: Named entities)

 Q: Who is doing the covering?
 A: Documents

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Hagel expects fight
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 Suppose we are given a set of documents D

▪ Each document d covers a set 𝑿𝒅 of 
words/topics/named entities W

 For a set of documents A  D we define

 Goal: We want to 
max
𝑨 ≤𝒌

𝑭(𝑨)

 Note: F(A) is a set function: 𝑭 𝑨 : 𝐒𝐞𝐭𝐬 → ℕ
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 Given universe of elements 𝑾 =  {𝒘𝟏, … , 𝒘𝒏} 
and sets 𝑿𝟏, … , 𝑿𝒎  

 𝑾

 Goal: Find k sets Xi that cover the most of W

▪ More precisely: Find k sets Xi whose size of the 
union is the largest

▪ Bad news: A known NP-complete problem

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

WX1
X2

X3

X4

6/6/2023 9



Simple Heuristic: Greedy Algorithm:
 Start with 𝑨𝟎 = { }
 For 𝒊 = 𝟏 … 𝒌

▪ Find set 𝒅 that 𝐦𝐚𝐱 𝑭(𝑨𝒊−𝟏 ∪ {𝒅})

▪ Let 𝑨𝒊 = 𝑨𝒊−𝟏  {𝒅}

 Example:
▪ Eval. 𝑭 𝒅𝟏 , … , 𝑭({𝒅𝒎}), pick best (say 𝒅𝟏)

▪ Eval. 𝑭 𝒅𝟏} ∪ {𝒅𝟐 , … , 𝑭({𝒅𝟏} ∪ {𝒅𝒎}), pick best (say 𝒅𝟐)

▪ Eval. 𝑭({𝒅𝟏, 𝒅𝟐} ∪ {𝒅𝟑}), … , 𝑭({𝒅𝟏, 𝒅𝟐} ∪ {𝒅𝒎}), pick best

▪ And so on…
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𝑭 𝑨 = ራ

𝒅∈𝑨

𝑿𝒅
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 Goal: Maximize the covered area
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 Goal: Maximize the size of the covered area
 Greedy first picks A and then C
 But the optimal way would be to pick B and C
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 Greedy produces a solution A 
where: F(A)  (1-1/e)*OPT    (F(A)  0.63*OPT)
[Nemhauser, Fisher, Wolsey ’78]

 Claim holds for functions F(·) with 2 properties:

▪ F is monotone: (adding more docs doesn’t decrease coverage)

if A  B then F(A)  F(B) and F({})=0

▪ F is submodular:
adding an element to a set gives less improvement 
than adding it to one of its subsets
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Definition:
 Set function F(·) is called submodular if:

For all A,B W:
 F(A) + F(B)   F(A B) + F(A B)
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 Diminishing returns characterization 
Equivalent definition:
 Set function F(·) is called submodular if:

For all A B:
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dB      A

d

+

+

Large improvement

Small improvement

Gain of adding d to a small set Gain of adding d to a large set

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)
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 F(·) is submodular: A  B 

 Natural example:

▪ Sets 𝑑1, … , 𝑑𝑚  

▪ 𝐹 𝐴 = 𝑖∈𝐴ڂ 𝑑𝑖     
(size of the covered area)

▪ Claim: 
𝑭(𝑨) is submodular!
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A

B

d

d

Gain of adding d to a small set Gain of adding d to a large set

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)
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 Submodularity is discrete analogue of 
concavity
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F
(·

)

Solution size |A|

F(A)

F(A  {d})

F(B  {d}) A  B 

F(B)

Adding d to B helps less

than adding it to A!

Gain of adding Xd to a small set Gain of adding Xd to a large set

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)
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 Marginal gain: 
𝚫𝑭 𝒅 𝑨 = 𝑭 𝑨 ∪ {𝒅} − 𝑭(𝑨)

 Submodular:
𝑭 𝑨 ∪ {𝒅} − 𝑭 𝑨 ≥ 𝑭 𝑩 ∪ {𝒅} − 𝑭(𝑩)

 Concavity:
𝒇 𝒂 + 𝒅 − 𝒇 𝒂 ≥ 𝒇 𝒃 + 𝒅 − 𝒇(𝒃)
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𝐴 ⊆ 𝐵

𝑎 ≤ 𝑏

F
(A

)

|A|
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 Let 𝑭𝟏 … 𝑭𝒎 be submodular and 𝝀𝟏 … 𝝀𝒎 > 𝟎 
then 𝑭 𝑨 = σ𝒊=𝟏

𝒎 𝝀𝒊𝑭𝒊 𝑨  is submodular

▪ Submodularity is closed under non-negative 
linear combinations!

 This is an extremely useful fact:

▪ Average of submodular functions is submodular: 
𝑭 𝑨 = σ𝒊 𝑷 𝒊 ⋅ 𝑭𝒊 𝑨

▪ Multicriterion optimization: 𝑭 𝑨 = σ𝒊 𝝀𝒊𝑭𝒊 𝑨
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 Q: What is being covered?
 A: Concepts (In our case: Named entities)

 Q: Who is doing the covering?
 A: Documents

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Hagel expects fight
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 Objective: pick k docs that cover most concepts

 F(A): the number of concepts covered by A

▪ Elements…concepts, Sets … concepts in docs

▪ F(A) is submodular and monotone! 

▪ We can use greedy algorithm to optimize F

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Enthusiasm for Inauguration wanes Inauguration weekend
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 Objective: pick k docs that cover most concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Penalizes redundancy

Enthusiasm for Inauguration wanes Inauguration weekend

Submodular

Concept importance?

All-or-nothing too harsh
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

The good: The bad:
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 Objective: pick k docs that cover most concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Enthusiasm for Inauguration wanes Inauguration weekend
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 Each concept 𝒄 has importance weight 𝒘𝒄
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 Document coverage function
                  probability document d covers

                     concept c
[e.g., how strongly d covers c]

Obama Romney

Enthusiasm for Inauguration wanes
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 Document coverage function:
                  probability document d covers

                     concept c
▪ Coverd(c) can also model how relevant is concept c for user u

 Set coverage function:

▪ Prob. that at least one document in A covers c

 Objective:
concept weights
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 The objective function is also submodular

▪ Intuitively, it has a diminishing returns property

▪ Greedy algorithm leads to a (1 – 1/e) ~ 63% 
approximation, i.e., a near-optimal solution
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 Objective: pick k docs that cover most concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

Enthusiasm for Inauguration wanes Inauguration weekend
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 Each concept 𝑐 has importance weight 𝑤𝑐
 Documents partially cover concepts: 𝐜𝐨𝐯𝐞𝐫𝒅(𝒄)
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 Greedy algorithm is slow!

▪ At each iteration we need to 
re-evaluate marginal gains of 
all remaining documents

▪ Runtime 𝑶(|𝑫| · 𝑲) for 
selecting 𝑲 documents out of the 
set of 𝑫 of them
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a

b

c

d

Marginal gain:
F(Ax)-F(A)

e

Greedy

Add document with 
highest marginal gain
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 In round 𝒊: So far we have 𝑨𝒊−𝟏  =  {𝒅𝟏, … , 𝒅𝒊−𝟏}

▪ Now we pick 𝐝𝒊 = 𝐚𝐫𝐠 𝐦𝐚𝐱
𝒅∈𝑽

𝑭(𝑨𝒊−𝟏 ∪ {𝒅}) − 𝑭(𝑨𝒊−𝟏)

▪ Greedy algorithm maximizes the “marginal benefit” 
𝚫𝒊 𝒅  = 𝑭(𝑨𝒊−𝟏 ∪  {𝒅})  − 𝑭(𝑨𝒊−𝟏)

 By submodularity property:

 𝐹 𝐴𝑖 ∪ 𝑑 − 𝐹 𝐴𝑖 ≥ 𝐹 𝐴𝑗 ∪ 𝑑 − 𝐹 𝐴𝑗  for 𝑖 < 𝑗

 Observation: By submodularity: 
For every 𝒅 ∈ 𝑫  
𝚫𝒊(𝒅) ≥ 𝚫𝒋(𝒅)  for 𝒊 <  𝒋 since 𝑨𝒊 

 𝑨𝒋

 Marginal benefits 𝚫𝒊(𝒅) only shrink!
(as i grows)
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d

i(d)   j(d)

[Leskovec et al., KDD ’07]

Selecting document d in step i covers 

more words than selecting d at step j (j>i)
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 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top 
element

▪ Re-sort and prune
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a

b

c

d

e

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)

A1={a}

A  B 

(Upper bound on)
Marginal gain 1
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 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top 
element

▪ Re-sort and prune
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a

d

b

c

e

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B) A  B 

A1={a}

Upper bound on 
Marginal gain 2
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 Idea: 

▪ Use i as upper-bound on j  (j > i)

 Lazy Greedy:

▪ Keep an ordered list of marginal 
benefits i from previous iteration

▪ Re-evaluate i only for top element

▪ Re-sort and prune
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a

c

d

b

e

Upper bound on 
Marginal gain 2

[Leskovec et al., KDD ’07]

F(A  {d}) – F(A)   ≥  F(B  {d}) – F(B)

A1={a}

A2={a,b}

A  B 
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 Summary so far:
▪ Diversity can be formulated as a set cover

▪ Set cover is submodular optimization problem

▪ Can be (approximately) solved using greedy algorithm

▪ Lazy-greedy gives significant speedup
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But what about 
personalization?

model

Election trouble

Songs of Syria

Sandy delays

Recommendations
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France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

France intervenes

Chuck for Defense

Argo wins big

We assumed same concept weighting for all users
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 Each user has different preferences over 
concepts

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

politico

movie buff
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 Assume each user u has different preference 
vector wc

(u) over concepts c

 Goal: Learn personal concept weights from 
user feedback
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France Mali Hagel Pentagon Obama Romney Zero Dark Thirty Argo NFL

France intervenes

Chuck for Defense

Argo wins big
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 Multiplicative Weights algorithm

▪ Assume each concept 𝒄 has weight 𝒘𝒄

▪ We recommend document 𝒅 and receive feedback, 
say 𝒓 = +1 or -1

▪ Update the weights:

▪ For each 𝒄 ∈ 𝑿𝒅 set 𝒘𝒄 = 𝜷𝒓𝒘𝒄

▪ If concept c appears in doc d and we received positive feedback r=+1 
then we increase the weight wc by multiplying it by 𝜷 (𝜷 > 𝟏) 
otherwise we decrease the weight (divide by 𝜷)

▪ Normalize weights so that σ𝒄 𝒘𝒄 = 𝟏
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 Steps of the algorithm:

1. Identify items to recommend from

2. Identify concepts [what makes items redundant?]

3. Weigh concepts by general importance

4. Define item-concept coverage function

5. Select items using probabilistic set cover

6. Obtain feedback, update weights
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 Models and tools for discovering patterns 
and answering queries that are:

▪ Valid:  Hold on new data with some certainty

▪ Useful:  Should be possible to act on the item 

▪ Unexpected:  Non-obvious to the system

▪ Understandable: Humans should be able to 
interpret the pattern
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 Overlaps with machine learning, statistics, 
artificial intelligence, databases, but more 
stress on

▪ Scalability of number 
of features and instances

▪ Algorithms and 
architectures

▪ Automation for handling 
large data

Machine Learning/

Pattern 
 Recognition

Statistics/
AI

Data Mining

Database 
systems
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 Apriori
 MapReduce
 Association rules
 Frequent itemsets
 PCY
 Recommender systems
 PageRank
 TrustRank
 HITS
 Node2Vec
 Decision Trees
 GNN
 Web Advertising
 DGIM
 Bandits
 BFR
 Regret

 LSH
 MinHash
 SVD
 Clustering
 Matrix factorization
 CUR
 Bloom filters
 CURE
 Submodularity
 SGD
 Collaborative Filtering
 SimRank
 Random hyperplanes
 AND-OR constructions
 k-means
 Sketching
 Online Matching
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 Based on different types of data:

▪ Data is high dimensional

▪ Data is a graph

▪ Data is never-ending

▪ Data is labeled

 Based on different models of computation:

▪ Single machine in-memory

▪ MapReduce

▪ Streams

▪ Batch (offline) vs. Active (online) algorithms
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 Based on different applications:
▪ Recommender systems

▪ Market basket analysis

▪ Link analysis, spam detection

▪ Duplicate detection and similarity search

▪ Web advertising
 Based on different “tools”:
▪ Linear algebra: SVD, Matrix factorization

▪ Optimization: Stochastic gradient descent

▪ Dynamic programming: Frequent itemsets

▪ Hashing: LSH, Bloom filters
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu6/6/2023 52



High dim. 
data

Locality 
sensitive 
hashing

Clustering

Dimensional
ity 

reduction

Graph 
data

PageRank, 
SimRank

Community 
Detection

Spam 
Detection

Infinite 
data

Filtering 
data 

streams

Web 
advertising

Queries on 
streams

Machine 
learning

Neural 
Networks

Decision 
Trees

Bandits

Apps

Recommen
der systems

Association 
Rules

Duplicate 
document 
detection
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 MapReduce
 Association Rules
 Apriori algorithm
 Finding Similar Items
 Locality Sensitive Hashing
 Random Hyperplanes
 Dimensionality Reduction 
 Singular Value Decomposition
 CUR method
 Clustering
 Recommender systems
 Collaborative filtering
 PageRank and TrustRank
 Hubs & Authorities
 k-Nearest Neighbors
 Perceptron
 Support Vector Machines
 Stochastic Gradient Descent
 Decision Trees
 Mining data streams
 Bloom Filters
 Flajolet-Martin
 Advertising on the Web
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 You Have Done a Lot!!!
 And (hopefully) learned a lot!!!
▪ Answered questions and 

proved many interesting results

▪ Implemented a number of methods

Thank You for the
Hard Work!

(and good luck with the exam,

and have a good break) ☺ 
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 How to analyze large datasets to discover 
models and patterns that are:

▪ Valid:  Hold on new data with some certainty

▪ Novel:  Non-obvious to the system

▪ Useful:  Should be possible to act on the item 

▪ Understandable: Humans should be able to 
interpret the pattern
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