Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://www.mmds.org</u>

Optimizing Submodular Functions

CS246: Mining Massive Datasets Jure Leskovec, Stanford University Mina Ghashami, Amazon http://cs246.stanford.edu

Recommendations: Diversity

Redundancy leads to a bad user experience

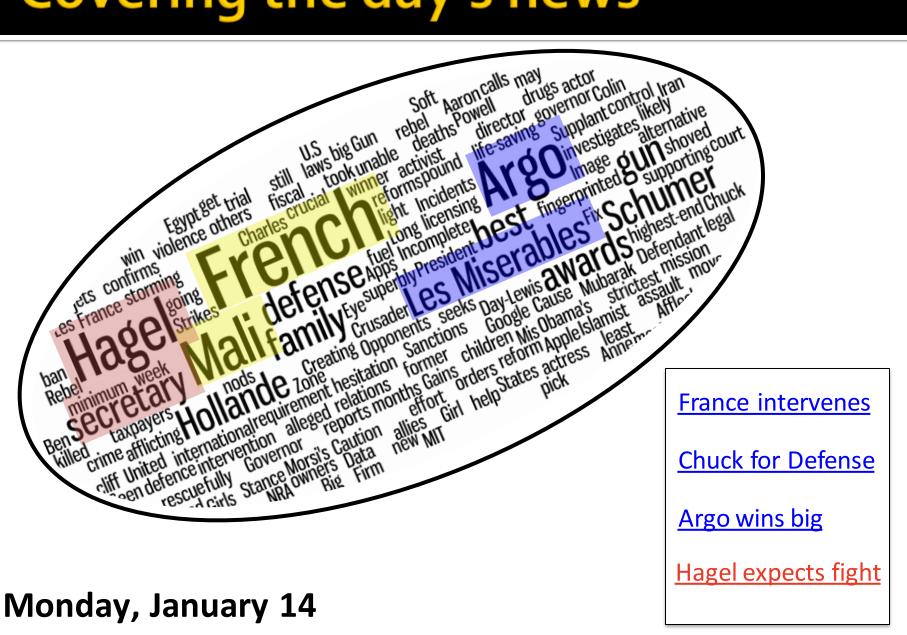
Obama Calls for Broad Action on Guns

Obama unveils 23 executive actions, calls for assault weapons ban

Obama seeks assault weapons ban, background checks on all gun sales

Uncertainty around information need => don't put all eggs in one basket
 How do we optimize for diversity directly?

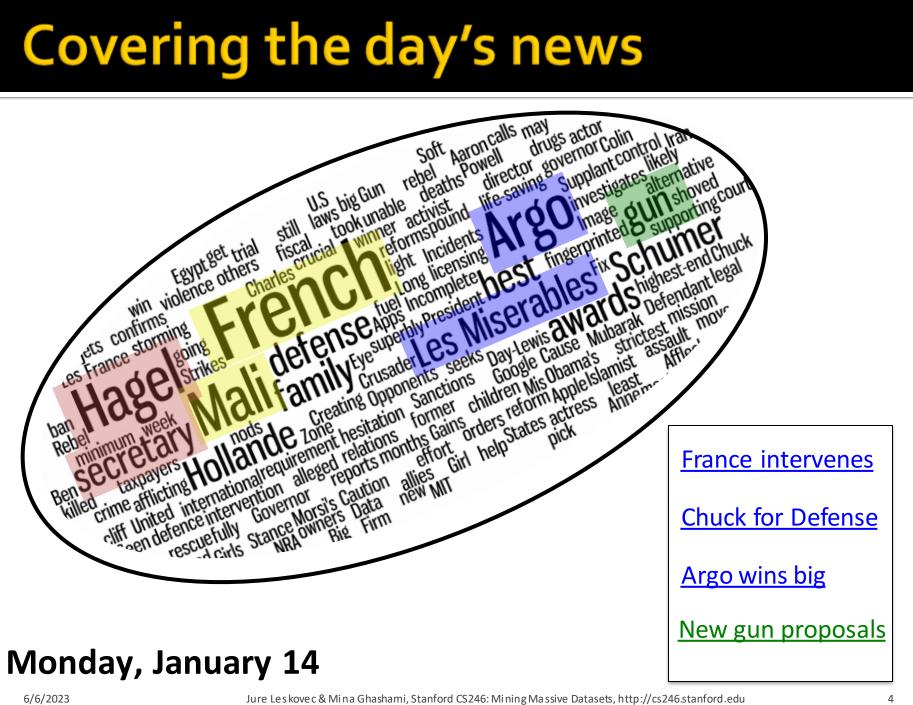
Covering the day's news



6/6/2023

Jure Les kovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Covering the day's news



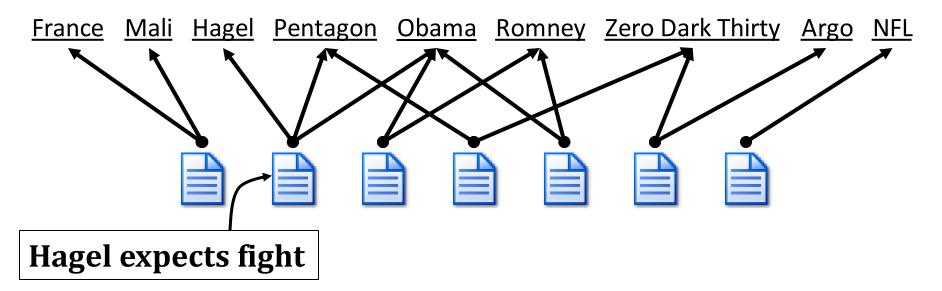
Encode Diversity as Coverage

- Idea: Encode diversity as coverage problem
 Example: Word cloud of news for a single day
 - Want to select articles so that most words are "covered"

Diversity as Coverage

What is being covered?

- Q: What is being covered?
- A: Concepts (In our case: Named entities)



Q: Who is doing the covering?A: Documents

Simple Abstract Model

Suppose we are given a set of documents D

- Each document d covers a set X_d of words/topics/named entities W

$$F(A) = \bigcup_{i \in A} X_i$$

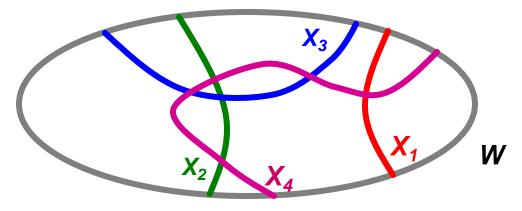
Goal: We want to

 $\max_{|A| \le k} F(A)$

• Note: F(A) is a set function: F(A): Sets $\rightarrow \mathbb{N}$

Maximum Coverage Problem

 Given universe of elements W = {w₁,..., w_n} and sets X₁,..., X_m⊆W



Goal: Find k sets X_i that cover the most of W

- More precisely: Find k sets X_i whose size of the union is the largest
- Bad news: A known NP-complete problem

Simple Heuristic: Greedy Algorithm:

- Start with $A_0 = \{ \}$
- For *i* = 1 ... *k*

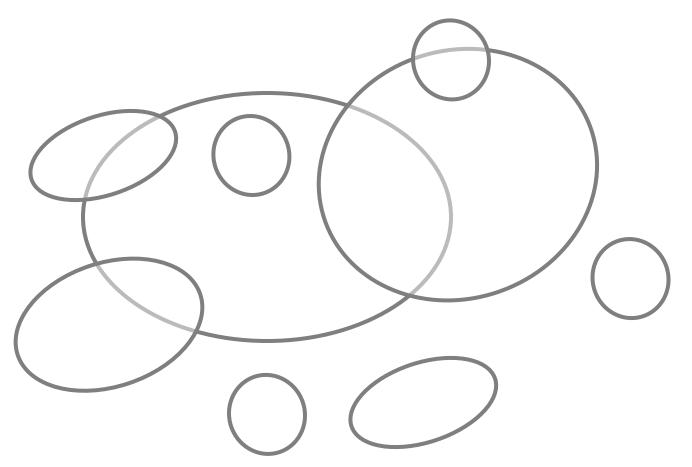
• Find set d that $\max F(A_{i-1} \cup \{d\})$

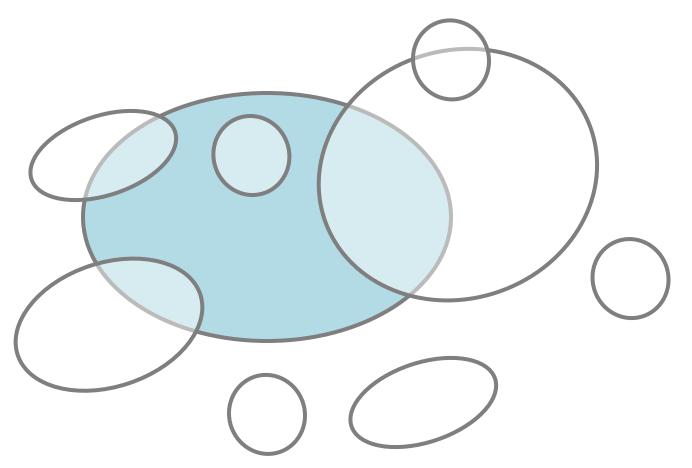
• Let
$$oldsymbol{A_i} = oldsymbol{A_{i-1}} \cup \{oldsymbol{d}\}$$

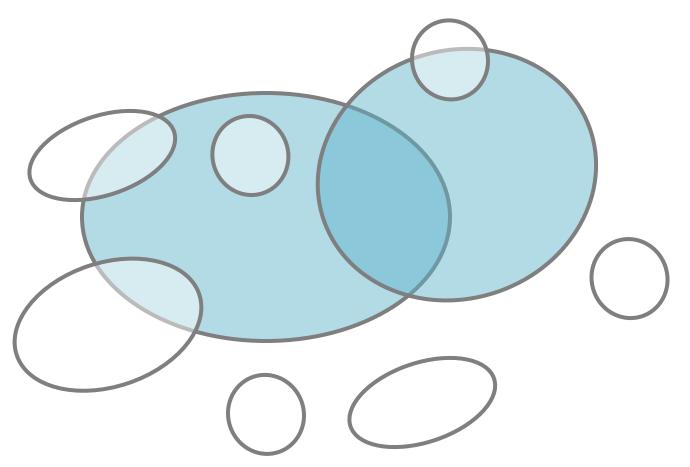
$$F(A) = \left| \bigcup_{d \in A} X_d \right|$$

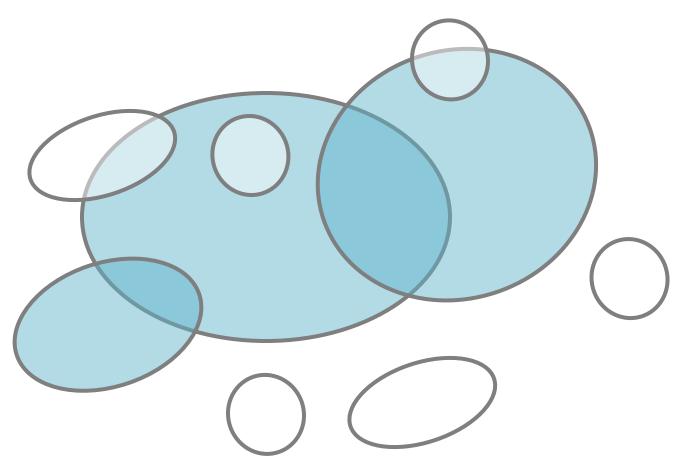
Example:

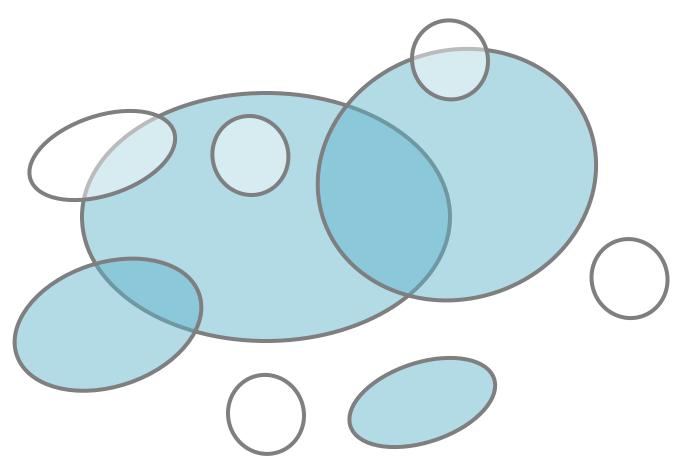
- Eval. $F(\{d_1\}), \dots, F(\{d_m\}), pick best (say d_1)$
- Eval. $F(\{d_1\} \cup \{d_2\}), ..., F(\{d_1\} \cup \{d_m\}),$ pick best (say d_2)
- Eval. $F(\{d_1, d_2\} \cup \{d_3\}), \dots, F(\{d_1, d_2\} \cup \{d_m\})$, pick best
- And so on...



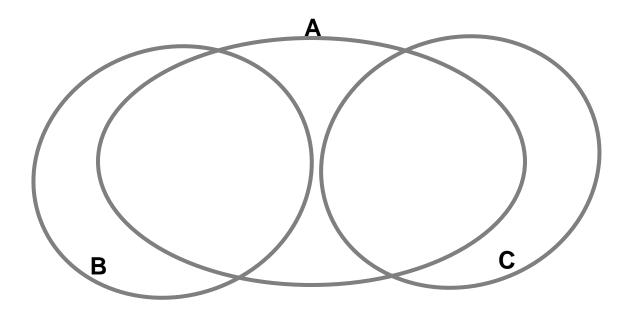








When Greedy Heuristic Fails?



Goal: Maximize the size of the covered area

- Greedy first picks A and then C
- But the optimal way would be to pick B and C

Approximation Guarantee

<u>Greedy</u> produces a solution A where: $F(A) \ge (1-1/e)*OPT$ ($F(A) \ge 0.63*OPT$) [Nemhauser, Fisher, Wolsey '78]

Claim holds for functions F(·) with 2 properties:

• *F* is monotone: (adding more docs doesn't decrease coverage) if $A \subseteq B$ then $F(A) \leq F(B)$ and $F({})=0$

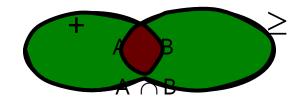
F is submodular:

adding an element to a set gives less improvement than adding it to one of its subsets

Submodularity: Definition

Definition:

 Set function *F(·)* is called submodular if: For all *A,B⊆W*:
 F(A) + F(B) ≥ F(A∪B) + F(A∩B)



╋

Submodularity: Or equivalently

- Diminishing returns characterization
 Equivalent definition:
- Set function *F(·)* is called submodular if:
 For all *A C B*:

 $F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B)$ Gain of adding **d** to a small set Gain of adding **d** to a large set Large improvement Small improvement

Example: Set Cover

F(·) is submodular: A ⊆ B

$$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\})$$

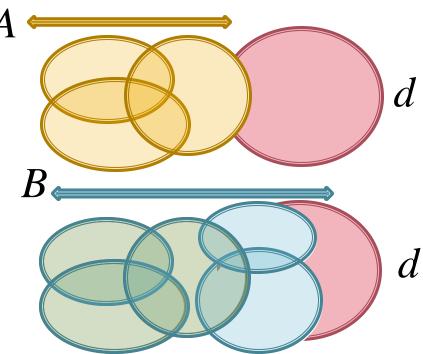
Gain of adding **d** to a small set

Natural example:

- Sets d_1, \ldots, d_m
- $F(A) = |\bigcup_{i \in A} d_i|$ (size of the covered area)
- <u>Claim:</u>
 F(*A*) is submodular!

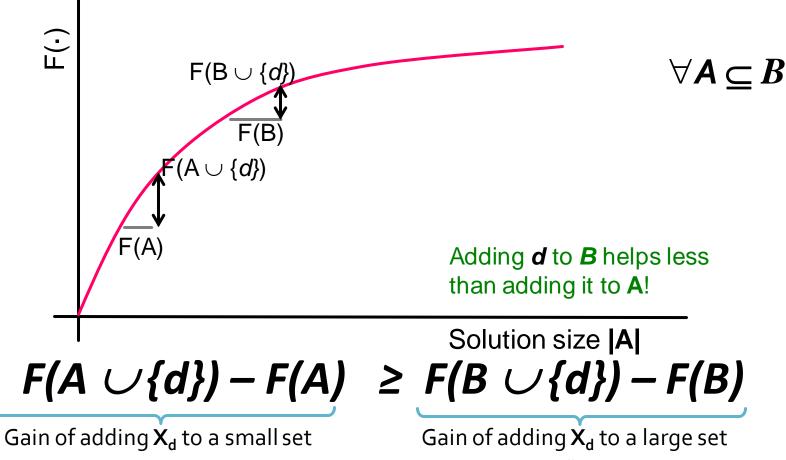
Gain of adding **d** to a large set

-F(B)



Jure Les kovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Submodularity– Diminishing returns



Jure Les kovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Submodularity & Concavity

Marginal gain: $\Delta_F(d|A) = F(A \cup \{d\}) - F(A)$ $A \subset B$ Submodular: $F(A \cup \{d\}) - F(A) \ge F(B \cup \{d\}) - F(B)$ Concavity: $a \leq b$ $f(a+d) - f(a) \ge f(b+d) - f(b)$ F(A)

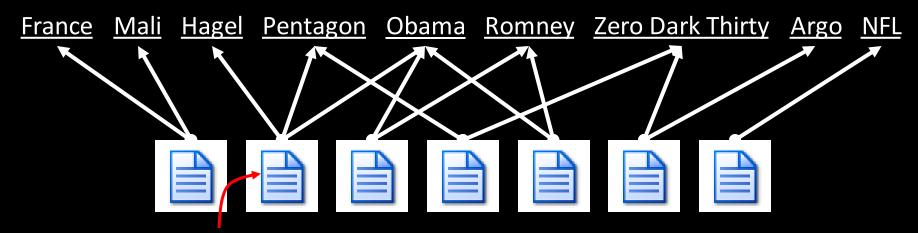
Submodularity: Useful Fact

- Let $F_1 \dots F_m$ be submodular and $\lambda_1 \dots \lambda_m > 0$ then $F(A) = \sum_{i=1}^m \lambda_i F_i(A)$ is submodular
 - Submodularity is closed under non-negative linear combinations!
- This is an extremely useful fact:
 - Average of submodular functions is submodular: $F(A) = \sum_{i} P(i) \cdot F_{i}(A)$
 - Multicriterion optimization: $F(A) = \sum_i \lambda_i F_i(A)$

Back to our problem

Q: What is being covered?

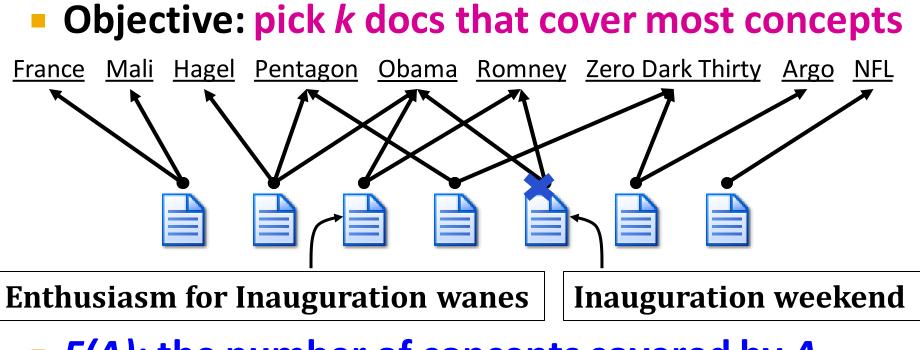
A: Concepts (In our case: Named entities)



Hagel expects fight

Q: Who is doing the covering?A: Documents

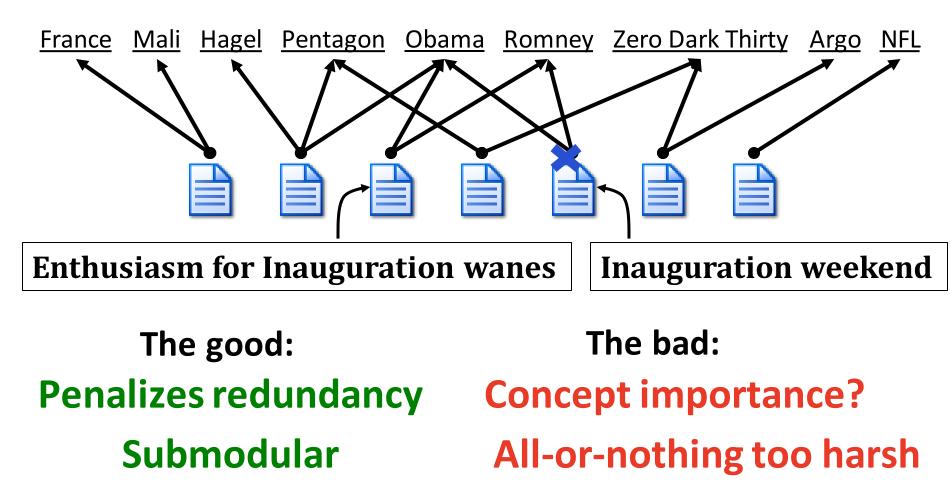
Back to our Concept Cover Problem



- F(A): the number of concepts covered by A
 - Elements...concepts, Sets ... concepts in docs
 - F(A) is submodular and monotone!
 - We can use greedy algorithm to optimize F

The Set Cover Problem

Objective: pick k docs that cover most concepts



Probabilistic Set Cover

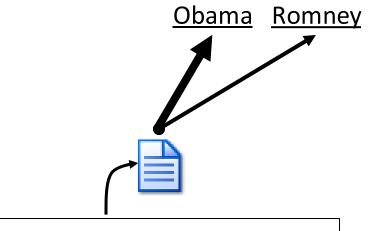
Concept importance?

Objective: pick *k* docs that cover most concepts <u>Pentagon</u> <u>Obama</u> <u>Romney</u> Zero Dark Thirty France Mali Hagel <u>Argo</u> NFL **Inauguration weekend Enthusiasm for Inauguration wanes**

Each concept c has importance weight w_c

All-or-nothing too harsh

Document coverage function $\operatorname{cover}_d(c) = \operatorname{probability} \operatorname{document} \mathbf{d} \operatorname{covers}$ $\operatorname{concept} \mathbf{c}$ [e.g., how strongly $\mathbf{d} \operatorname{covers} \mathbf{c}$]



Enthusiasm for Inauguration wanes

Probabilistic Set Cover

Document coverage function: $cover_d(c) = probability$ document d covers concept c

Cover_d(c) can also model how relevant is concept c for user u

Set coverage function:

$$\operatorname{cover}_{\mathcal{A}}(c) = 1 - \prod_{d \in \mathcal{A}} (1 - \operatorname{cover}_d(c))$$

Prob. that at least one document in A covers c

Objective:

$$\max_{\mathcal{A}: |\mathcal{A}| \leq k} F(\mathcal{A}) = \sum_{c} w_c \operatorname{cover}_{\mathcal{A}}(c)$$

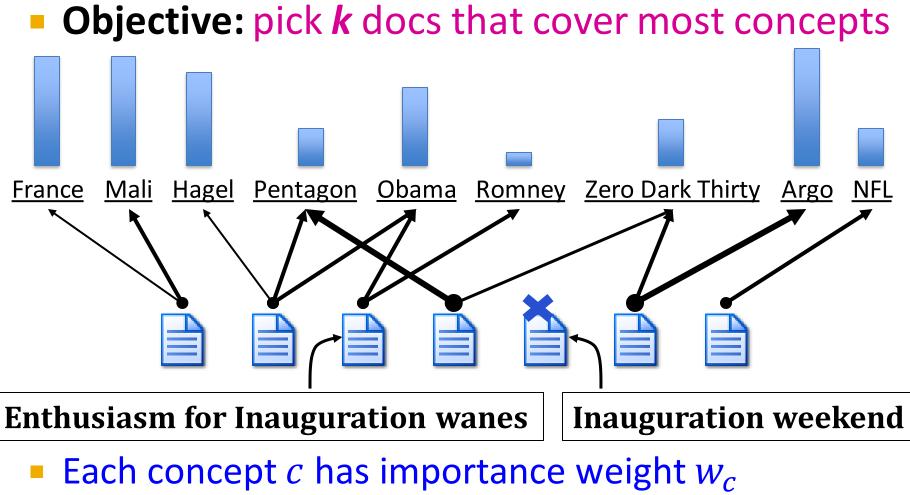
Optimizing F(A)

$$\max_{\mathcal{A}:|\mathcal{A}| \le k} F(\mathcal{A}) = \sum_{c} w_c \operatorname{cover}_{\mathcal{A}}(c)$$

The objective function is also submodular

- Intuitively, it has a diminishing returns property
- Greedy algorithm leads to a (1 1/e) ~ 63% approximation, i.e., a near-optimal solution

Summary: Probabilistic Set Cover



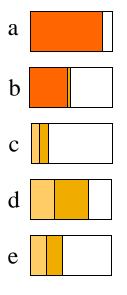
Documents partially cover concepts: cover_d(c)

Lazy Optimization of Submodular Functions

Submodular Functions

Greedy

Marginal gain: $F(A \cup x)-F(A)$



Greedy algorithm is slow!

- At each iteration we need to re-evaluate marginal gains of all remaining documents
- Runtime O(|D| · K) for selecting K documents out of the set of D of them

Add document with highest marginal gain

Speeding up Greedy

- In round *i*: So far we have $A_{i-1} = \{d_1, ..., d_{i-1}\}$
 - Now we pick $\mathbf{d}_i = \arg \max_{d \in V} F(A_{i-1} \cup \{d\}) F(A_{i-1})$
 - Greedy algorithm maximizes the "marginal benefit" $\Delta_i(d) = F(A_{i-1} \cup \{d\}) - F(A_{i-1})$
- By submodularity property: $F(A_i \cup \{d\}) - F(A_i) \ge F(A_j \cup \{d\}) - F(A_j)$ for i < j
- Observation: By submodularity: For every $d \in D$ $\Delta_i(d) \ge \Delta_j(d)$ for i < j since $A_i \subseteq A_j$
- Marginal benefits $\Delta_i(d)$ only shrink! d (as *i* grows) d Selecting document *d* in step *i* covers more words than selecting *d* at step *j* (i>i)

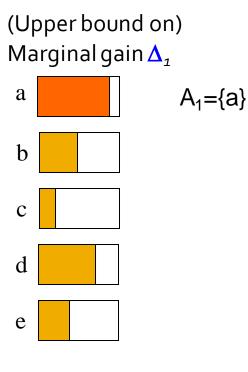
 $\Delta_i(\mathbf{d}) \geq \Delta_i(\mathbf{d})$

Lazy Greedy

Idea:

- Use ∆_i as upper-bound on ∆_j (j > i)
 Lazy Greedy:
 - Keep an ordered list of marginal benefits ∆_i from previous iteration
 - Re-evaluate Δ_i only for top element
 - Re-sort and prune

$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$

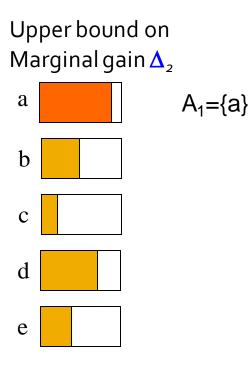


Lazy Greedy

Idea:

- Use ∆_i as upper-bound on ∆_j (j > i)
 Lazy Greedy:
 - Keep an ordered list of marginal benefits ∆_i from previous iteration
 - Re-evaluate Δ_i only for top element
 - Re-sort and prune

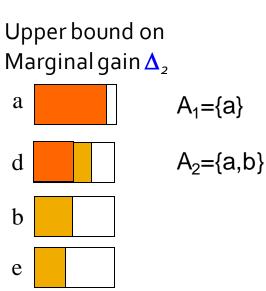
$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$



Lazy Greedy

Idea:

- Use ∆_i as upper-bound on ∆_j (j > i)
 Lazy Greedy:
 - Keep an ordered list of marginal benefits ∆_i from previous iteration
 - Re-evaluate Δ_i only for top element
 - Re-sort and prune



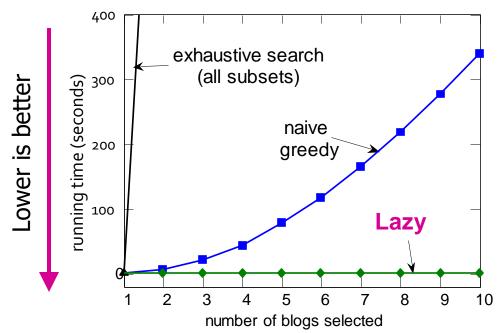
С

$F(A \cup \{d\}) - F(A) \geq F(B \cup \{d\}) - F(B) |_{A \subseteq B}$

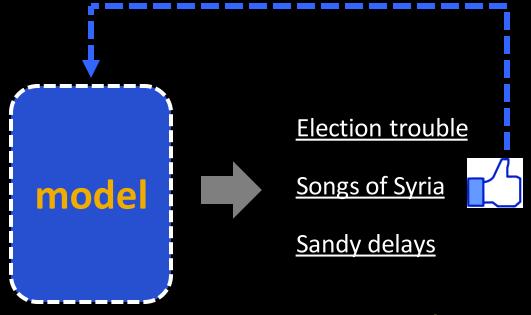
Summary so far

Summary so far:

- Diversity can be formulated as a set cover
- Set cover is submodular optimization problem
- Can be (approximately) solved using greedy algorithm
- Lazy-greedy gives significant speedup

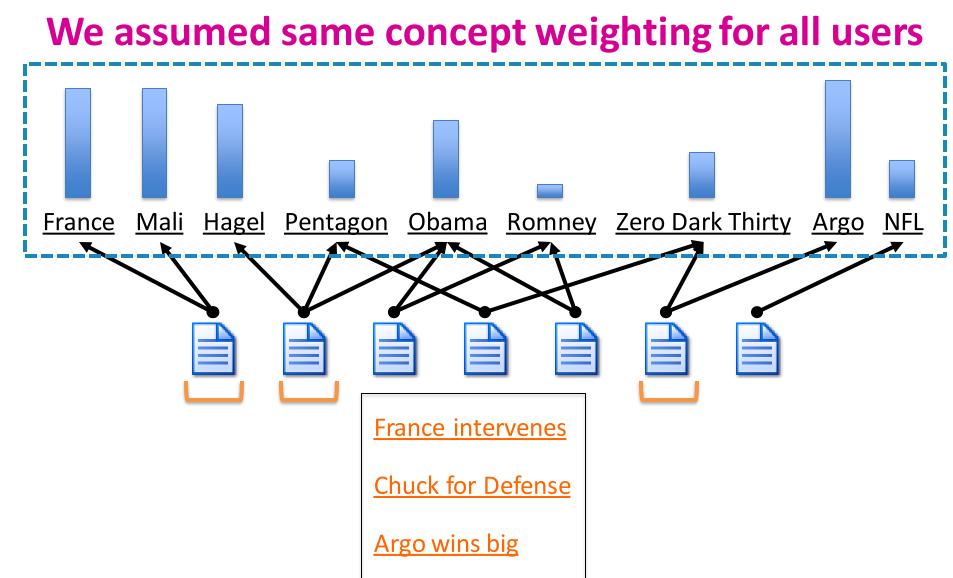


But what about personalization?



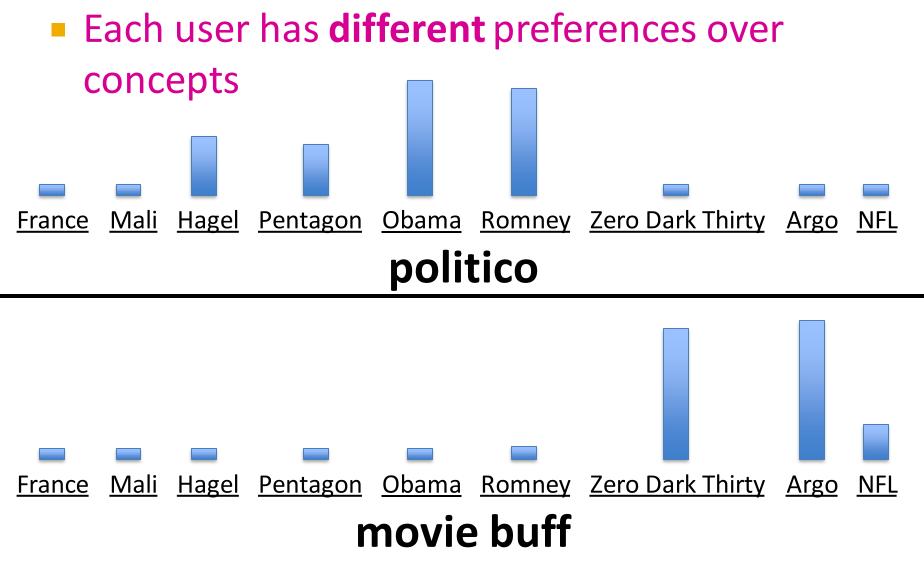
Recommendations

Concept Coverage



Jure Les kovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Personal Concept Weights



Jure Les kovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

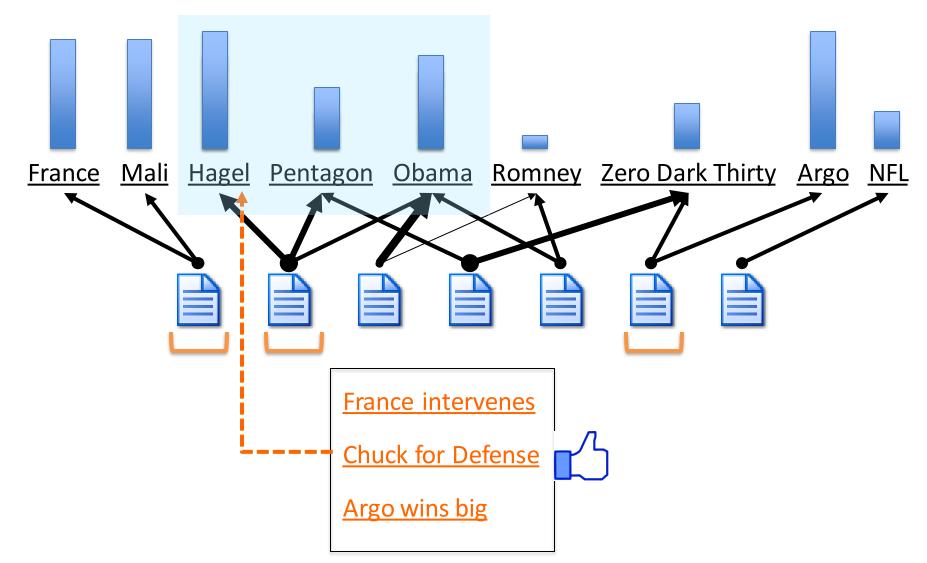
Personal concept weights

Assume each user *u* has different preference vector *w_c^(u)* over concepts *c*

$$\max_{\mathcal{A}:|\mathcal{A}| \le k} F(\mathcal{A}) = \sum_{c} w_{c} \operatorname{cover}_{\mathcal{A}}(c)$$
$$\max_{\mathcal{A}:|\mathcal{A}| \le k} F(\mathcal{A}) = \sum_{c} w_{c}^{(u)} \operatorname{cover}_{\mathcal{A}}(c)$$

 Goal: Learn personal concept weights from user feedback

Interactive Concept Coverage



Jure Les kovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Multiplicative Weights (MW)

Multiplicative Weights algorithm

- Assume each concept *c* has weight *w_c*
- We recommend document *d* and receive feedback, say *r* = +1 or -1
- Update the weights:
 - For each $c \in X_d$ set $w_c = \beta^r w_c$
 - If concept c appears in doc d and we received positive feedback r=+1 then we increase the weight w_c by multiplying it by β (β > 1) otherwise we decrease the weight (divide by β)
 - Normalize weights so that $\sum_c w_c = 1$

Summary of the Algorithm

Steps of the algorithm:

- 1. Identify **items** to recommend from
- 2. Identify **concepts** [what makes items redundant?]
- 3. Weigh concepts by general importance
- 4. Define item-concept coverage function
- 5. Select items using probabilistic set cover
- 6. Obtain **feedback**, **update** weights

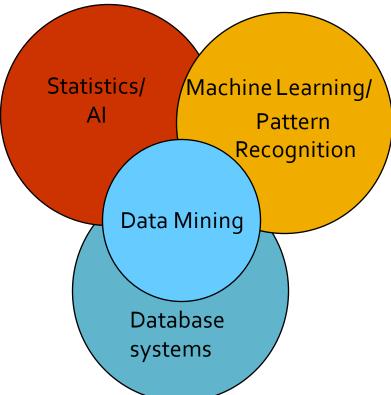
Mining Massive Datasets: Conclusion

CS246: Mining Massive Datasets Jure Leskovec, Stanford University Mina Ghashami, Amazon http://cs246.stanford.edu

- Models and tools for discovering patterns and answering queries that are:
 - Valid: Hold on new data with some certainty
 - Useful: Should be possible to act on the item
 - Unexpected: Non-obvious to the system
 - Understandable: Humans should be able to interpret the pattern

Mining Massive Datasets

- Overlaps with machine learning, statistics, artificial intelligence, databases, but more stress on
 - Scalability of number of features and instances
 - Algorithms and architectures
 - Automation for handling large data



What We Have Covered

- Apriori
- MapReduce
- Association rules
- Frequent itemsets
- PCY
- Recommender systems
- PageRank
- TrustRank
- HITS
- Node2Vec
- Decision Trees
- GNN
- Web Advertising
- DGIM
- Bandits
- BFR
- Regret

- LSH
- MinHash
- SVD
- Clustering
- Matrix factorization
- CUR
- Bloom filters
- CURE
- Submodularity
- SGD
- Collaborative Filtering
- SimRank
- Random hyperplanes
- AND-OR constructions
- k-means
- Sketching
- Online Matching

How It All Fits Together

Based on different types of data:

- Data is high dimensional
- Data is a graph
- Data is never-ending
- Data is labeled
- Based on different models of computation:
 - Single machine in-memory
 - MapReduce

Streams

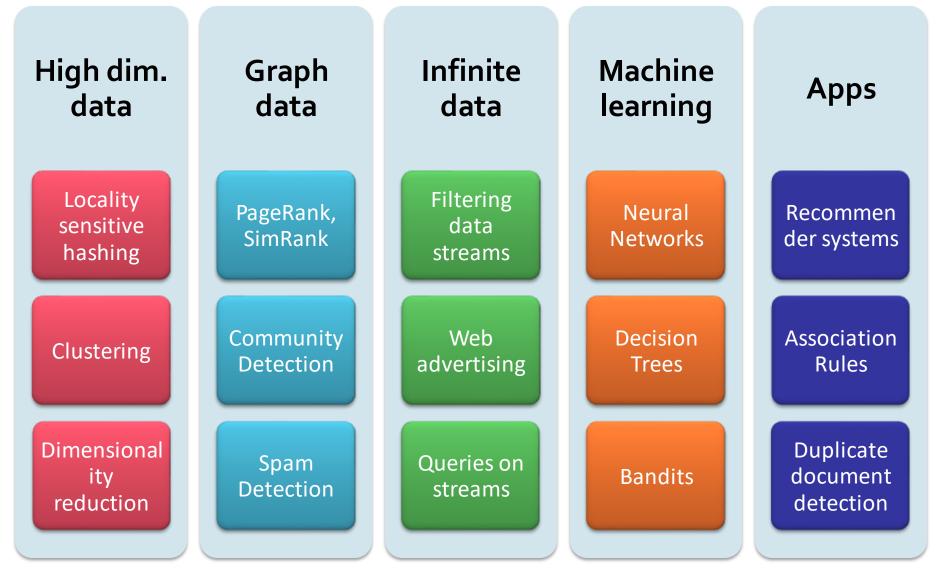
Batch (offline) vs. Active (online) algorithms

How It All Fits Together

Based on different applications:

- Recommender systems
- Market basket analysis
- Link analysis, spam detection
- Duplicate detection and similarity search
- Web advertising
- Based on different "tools":
 - Linear algebra: SVD, Matrix factorization
 - Optimization: Stochastic gradient descent
 - Dynamic programming: Frequent itemsets
 - Hashing: LSH, Bloom filters

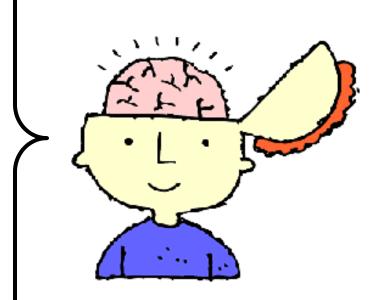
How It All Fits Together



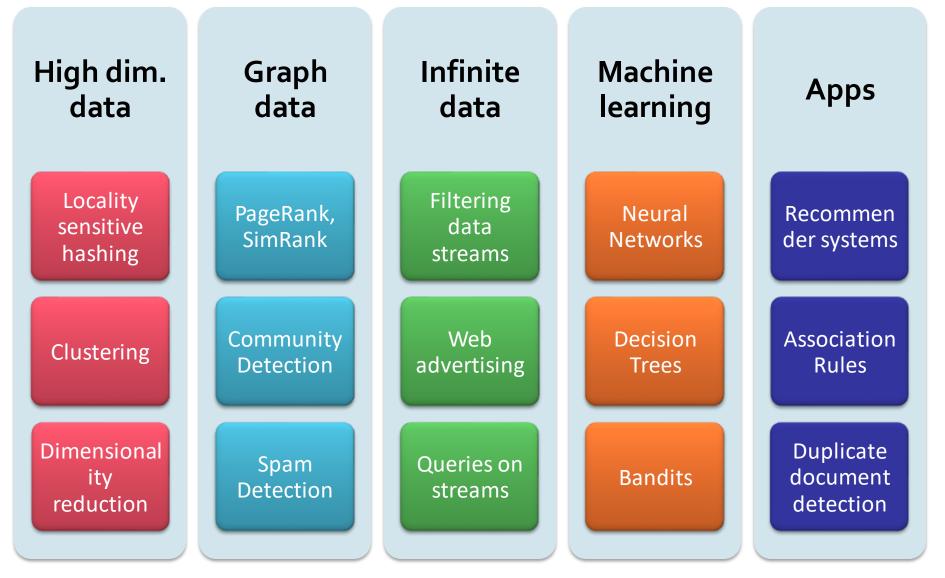
In closing...

What we've learned this quarter

- MapReduce
- Association Rules
- Apriori algorithm
- Finding Similar Items
- Locality Sensitive Hashing
- Random Hyperplanes
- Dimensionality Reduction
- Singular Value Decomposition
- CUR method
- Clustering
- Recommender systems
- Collaborative filtering
- PageRank and TrustRank
- Hubs & Authorities
- k-Nearest Neighbors
- Perceptron
- Support Vector Machines
- Stochastic Gradient Descent
- Decision Trees
- Mining data streams
- Bloom Filters
- Flajolet-Martin
- Advertising on the Web



Map of Superpowers



Applying Your Superpowers

In Closing

- You Have Done a Lot!!!
- And (hopefully) learned a lot!!!
 - Answered questions and proved many interesting results
 - Implemented a number of methods

Thank You for the Hard Work! (and good luck with the exam, and have a good break) ⓒ

THE BIG PICTURE

- How to analyze large datasets to discover models and patterns that are:
 - Valid: Hold on new data with some certainty
 - Novel: Non-obvious to the system
 - Useful: Should be possible to act on the item
 - Understandable: Humans should be able to interpret the pattern