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¡ So far we have worked with datasets where all 
data is available

¡ In contrast, in many data mining scenarios, we 
do not know the entire data in advance. This is 
called data streams.

¡ Think of data streams as infinite data arriving 
one element at a time
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¡ Examples:
§ Google queries
§ Twitter posts or Facebook status updates
§ e-Commerce purchase data
§ Credit card transactions

¡ The input rate is controlled externally:
§ Stream management is important.
§ This is the fun part and why interesting 

algorithms are needed
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¡ Mining query streams
§ Google wants to know what queries are more 

frequent today than yesterday

¡ Mining click streams
§ Wikipedia wants to know which of its pages are 

getting an unusual number of hits in the past hour

¡ Mining social network news feeds
§ Look for trending topics on Twitter, Facebook
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¡ Sensor Networks 
§ Many sensors feeding into a central controller

¡ Telephone call records 
§ Data feeds into customer bills as well as 

settlements between telephone companies
¡ IP packets monitored at a switch
§ Gather information for optimal routing
§ Detect denial-of-service attacks
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¡ Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)
§ Elements of the stream may be tuples

¡ The system cannot store the entire stream

¡ Q: How do you make critical calculations 
about the stream using a limited amount of 
(secondary) memory?
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¡ Stochastic Gradient Descent (SGD) is an 
example of a streaming algorithm

¡ In Machine Learning we call this: Online Learning
§ Allows for modeling problems where we have 

a continuous stream of data 
§ We want an algorithm to learn from it and 

slowly adapt to the changes in data
¡ Idea: Do small updates to the model

§ SGD makes small updates
§ So: First train the classifier on training data
§ Then: For every example from the stream, we slightly 

update the model (using small learning rate)
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¡ Types of queries one wants to answer on 
a data stream: 
§ Sampling data from a stream

§ Construct a random sample

§ Filtering a data stream
§ Select elements with property x from the stream

§ Counting distinct elements
§ Number of distinct elements in the last k elements 

of the stream

§ finding most frequent elements
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¡ Why is sampling important?
§ Since we cannot store the entire stream, a 

representative sample can act like the stream
¡ Two different problems:
§ (1) Sample a fixed proportion of elements 

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size 

over a potentially infinite stream
§ At any “time” k we would like a random sample 

of s elements of the stream 1..k
§ What is the property of the sample we want to maintain?

For all time steps k, each of the k elements seen so far must have 
equal probability of being sampled
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¡ Problem 1: Sampling a fixed proportion
§ E.g. sample 10% of the stream
§ As stream grows, sample grows

¡ Naïve solution:
§ Generate a random integer in [0...9] for each element
§ Store the element if the integer is 0, otherwise discard  

¡ Any problem with this approach?
§ Since elements of stream can be tuples, we have to be 

very careful how we sample them
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¡ Scenario: Search engine query stream
§ Stream of tuples: (user, query, time)
§ Question: What fraction of unique queries by an average 

user are duplicates?
§ Suppose each user issues x queries once and d queries twice (total of 

x+2d query instances) then the correct answer to the query is d/(x+d)

§ Proposed solution: We keep 10% of the queries
§ Let’s say at any point in time you have seen data of n users
§ Sample will contain n(x+2d)/10 elements of the stream
§ Sample will contain nd/100 pairs of duplicates

§ n.d/100 = n.1/10 · 1/10 · d
§ There are n(10x+19d)/100 unique elements in the stream

§ n(x+2d)/10 - n d/100 = n(10x+19d)/100

§ So the sample-based answer is 
! !
"##

!"#$"##"!
"%!
"##

= 𝒅
𝟏𝟎𝒙"𝟏𝟗𝒅
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Solution:
¡ Don’t sample queries, sample users instead
¡ Pick 1/10th of users and take all their 

search queries in the sample

¡ Use a hash function that hashes the 
user name or user id uniformly into 10 
buckets
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¡ Stream of tuples with keys:
§ Key is some subset of each tuple’s components

§ e.g., tuple is (user, search, time); key is user

§ Choice of key depends on application

¡ To get a sample of a/b fraction of the stream:
§ Hash each tuple’s key uniformly into b buckets
§ Pick the tuple if its hash value is at most a
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Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets



The sample is of fixed size
time t
time t+1
time t+2

Stream



¡ Problem 2: Fixed-size sample
¡ Suppose we need to maintain a random

sample S of size exactly s tuples
§ E.g., main memory size constraint

¡ Why? Don’t know length of stream in advance
¡ Suppose by time n we have seen n items
§ Each item is in the sample S with equal prob. s/n
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How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen 
so far and out of them pick s at random



¡ Algorithm (a.k.a. Reservoir Sampling)
§ Store all the first s elements of the stream to S
§ Suppose we have seen n-1 elements, and now 

the nth element arrives (𝒏 > 𝒔)
§ With probability s/n, keep the nth element, else discard it
§ If we picked the nth element, then it replaces one of the 

s elements in the sample S, picked uniformly at random

¡ Claim: This algorithm maintains a sample S
with the desired property:
§ After n elements, the sample contains each 

element seen so far with probability s/n
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¡ We prove this by induction:
§ Assume that after n elements, the sample contains 

each element seen so far with probability s/n
§ We need to show that after seeing element n+1 

the sample maintains the property
§ Sample contains each element seen so far with 

probability s/(n+1)
¡ Base case:
§ After we see n=s elements the sample S has the 

desired property
§ Each out of n=s elements is in the sample with 

probability s/s = 1
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¡ Inductive hypothesis: After n elements, the sample 
S contains each element seen so far with prob. s/n

¡ Inductive step:
§ New element n+1 arrives, it goes to S with prob s/(n+1)
§ For all other elements currently in S:

§ They were in S with prob. s/n
§ The probability that they remain in S:

§ tuples stayed in S with prob. n/(n+1)
¡ So P(tuple is in S at time n+1) = 𝒔

𝒏
⋅ 𝒏
𝒏#𝟏

= 𝒔
𝒏#𝟏
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¡ Each element of data stream is a tuple
¡ A filter S that is a list of keys
¡ Determine which tuples of stream have key in S

¡ Obvious solution: Hash table
§ But suppose we do not have enough memory to 

store all of S in a hash table
§ E.g., we might be processing millions of filters at the same 

time on the stream
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¡ Example: Email spam filtering
§ 1 million users, each user has 1000 “good” email 

addresses (trusted addresses)
§ If an email comes from one of these, it is NOT spam

¡ Publish-subscribe systems
§ You are collecting lots of messages (news articles)
§ People express interest in certain sets of keywords
§ Determine whether each message matches a user’s 

interest
¡ Content filtering
§ You want to make sure the user does not see the 

same ad/recommendation multiple times 
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Bloom Filter algorithm:
Given a set of keys S that we want to filter
¡ Create a bit array B of n bits, initially all 0s
¡ Choose a hash function h with range [0,n)
¡ Hash each member of sÎ S to one of 

n buckets, and set that bit to 1, i.e., B[h(s)]=1
¡ Hash each element a of the stream and 

output only those that hash to bit that was 
set to 1
§ Output a if B[h(a)] == 1
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¡ Creates false positives 
§ Items that are hashed to a 1 bucket may or may not be in S

¡ but no false negatives
§ Items that are hashed to 0 bucket are surely not in S

26

FilterItem

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least 
one of the items in S hashed to.

Hash 
func h

Drop the item.
It hashes to a bucket set 
to 0 so it is surely not in S.

Bit array B
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¡ |S| = 1 billion email addresses 

Naive Dictionary approach: 1 billion email address, every 
email address is ~20 characters long à 160 GB to store email 
addresses + overhead of dictionary à 200 GB!

Bloom Filter:|B|= 1GB = 8 billion bits

¡ If the email address is in S, then it surely hashes to a bucket 
that has the bit set to 1, so it always gets through (no false 
negatives)

¡ Approximately 1/8 of the bits are set to 1, so about 1/8th of 
the addresses not in S get through to the output (false 
positives)
§ Actually, less than 1/8th, because more than one address might 

hash to the same bit
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¡ Let’s do a more accurate analysis of number 
of false positives, we know that:
§ Fraction of 1s in array B = prob. of false positive

¡ Darts & Targets: If we throw m darts into n
equally likely targets, what is the probability 
that a target gets at least one dart?

¡ In our case:
§ Targets = bits/buckets
§ Darts = hash values of items
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¡ We have m darts, n targets
¡ What is the probability that a target gets at 

least one dart?

29

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n( / n)

Equivalent
Equals 1/e
as n ®∞

1 – e–m/n
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Approximation is
especially accurate 
when n is large



¡ Fraction of 1s in the array B =
probability of false positive = 1 – e-m/n

¡ Example: 109 darts, 8·109 targets
§ Fraction of 1s in B = 1 – e-1/8 = 0.1175

§ Compare with our earlier estimate: 1/8 = 0.125

¡ To reduce false positive rate of bloom filter 
we use multiple hash functions
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¡ Consider: |S| = m keys, |B| = n bits
¡ Use k independent hash functions h1 ,…, hk
¡ Initialization:
§ Set B to all 0s
§ Hash each element sÎ S using each hash function hi, 

set B[hi(s)] = 1 (for each i = 1,.., k)
¡ Run-time:
§ When a stream element with key x arrives

§ If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
§ That is, x hashes to a bucket set to 1 for every hash function hi(x)

§ Otherwise discard the element x
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(note: we have a 
single array B!)



¡ What fraction of the bit vector B are 1s?
§ Throwing k·m darts at n targets
§ So fraction of 1s is (1 – e-km/n)

¡ But we have k independent hash functions
and we only let the element x through if all k
hash element x to a bucket of value 1

¡ So, false positive probability = (1 – e-km/n)k

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 32



¡ m = 1 billion, n = 8 billion
§ k = 1: (1 – e-1/8) = 0.1175
§ k = 2: (1 – e-1/4)2 = 0.0489

¡ What happens as we 
keep increasing k?

¡ Optimal value of k: 𝒏
𝒎
𝑙𝑛 𝟐

§ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6
§ Error at k = 6: (1 – e-3/4)6 = 0.0216
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¡ Bloom filters guarantee no false negatives, 
and use limited memory
§ Great for pre-processing before more 

expensive checks
¡ Suitable for hardware implementation
§ Hash function computations can be parallelized

¡ Is it better to have 1 big B or k small Bs?
§ It is the same: (1 – e-km/n)k  vs. (1 – e-m/(n/k))k

§ But keeping 1 big B is simpler
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¡ Problem:
§ Data stream consists of elements chosen from a 

universal set of size N
§ Maintain a count of the number of distinct 

elements seen so far

¡ Obvious approach:
Maintain a dictionary of elements seen so far
§ keep a hash table of all the distinct elements seen so far
§ What if number of distinct elements are huge?
§ What if there are many streams that need to be processed 

at once?
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¡ How many unique users a website has seen in 
each given month?
§ Universal set = set of logins for that month
§ Stream element = each time someone logs in

¡ How many different words are found at a site 
which is among the Web pages being crawled?
§ Unusually low or high numbers could indicate artificial 

pages (spam?)

¡ How many distinct products have we sold in the 
last week?
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¡ Real problem: What if we do not have space 
to maintain the set of elements seen so far in 
every stream?
§ We have limited working storage

¡ We use a variety of hashing and randomization to 
get approximately what we want

¡ Estimate the count in an unbiased way

¡ Accept that the count may have a little error, but 
limit the probability that the error is large
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¡ Estimates number of distinct elements by 
hashing elements to a bit-string that is 
sufficiently long
§ The length of the bit-string is large enough that it 

produces more result than size of universal set.

¡ Idea: hash elements to a binary string
§ the more different elements we see in the stream, 

the more different hash values we shall have.
§ Number of trailing 0s in these hash values 

estimates number of distinct elements.
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¡ Pick a hash function h that maps each of the N
elements to at least  log2 N bits

§ So hash values are binary strings
E.g. for a stream element a, h(a) = 1100

¡ Let r(a) be the number of trailing 0s in h(a)
§ r(a) = position of first 1 counting from the right

§ E.g., for h(a) = 1100, the r(a) = 2

¡ Record R = the maximum r(a) seen
§ R = maxa r(a),  over all the items a seen so far

¡ Estimated number of distinct elements = 2R
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¡ Very rough and heuristic intuition why 
Flajolet-Martin works:
§ h(a) hashes a with equal prob. to any of N values
§ All elements have equal prob. to have a tail of r zeros
§ The prob. of a given h(a) to have a tail of r zeros is:

Pr(a tail of r zeros )= 2-r

§ About 50% of as hash to ***0
§ About 25% of as hash to **00
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¡ Let 𝒎 be the number of distinct elements 
seen so far

¡ Then the probability that we have at least 
one tail of r zeros is

𝟏 − 𝟏 − 𝟐!𝒓 𝒎

45

Prob. that a given h(a)
does not have a tail of r

zeros

Prob. no element has 
tail of r zeros.
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¡ Therefore pr(finding at least one tail of r zeros) = 
¡ 1 − 1 − 2() * = 1 − 1 − 2() +&(*+'&) ≈ 1 − 𝑒(*+'&

§ If m << 2r, then prob. tends to 1
§ 1 − 𝑒(*+'& ≈ 0 as  m/2r® 0
§ So, the probability of finding a tail of length r tends to 0

§ If m >> 2r, then prob. tends to 0
§ 1 − 𝑒(*+'& ≈ 1 as  m/2r ®¥
§ So, the probability of finding a tail of length r tends to 1

¡ Thus, 2R will almost always be around m!
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¡ E[2R] is actually infinite
§ Probability halves when R ® R+1, but value doubles 

¡ Workaround involves using many hash 
functions hi and getting many samples of Ri

¡ How are samples Ri combined?
§ Average? What if one very large value 𝟐𝑹𝒊?
§ Median? All estimates are a power of 2
§ Solution:

§ Partition your samples into small groups
§ Take the median of groups
§ Then take the average of the medians
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Two flavor of a problem:
1. Finding the most common elements
2. Finding the most common “recent” elements

¡ Example:
§ In a stream of movie tickets from all over the world, 

what are most popular movies “currently”?
§ In a stream of items sold at Amazon, what are most 

popular items “recently”?
§ In a stream of tweets, who are the most active users 

“currently”? 

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 49



¡ What is “recent”?
¡ One approach: 
§ Get a sliding window of size N
§ Estimate the count in the window

¡ Sharp distinction between 
“recent” and “distant past”
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Solution: Exponentially decaying windows
Two type of windows:
1. Sliding window of fixed length

§ Holds last N elements

2. Decaying window
§ Takes all elements of the stream
§ Weights the recent elements more heavily
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¡ Computes a smooth aggregation over stream
¡ If stream is a1, a2,…, at then the exponentially 

decaying window at time t is

∑𝒊&𝟎𝒕)𝟏𝒂𝒕)𝒊 𝟏 − 𝒄 𝒊

= 𝒂𝒕 + 𝒂𝒕)𝟏 𝟏 − 𝒄 + 𝒂𝒕)𝟐 𝟏 − 𝒄 𝟐 +⋯

§ c is a constant, presumably tiny, like 10-6 or 10-9

§ at is a non-negative integer in general
¡ When new at+1 arrives: 

Multiply current sum by (1-c) and add at+1

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 52



¡ Given a stream of items, form a binary stream 
per item:
§ 1 = item present; 0 = not present
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Binary stream for item “b”

Stream of items:



¡ On all binary streams, compute exponentially decaying 
window 
§ If each at is an “item” we can compute the characteristic 

function of each item x as an Exponentially Decaying 
Window:

§ That is: ∑𝒕/𝟏𝑻 𝜹𝒕 ⋅ 𝟏 − 𝒄 𝑻(𝒕

where 𝜹𝒕 = 𝟏 if 𝒂𝒕 = 𝒙, and 𝟎 otherwise

§ In other words: Imagine that for each item 𝒙 we have a 
binary stream (𝟏 if 𝒙 appears, 𝟎 if 𝒙 does not appear)

§ Then, when a new item at arrives:
§ Multiply the summation by (𝟏 − 𝒄)
§ Add +1 to the summation if item = 𝒙

¡ Call this sum the “weight” of item 𝒙
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¡ Important property: Sum over all weights 
∑𝒕𝟏 ⋅ 𝟏 − 𝒄 𝒕 = 1/[1 – (1 – c)] = 𝟏/𝒄
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1/c

. . .

Spreads out weights of the stream as far back as the stream goes



¡ What are “currently” most popular movies?
¡ Suppose we want to find movies of weight > ½

§ Important property: Sum over all weights
∑! 𝛿! ⋅ 1 − 𝑐 ! is 1/[1 – (1 – c)] = 𝟏/𝒄
§ That means that no item can have weight greater than 1/c
§ The item will have weight 𝟏/𝒄 if its stream is [1,1,1,1,1…]. Note 

we have a separate binary stream for each item. So, at a given 
time only one item will have a 𝛿"=1, and other items will get a 0.

¡ Thus:
§ There cannot be more than 𝟐/𝒄 movies with weight of ½

or more
§ Why? Assume weight of item is ½. How many items n can we 

have so that the sum is <1/c; Answer: ½n<1/c à 𝑛 < 2/𝑐
¡ So, 𝟐/𝒄 is a limit on the number of movies being 

counted at any time
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¡ Algorithm for finding items of weight > ½ : 
1. Keep 2/c counters and initialize them to 0
2. When an item at arrives in the stream:

§ Multiply all counts by (1-c)
§ Drop all counters whose count < 1/2
§ If the new item is among the counters, increment its count 

by 1
§ Otherwise, if there is an empty counter assign it to at and 

set it to 1
3. At any point in the stream, the most common 

recent items are the ones in the counter set.
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¡ Extension: Count (some) itemsets
§ What are currently “hot” itemsets?

§ Problem: Too many itemsets to keep counts of 
all of them in memory

¡ When a basket 𝑩 comes in:
§ Multiply all counts by (𝟏 − 𝒄)
§ For uncounted items in 𝑩, create new count
§ Add 𝟏 to count of any item in 𝑩 and to any itemset

contained in 𝑩 that is already being counted
§ Drop counts < ½
§ Initiate new counts (next slide)
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¡ Start a count for an itemset S ⊆ B if every 
proper subset of S had a count prior to arrival 
of basket B.
§ Intuitively: If all subsets of S are being counted 

this means they are “frequent/hot” and thus S has 
a potential to be “hot”

¡ Example:
§ Start counting S={i, j} iff both i and j were counted 

prior to seeing B
§ Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k}

were all counted prior to seeing B
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¡ Counts for single items <  (2/c)·(avg. number 
of items in a basket)

¡ Counts for larger itemsets = ??

¡ But we are conservative about starting 
counts of large sets
§ If we counted every set we saw, one basket 

of 20 items would initiate 1M counts
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¡ Sampling a fixed proportion of a stream
§ Sample size grows as the stream grows

¡ Sampling a fixed-size sample
§ Reservoir sampling

¡ Check existence of a set of keys in the stream
§ Bloom filter

¡ Counting distinct elements in a stream
§ Flajolet-Martin algorithm

¡ Counting frequent elements in a stream
§ Exponentially decaying window
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