Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to

modify them to fit your own needs. If you make use of a significant portion of these slides

in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Matrix Sketching in Data
Streams



http://www.mmds.org/

Data as a Matrix

In many applications, we can represent data as a
matrix: e.g. text analysis, recommendation

Documents > Vector-space
representation
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Data as a Matrix

Think of data as A € R™*4containing n row
vectors in R?, and typically n > d

Some examples of typical web-scale data:

Data Rows Columns n d sparse
Textual Documents Words > 1019 | 10° — 107 yes
Visual Images Pixels, SIFT | > 10® | 10> — 10° no
Audio Songs Frequencies > 108 10° — 10° no
Machine Learning Examples Features > 10° 102 — 10* yes/no
Financial Prices ltems, Stocks | > 10° 103 — 10° no
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Review: rank-k approximation

Rank-k approximation to A computes a smaller
matrix B of rank k such that B approximates A

Rank-k Approximation

Given A € R™ with rank(A) = r, compute a concise matrix B with
rank k < r such that it approximates A "accurately”.
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Review: rank-k approximation

Rank-k approximation to A computes a smaller
matrix B of rank k such that B approximates A

Rank-k Approximation |
Given A € R™ with rank(A) = r, compute a| conciselmatrix B with

rank k < r such that it approximates A "accurately”.

B is much smaller than A that it fits in memory
Rank(B) << rank(A)
If A'is a document-term matrix with 10 billion

10 6
documents and 1 million words A € R >0
would probably be B € R1000%106

then B
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Review: rank-k approximation

Rank-k approximation to A computes a smaller
matrix B of rank k such that B approximates A

Rank-k Approximation

Given A € R™9 with rank(A) = r, compute a concise matrix B with

rank k < r such that it |approximates A “accurately”. I
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Review: rank-k approximation

Rank-k approximation to A computes a smaller
matrix B of rank k such that B approximates A

Rank-k Approximation

Given A € R™9 with rank(A) = r, compute a concise matrix B with

rank k < r such that it |approximates A "accurately”. I

Error difference between A and B is small:
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Review: rank-k approximation

Rank-k approximation to A computes a smaller
matrix B of rank k such that B approximates A

Rank-k Approximation

Given A € R™9 with rank(A) = r, compute a concise matrix B with

rank k < r such that it |approximates A "accurately". I

Error difference between A and B is small:

The covariance error ||ATA — BTB||, ¢ is small
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Review: rank-k approximation

Rank-k approximation to A computes a smaller
matrix B of rank k such that B approximates A

Rank-k Approximation

Given A € R™9 with rank(A) = r, compute a concise matrix B with

rank k < r such that it |approximates A "accurately". I

Error difference between A and B is small:
The covariance error [|A"A — BTB||, ¢ is small

The projection error ||[A — IIz(4)]|,  is small
[I;A := projecting rows of A onto the s:ubspace of B
If B=USV'then, the subspace of B is VVT
Therefore I1;A = AVVT
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Best Rank-k Approximation

We saw that SVD computes the best rank-k
approximation to A

n d
: X .
‘ N - — A fe i N - \
-
\VAl
right singular vectors

“ f

left singular vectors singular values

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 10



Best Rank-k Approximation

SVD computes the best rank-k approximation

d K ¢ d
/r N\  —— —Ar— p A
Sk Vg
n < Ax = Uk
.

Aix=arg min ||A—B|fr2
rank(B)<k

So the desirable approximation error is

1A —Tp(Dll2 r _cllA— Agll2 ¢ or | ||A"A —BTB||; p < cllA — Agll; ¢
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Best Rank-k Approximation

5/31

/23

SVD computes the best rank-k approximation
to A

SVD requires O(nd?) time and O(nd) space
Not applicable in streaming, or distributed
settings

Not efficient for sparse matrices



Rank-k approximation in stream

Can we compute rank-k approximation in
streaming setting? A
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Streaming matrix sketching



Streaming data matrix

Every element of the stream is a row vector of
fixed d-dimension. A

We'd like to process A
in one pass and using ‘\

a small amount of

memory (sublinear in n)
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Streaming data matrix

treaming data such as any time series data:
ecommerce purchases

Traffic sensors

Activity logs i s .

44921 21620.351890 WestellT af:6 westellT af:69:0a

44930 21623.711944 WestellT_af:6 WestellT_af:69:0a

44931 21624. 821549 WestellT_af:6 westellT_af:69:0a

44940 21625. 656974 48 Elitegro_40:b4:9d ff02::16
44941 21628. 142497 WestellT_af:6 WestellT_af:69:0a
44942 21629.041634 WestellT_af:6 westellT_af:69: 0a
44943 21629. 143968 48 Elitegro_40:b4:9d
44944 21630. 981979 Elitegro_40:b4: 9d
44945 21630. 982062 i Elitegro_40:b4:9d
44945 21630. 982089 fed0: :207:95F Elitegro_40:b4: 9d
44947 21630.982113 fed80: :207:95f Elitegro_40:b4: °
44948 21631. 468290 Elitegro_40:b Elitegro_40:b4:!
44949 21631. 473065 192.168.1.1 WestellT_af:
44550 21632, 710412 Elitegro_40:b Elitegro_40:
44951 21632, 715587 192.168.1.1 WestellT_af:
44952 21632. 716786 Elitegro_40:b Elitegro_40:
44953 21632. 721885 192.168.1.1 WestellT_af:
44954 21632. 806064 192.168.1.18 Elitegro 40:
44967 21632. 907584 192.168.1.18 Elitegro_40:

€& @ google.com

2 Most Visited @ Getting Started

EEEEEE | voseoal|

baseball

baseball reference
baseball games
baseball playoffs

We can not store the entire data
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Application of rank-k approximations

A large set of data analysis tasks rely on
obtaining a low rank approximation:
Dimension reduction
Anomaly detection
Data denoising
Clustering
Recommendation systems
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Sketch of a Streaming Matrix

B is a sketch of a streaming matrix A iff

B is of a fixed small size A

that fts in memory

At any point in stream, ‘\‘/

B approximates A
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Matrix Sketching Methods

Almost any matrix sketching methods in
streaming setting falls into one of these

categories:

Row sampling based
Random projection based and Hashing
terative sketching
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Row Sampling Methods



Row Sampling Methods

They select a subset of “important” rows
Sample w.r.t a well-defined probability distribution

Often sampling is done with replacement

Methods differ in how they define
“importance”
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Row Sampling Methods

They construct sketch B by:
assign a probability p; to each row a;
sample [ rows from A to construct B

rescale B appropriately to make it unbiased
A

P1

Pi
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Intuition: Row Sampling Methods

An Intuitive way to define “importance” of an item:
the weight associated to the item, e.g.

file records = weights as size of the file,

IP addresses =2 weights as number of times the IP address
makes a request

why it is necessary to sample important items?

Consider a set of weighted items S = {(a;, w,),(a,, w,), - ,(a,, w,)}
that we want to summarize with a small & representative sample.

We define a representative sample as the one estimates total
weight of S (i.e. w_= 2 w, ) in expectation.

=1
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Intuition: Row Sampling Methods

This is achievable with a sample set of size one!

Sample any item (a;, w;) with an arbitrary fixed
probability p, and rescale its weight to W/p.

Then E[weight of the sample] = p. W /p = W,

High variance issue:

To lower down the variance, (1) sample heavy items (i.e.
important items) with higher prob., and (2) sample more items

So sample item a; with prob. p=w,/W; and rescale it to W/p
If we sample [ items, then rescale items to rescale it to W, /(lp)
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FAST MONTE CARLO ALGORITHMS FOR MATRICES I: APPROXIMATING MATRIX MULTIPLICATION, P. Drineas, etal, 2006

Row Sampling algorithms

In matrices,
Each item 3;is a row vector

Each weight w, = ||aj||2

And Y7oy = 114113

Row sampling algorithm based on L2 norm:
Let sample size = [, i.e. the sketch B is [ xXd
For every row a; arriving in the stream,

Update [|A|% by adding [|a; |

Compute its sampling probability p; = ||a;|?

Sample it [ times (one for each row of B. If it is sampled, replace the
corresponding row in B with a; )

Rescale a; where it is sampled by 1/,/1 p;

This is the Frobenius norm
of all rows seen so far
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FAST MONTE CARLO ALGORITHMS FOR MATRICES I: APPROXIMATING MATRIX MULTIPLICATION, P. Drineas, etal, 2006

Row Sampling algorithms

We can show that
E[lBIl£]= Al

If we sample gza(k/g2) rows, then:

|A—7mp(A)llE < IA— Az +ellAllz
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CUR: Row/column sampling

Row sampling based on L2 norm:

CUR method: samples rows/columns with
probability = squared norm of rows/columns

( AT
\ Z\LLLLLY
C
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CUR: Row/column sampling

Row sampling based on L2 norm:

CUR method: samples rows/columns with
probability = squared norm of rows/columns

Y ()

(
A ~ C : ( U ) ~ (='
P d\' f
seudo-inverse o
\ ) \ ) the intersection of C and R
C U R
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CUR: Row/column sampling

Row sampling based on L2 norm:

CUR method: samples rows/columns with
probability = squared norm of rows/columns

klog k
Error guarantee: If we samplec = O ( zéq )
klog k
columnsandr= O ( ;q ) rows, then
CUR error SVD error

|A—CUR||, < (2+¢)|lA - Akl

With probability >= 98%
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Row Sampling Methods

Easy interpretation of basis
Since the basis vectors are actual rows/columns

Suitable for Sparse data
Since the basis vectors are actual rows/columns

Duplicate columns and rows

Columns of large norms will be sampled multiple
times

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 30



Random Projection Methods



Random Projection Methods

5/31

/23

Key idea: if points in a vector space are
projected onto a randomly selected subspace
of suitably high dimension, then the distances
between points are approximately preserved

Johnson-Lindenstrauss Transform (JLT): d
datapoints in any dimension (R" for n > d)can
get embedded into roughly log d dimensional
space, such that their pair-wise distances are
preserved to some extent
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Johnson-Lindenstrauss Transform

We define JLT more precisely:
A random matrix S € R"™™ has JLT property if
for all vectors v, v’ € R",
ISv - Sv'||* = (1 + )llv — v)||?
with probability at least 1 — 0

There are many ways to construct a matrix S
that preserve pair-wise distances.

All such matrices are called to have the Johnson-
Lindenstrauss Transform (JLT) property
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How to construct a JLT matrix

One simple construction of S:

Pick matrix S € R™™ as an orthogonal
projection on a random r-dimensional

subspace of R™ with r = 0(e~“log d)

Rows of S are orthogonal vectors

Then for any matrix A € R™%, SA preserves
pair-wise distances between d datapoints in A
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How to construct a JLT matrix

A simpler construction for S € R™*" js

to have entries as independent random variables
with the standard normal distribution

S=\/§ [matrix with entries draw from N(0,1)]

;e MWM

Entries drawn from
distribution N(0,1)
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How to construct a JLT matrix

Another construction for S € R™" js:

S:\/% [entries as independent +/-1 random var]

This is computationally simpler to construct

I M@M

Entries are +/-1 random
variables
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Random Projection Methods

They use a JLT matrix S € R™"
Construct the sketch as B = SA € R'™*¢

this projects datapoints from a high-dim space
R™ onto a lower-dim subspace R”"

They show E[BTB] = ATE[STS]A=ATA
A

[UJ@MMJ ;
__

E[STS] =
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Random Projection Methods

Depending on JLT construction, we achieve
different error bounds:

If S € R™™ has has iid zero-mean +1 entries and

r = 0(% + klog k) and, then

|A—msa(A)|lFr < (1+¢)||A— AkllF
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Random Projection Methods

Computationally efficient
Sufficiently accurate in practice
A great pre-processing step in applications

Data-oblivious as their computation involves
only a random matrix S

Compare to row sampling methods that need to
access data to form a sketch
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Matrix Hashing Techniques

Use matrix S that contains one +1 per column

Only one non-zero
entry in each
column of S.

The rest of entries
are zero

S A
J LT TTL B
B '1// ; / =
)
set Sp(j),i= t1

To build S, use two hash functions:
h: [n] =2 [r], and g:[n] = {-1, +1}

5/31/23
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Matrix Hashing Techniques

Very efficient for sparse matrices A
can be applied in O(nnz(A)) operations
nnz(A) = number of non-zeros of A
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Iterative Sketching



Iterative Sketching

They work over a stream 4 =< a4, a,, ...,a, >
each a, is read once, get processed quickly
and not read again

A
with only a small
amount of memory Keep B
available Updating

>
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Iterative Sketching

5/31

/23

State of the art method in this group is called
“Frequent Directions”

It is based on Misra-Gries algorithm for
finding frequent items in a data stream

We first see how Misra-Gries algorithm for
finding frequent items work

Then we extend it to matrices



Frequent Items: Misra-Gries

Suppose there is a stream of items, and we
want to find frequency f(i) of each item

| I
universal 1] f(-) = B

set

O BN O B B B e B EE stream
J

|

n
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Frequent Items: Misra-Gries

If we keep d counters, we can count
frequency of every item...

But it’s not good enough (IP addresses, queries,...)

f(Em) =5
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Frequent Items: Misra-Gries

Let’s keep [ counters where [ < d

|
/
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Frequent Items: Misra-Gries

If a new item arrives in the stream that is
already in the counters, we add 1 to its count

]

B B

B B B

= 0 B .

\ J
|
4
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Frequent Items: Misra-Gries

If the new item is not in the counters and we
have space, we create a counter for it and set
itto 1

]
[]
]
]

o
\ J
|
l
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Frequent Items: Misra-Gries

But what if we don’t have space for it?

l J
|

4
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Frequent Items: Misra-Gries

Let & be the median counter at time t
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Frequent Items: Misra-Gries

Decrease all counts by 0 (set it to O if less than
0)
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Frequent Items: Misra-Gries

Now we have space for new item, so we
continue...
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Frequent Items: Misra-Gries

At any time in the stream, the approximated
counts for items are what we have kept so far
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Frequent Items: Misra-Gries

5/31

/23

This method undercounts so for any item i
0<f' ()= @

We decrease each count by at most 0;
HCEYIOEDI

At any point that we have seen n elements in
: l
stream: EZ 5, <n

The error guarantee: 0 < f(i) — f'(i) < 2n/l



Frequent Items: Misra-Gries

5/31

/23

Misra-Gries produces a non-zero
approximated frequency f'(i) for all items
that their true frequency f(i) > 2n/I

f(®) —2n/1 < f'(i)

To find items that appear more than 20% of
the timei.e. f(i) > n/5,take [ = 10
counters and run Misra-Gries algorithm

ts, http://cs246.stanford.edu



Frequent Directions: Simple and Deterministic Matrix Sketching, SODA 2014

Frequent Directions

Let’s extend it to vectors and matrices
Stream items are row vectors in d dimension

At any time n in the stream, they form a tall
matrix A € R?*4

The goal is to find the most frequent
directions of A
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Frequent Directions

Frequent Directions

Input: A € R™9, and an integer ¢
B < empty matrix € R¢*?

for(a; € A) B
Insert a; into B
if (B is full) [ }
(U, S, V| < svd(B)
S « [\[512—512/2,\/522—512/2, ..0,..,0]
B+ SvT
return B
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Frequent Directions

Frequent Directions (Lib'13)

Input: A € R™9, and an integer ¢
B <+ empty matrix € Rt*d

for(a; € A)
Insert a; into B B
if (B is full) (

(U, S, V] < svd(B)

S \/ 52-S2,, J 53-52,..0,...,0]

B+ S5vT
return B
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Frequent Directions

Frequent Directions (Lib'13)

Input: A € R"%9, and an integer ¢
B < empty matrix € R*d
for(a; € A)
Insert a; into B B
if (B is full)
(U, S, V] < svd(B) =
S« [\/sf—sf/z,\/sg—sf/z .0, ..., 0]
B« SvT
return B
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Frequent Directions

Frequent Directions

Input: A € R"*9, and an integer ¢
B < empty matrix € R¢*¢

for(a; € A)
Insert a; into B
if (B is full)

(U, S, V]| + svd(B)
S J 57-52,, \[ 53-52, .0, .., 0]

B+ SvT
return B
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Frequent Directions

Frequent Directions

Input: A € R"%9, and an integer ¢
B < empty matrix € R‘*¢

for(a; € A)
Insert a; into B
if (B is full)

U, S, V] < svd(B)
S « [\[512—512/2,\/522—55/2 ..0,..,0]
B+« SvT
return B
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Frequent Directions

Similar to the frequent items case, this
method has the following error guarantee:

2
474 - BTBIl « TIIA

Andifusingl =k + k/e

14 = Tz(AIIF < (1 + e)llA — AgllF
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Sketching in Experiment

|IATA-BT B||»

Cov-€rr .

5/31/23
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Sketching in Experiment
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Summary

Matrix Sketching in Streams:

Row sampling methods
CUR
L2 norm based sampling
Random projection methods
Johnson Lindenstrauss Transform (JLT)
Different ways to construct a JLT matrix
Iterative sketching methods

Misra-Gries algorithm for frequent items
Frequent Directions method (state of the art)
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