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¡ In many applications, we can represent data as a 
matrix: e.g. text analysis, recommendation
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¡ Think of data as                 containing n row 
vectors in Rd , and typically 𝑛 ≫ 𝑑

¡ Some examples of typical web-scale data:
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A ∈ ℝ𝒏×𝒅



¡ Rank-k approximation to A computes a smaller 
matrix B of rank k such that B approximates A
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¡ Rank-k approximation to A computes a smaller 
matrix B of rank k such that B approximates A

¡ B is much smaller than A that it fits in memory
¡ Rank(B) << rank(A)

§ If A is a document-term matrix with 10 billion 
documents and 1 million words                           then B 
would probably be 
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A ∈ ℝ𝟏𝟎
𝟏𝟎×𝟏𝟎𝟔

B ∈ ℝ𝟏𝟎𝟎𝟎×𝟏𝟎𝟔



¡ Rank-k approximation to A computes a smaller 
matrix B of rank k such that B approximates A
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¡ Rank-k approximation to A computes a smaller 
matrix B of rank k such that B approximates A

¡ Error difference between A and B is small:
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¡ Rank-k approximation to A computes a smaller 
matrix B of rank k such that B approximates A

¡ Error difference between A and B is small:
§ The covariance error
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𝐴𝑇𝐴 − 𝐵𝑇𝐵 2, 𝐹 is small



¡ Rank-k approximation to A computes a smaller 
matrix B of rank k such that B approximates A

¡ Error difference between A and B is small:
§ The covariance error
§ The projection error

§ Π𝐵𝐴 := projecting rows of A onto the subspace of B
§ If B = USVT then, the subspace of B is VVT

§ Therefore 
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𝐴𝑇𝐴 − 𝐵𝑇𝐵 2, 𝐹 is small
𝐴 − Π𝐵(𝐴) 2, 𝐹 is small

Π𝐵𝐴 = AVVT



¡ We saw that SVD computes the best rank-k 
approximation to A
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¡ SVD computes the best rank-k approximation

¡ So the desirable approximation error is 
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𝐴 − Π𝐵(𝐴) 2, 𝐹 ≤ 𝑐 𝐴 − 𝐴! 2, 𝐹 𝐴𝑇𝐴 − 𝐵𝑇𝐵 2, 𝐹 ≤ 𝑐 𝐴 − 𝐴! 2, 𝐹
or



¡ SVD computes the best rank-k approximation 
to A

¡ SVD requires O(nd2) time and O(nd) space
¡ Not applicable in streaming, or distributed 

settings
¡ Not efficient for sparse matrices
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¡ Can we compute rank-k approximation in 
streaming setting?
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¡ Every element of the stream is a row vector of 
fixed d-dimension. 

§ We’d like to process A 
in one pass and using 
a small amount of 
memory (sublinear in n)
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¡ Streaming data such as any time series data:
§ ecommerce purchases
§ Traffic sensors
§ Activity logs

¡ We can not store the entire data
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¡ A large set of data analysis tasks rely on 
obtaining a low rank approximation:
§ Dimension reduction
§ Anomaly detection
§ Data denoising 
§ Clustering
§ Recommendation systems
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¡ B is a sketch of a streaming matrix A iff
§ B is of a fixed small size 

that fts in memory

§ At any point in stream, 
B approximates A
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¡ Almost any matrix sketching methods in 
streaming setting falls into one of these 
categories:

1. Row sampling based
2. Random projection based and Hashing
3. Iterative sketching
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¡ They select a subset of “important” rows
§ Sample w.r.t a well-defined probability distribution  
§ Often sampling is done with replacement

¡ Methods differ in how they define 
“importance”
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They construct sketch B by:
¡ assign a probability pi to each row ai
¡ sample 𝑙 rows from A to construct B
¡ rescale B appropriately to make it unbiased
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¡ An Intuitive way to define “importance” of an item:
§ the weight associated to the item, e.g.

§ file records à weights as size of the file, 
§ IP addresses à weights as number of times the IP address 

makes a request 
¡ why it is necessary to sample important items?

§ Consider a set of weighted items S = {(a1, w1),(a2, w2), ··· ,(an, wn)}
that we want to summarize with a small & representative sample.

§ We define a representative sample as the one estimates total 
weight of S (i.e.                      ) in expectation. 
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𝑊𝑠 = /
"#$

𝑤𝑖



¡ This is achievable with a sample set of size one!
§ Sample any item (aj , wj) with an arbitrary fixed 

probability p, and rescale its weight to Ws/p. 
§ Then E[weight of the sample] = p. Ws/p = Ws

¡ High variance issue: 
§ To lower down the variance, (1) sample heavy items (i.e. 

important items) with higher prob., and (2) sample more items
§ So sample item aj with prob. p=wj/Ws and rescale it to Ws/p
§ If we sample 𝑙 items, then rescale items to rescale it to 𝑊!/(𝑙𝑝)
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¡ In matrices,
§ Each item aj is a row vector 

§ Each weight wj = 𝑎%
&

§ And ∑"#$% 𝑎"
&
= 𝐴 '

&

¡ Row sampling algorithm based on L2 norm: 
§ Let sample size = 𝑙, i.e. the sketch B is 𝑙×𝑑
§ For every row 𝑎( arriving in the stream, 

§ Update 𝐴 '
& by adding 𝑎% '

&

§ Compute its sampling probability 𝑝" = 𝑎" & / 𝐴 '
&

§ Sample it 𝑙 times (one for each row of B. If it is sampled, replace the 
corresponding row in B with 𝑎" )

§ Rescale 𝑎" where it is sampled by 1/ 𝑙 𝑝"
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FAST MONTE CARLO ALGORITHMS FOR MATRICES I: APPROXIMATING MATRIX MULTIPLICATION, P. Drineas, etal,  2006 

This is the Frobenius norm 
of all rows seen so far



§ We can show that
𝐸[ 𝐵 𝐹]= 𝐴 𝐹

§ If we sample                              rows, then: 
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FAST MONTE CARLO ALGORITHMS FOR MATRICES I: APPROXIMATING MATRIX MULTIPLICATION, P. Drineas, etal,  2006 



¡ Row sampling based on L2 norm:
§ CUR method: samples rows/columns with 

probability = squared norm of rows/columns
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¡ Row sampling based on L2 norm:
§ CUR method: samples rows/columns with 

probability = squared norm of rows/columns
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¡ Row sampling based on L2 norm:
§ CUR method: samples rows/columns with 

probability = squared norm of rows/columns

§ Error guarantee: If we sample 𝒄 = 𝑶 𝒌 𝒍𝒐𝒈 𝒌
𝜺𝟐

columns and r= 𝑶 𝒌 𝒍𝒐𝒈 𝒌
𝜺𝟐

rows, then

With probability >= 98%
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+ Easy interpretation of basis
• Since the basis vectors are actual rows/columns

+ Suitable for Sparse data
• Since the basis vectors are actual rows/columns

- Duplicate columns and rows
• Columns of large norms will be sampled multiple 

times
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¡ Key idea: if points in a vector space are 
projected onto a randomly selected subspace 
of suitably high dimension, then the distances
between points are approximately preserved

¡ Johnson-Lindenstrauss Transform (JLT): d
datapoints in any dimension (ℝ; for 𝑛 ≫ 𝑑)can 
get embedded into roughly log d dimensional 
space, such that their pair-wise distances are 
preserved to some extent
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We define JLT more precisely:
¡ A random matrix S ∈ ℝ!×# has JLT property if 

for all vectors 𝑣, 𝑣′ ∈ ℝ#, 
𝑺𝒗 − 𝑺𝒗$ 𝟐 = (𝟏 ± 𝝐) 𝒗 − 𝒗$) 𝟐

with probability at least 1 − 𝛿

¡ There are many ways to construct a matrix S
that preserve pair-wise distances. 
§ All such matrices are called to have the Johnson-

Lindenstrauss Transform (JLT) property

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 33



One simple construction of S:

¡ Pick matrix S ∈ ℝ!×# as an orthogonal 
projection on a random r-dimensional 
subspace of ℝ# with 𝑟 = 𝑂(𝜖&' log 𝑑)
§ Rows of S are orthogonal vectors

¡ Then for any matrix 𝐴 ∈ ℝ#×(, SA preserves 
pair-wise distances between d datapoints in A
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¡ A simpler construction for S ∈ ℝ!×# is:
§ to have entries as independent random variables 

with the standard normal distribution

S= )
*

[matrix with entries draw from N(0,1)]

)
*
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Entries drawn from 
distribution N(0,1)

x



¡ Another construction for S ∈ ℝ!×# is:

S= )
*

[entries as independent +/-1 random var]

This is computationally simpler to construct          
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Entries are +/-1 random 
variables



¡ They use a JLT matrix S ∈ ℝ!×#
¡ Construct the sketch as B = SA ∈ ℝ!×(
§ this projects datapoints from a high-dim space 
ℝ; onto a lower-dim subspace ℝ<

¡ They show
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¡ Depending on JLT construction, we achieve 
different error bounds:

§ If S ∈ ℝ=×; has has iid zero-mean ±1 entries and 

𝑟 = 𝑂(>
?
+ 𝑘 log 𝑘) and, then 
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¡ Computationally efficient 
¡ Sufficiently accurate in practice
¡ A great pre-processing step in applications

¡ Data-oblivious as their computation involves 
only a random matrix S
§ Compare to row sampling methods that need to 

access data to form a sketch
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¡ Use matrix S that contains one ±1 per column

¡ To build S, use two hash functions:
§ h: [n] à [r] , and  g:[n] à {-1, +1}
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Only one non-zero 
entry in each 
column of S. 
The rest of entries 
are zero



¡ Very efficient for sparse matrices A
§ can be applied in O(nnz(A)) operations
§ nnz(A) = number of non-zeros of A
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¡ They work over a stream 𝐴 =< 𝑎@, 𝑎A, … , 𝑎; >
¡ each ai is read once, get processed quickly 

and not read again
¡ with only a small 

amount of memory
available
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¡ State of the art method in this group is called 
“Frequent Directions”

¡ It is based on Misra-Gries algorithm for 
finding frequent items in a data stream

¡ We first see how Misra-Gries algorithm for 
finding frequent items work
§ Then we extend it to matrices
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¡ Suppose there is a stream of items, and we 
want to find frequency f(i) of each item
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stream

universal 
set



¡ If we keep d counters, we can count 
frequency of every item...
§ But it’s not good enough (IP addresses, queries,...)
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¡ Let’s keep 𝑙 counters where 𝑙 ≪ 𝑑
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¡ If a new item arrives in the stream that is 
already in the counters, we add 1 to its count
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¡ If the new item is not in the counters and we 
have space, we create a counter for it and set 
it to 1
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¡ But what if we don’t have space for it?
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¡ Let 𝛿 be the median counter at time t
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¡ Decrease all counts by 𝛿 (set it to 0 if less than 
𝛿)
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¡ Now we have space for new item, so we 
continue...
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¡ At any time in the stream, the approximated 
counts for items are what we have kept so far
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¡ This method undercounts so for any item 𝑖

¡ We decrease each count by at most 𝛿+

𝑓$ 𝑖 ≥ 𝑓 𝑖 −@𝛿+

¡ At any point that we have seen n elements in 
stream:

¡ The error guarantee: 𝟎 ≤ 𝒇 𝒊 − 𝒇′(𝒊) ≤ 𝟐𝒏/𝒍
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0 ≤ 𝑓′(𝑖) ≤ 𝑓(𝑖)

,
'
∑𝛿+ ≤ 𝑛



¡ Misra-Gries produces a non-zero 
approximated frequency 𝒇′(𝒊) for all items 
that their true frequency 𝒇 𝒊 > 𝟐𝒏/𝒍

𝒇 𝒊 − 𝟐𝒏/𝒍 ≤ 𝒇′(𝒊)

¡ To find items that appear more than 20% of 
the time i.e. 𝒇 𝒊 > 𝒏/𝟓, take 𝒍 = 𝟏𝟎
counters and run Misra-Gries algorithm
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¡ Let’s extend it to vectors and matrices

¡ Stream items are row vectors in d dimension

¡ At any time n in the stream, they form a tall 
matrix A ∈ ℝ-×(

¡ The goal is to find the most frequent 
directions of A
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Frequent Directions: Simple and Deterministic Matrix Sketching, SODA 2014
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B𝑆 ← [ 𝑆$&−𝑆(/&& , 𝑆&&−𝑆(/&& , … 0, … , 0]
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ai

B𝑆 ← [ 𝑆$&−𝑆(/&& , 𝑆&&−𝑆(/&& …0,… , 0]
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B𝑆 ← [ 𝑆$&−𝑆(/&& , 𝑆&&−𝑆(/&& …0,… , 0]
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B𝑆 ← [ 𝑆$&−𝑆(/&& , 𝑆&&−𝑆(/&& …0,… , 0]



¡ Similar to the frequent items case, this 
method has the following error guarantee:

¡ And if using 𝑙 = 𝑘 + 𝑘/𝜖
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𝐴𝑇𝐴 − 𝐵𝑇𝐵 ≪
2
𝑙
𝐴 .

'

𝐴 − Π𝐵(𝐴) .
' ≪ (1 + 𝜖) 𝐴 − 𝐴/ .

'
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¡ Matrix Sketching in Streams:
§ Row sampling methods

§ CUR
§ L2 norm based sampling

§ Random projection methods
§ Johnson Lindenstrauss Transform (JLT)
§ Different ways to construct a JLT matrix 

§ Iterative sketching methods
§ Misra-Gries algorithm for frequent items
§ Frequent Directions method (state of the art)
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