
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon

http://cs246.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to
modify them to fit your own needs. If you make use of a significant portion of these slides
in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

http://www.mmds.org/

High dim.
data

Locality
sensitive
hashing

Clustering

Dimensional
ity

reduction

Graph
data

PageRank,
SimRank

Community
Detection

Spam
Detection

Infinite
data

Filtering
data

streams

Queries on
streams

Web
advertising

Machine
learning

Decision
Trees

SVM

Parallel SGD

Apps

Recommen
der systems

Association
Rules

Duplicate
document
detection

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2

¡ So far we have worked with datasets where all
data is available

¡ In contrast, in many data mining scenarios, we
do not know the entire data in advance. This is
called data streams.

¡ Think of data streams as infinite data arriving
one element at a time

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 3

¡ Examples:
§ Google queries
§ Twitter posts or Facebook status updates
§ e-Commerce purchase data
§ Credit card transactions

¡ The input rate is controlled externally:
§ Stream management is important.
§ This is the fun part and why interesting

algorithms are needed

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 4

¡ Mining query streams
§ Google wants to know what queries are more

frequent today than yesterday

¡ Mining click streams
§ Wikipedia wants to know which of its pages are

getting an unusual number of hits in the past hour

¡ Mining social network news feeds
§ Look for trending topics on Twitter, Facebook

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 5

¡ Sensor Networks
§ Many sensors feeding into a central controller

¡ Telephone call records
§ Data feeds into customer bills as well as

settlements between telephone companies
¡ IP packets monitored at a switch
§ Gather information for optimal routing
§ Detect denial-of-service attacks

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 6

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 7

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering.
Each stream is
composed of

elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries

8

¡ Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
§ Elements of the stream may be tuples

¡ The system cannot store the entire stream

¡ Q: How do you make critical calculations
about the stream using a limited amount of
(secondary) memory?

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Stochastic Gradient Descent (SGD) is an
example of a streaming algorithm

¡ In Machine Learning we call this: Online Learning
§ Allows for modeling problems where we have

a continuous stream of data
§ We want an algorithm to learn from it and

slowly adapt to the changes in data
¡ Idea: Do small updates to the model

§ SGD makes small updates
§ So: First train the classifier on training data
§ Then: For every example from the stream, we slightly

update the model (using small learning rate)

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 9

¡ Types of queries one wants to answer on
a data stream:
§ Sampling data from a stream

§ Construct a random sample

§ Filtering a data stream
§ Select elements with property x from the stream

§ Counting distinct elements
§ Number of distinct elements in the last k elements

of the stream

§ finding most frequent elements

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 10

¡ Why is sampling important?
§ Since we cannot store the entire stream, a

representative sample can act like the stream
¡ Two different problems:
§ (1) Sample a fixed proportion of elements

in the stream (say 1 in 10)
§ (2) Maintain a random sample of fixed size

over a potentially infinite stream
§ At any “time” k we would like a random sample

of s elements of the stream 1..k
§ What is the property of the sample we want to maintain?

For all time steps k, each of the k elements seen so far must have
equal probability of being sampled

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 12

¡ Problem 1: Sampling a fixed proportion
§ E.g. sample 10% of the stream
§ As stream grows, sample grows

¡ Naïve solution:
§ Generate a random integer in [0...9] for each element
§ Store the element if the integer is 0, otherwise discard

¡ Any problem with this approach?
§ Since elements of stream can be tuples, we have to be

very careful how we sample them
5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 13

¡ Scenario: Search engine query stream
§ Stream of tuples: (user, query, time)
§ Question: What fraction of unique queries by an average

user are duplicates?
§ Suppose each user issues x queries once and d queries twice (total of

x+2d query instances) then the correct answer to the query is d/(x+d)

§ Proposed solution: We keep 10% of the queries
§ Let’s say at any point in time you have seen data of n users
§ Sample will contain n(x+2d)/10 elements of the stream
§ Sample will contain nd/100 pairs of duplicates

§ n.d/100 = n.1/10 · 1/10 · d
§ There are n(10x+19d)/100 unique elements in the stream

§ n(x+2d)/10 - n d/100 = n(10x+19d)/100

§ So the sample-based answer is
! !
"##

!"#$"##"!
"%!
"##

= 𝒅
𝟏𝟎𝒙"𝟏𝟗𝒅

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 14

Sample
underestimates

Solution:
¡ Don’t sample queries, sample users instead
¡ Pick 1/10th of users and take all their

search queries in the sample

¡ Use a hash function that hashes the
user name or user id uniformly into 10
buckets

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 15

¡ Stream of tuples with keys:
§ Key is some subset of each tuple’s components

§ e.g., tuple is (user, search, time); key is user

§ Choice of key depends on application

¡ To get a sample of a/b fraction of the stream:
§ Hash each tuple’s key uniformly into b buckets
§ Pick the tuple if its hash value is at most a

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 16

Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

The sample is of fixed size
time t
time t+1
time t+2

Stream

¡ Problem 2: Fixed-size sample
¡ Suppose we need to maintain a random

sample S of size exactly s tuples
§ E.g., main memory size constraint

¡ Why? Don’t know length of stream in advance
¡ Suppose by time n we have seen n items
§ Each item is in the sample S with equal prob. s/n

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 18

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…
At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

¡ Algorithm (a.k.a. Reservoir Sampling)
§ Store all the first s elements of the stream to S
§ Suppose we have seen n-1 elements, and now

the nth element arrives (𝒏 > 𝒔)
§ With probability s/n, keep the nth element, else discard it
§ If we picked the nth element, then it replaces one of the

s elements in the sample S, picked uniformly at random

¡ Claim: This algorithm maintains a sample S
with the desired property:
§ After n elements, the sample contains each

element seen so far with probability s/n
5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 19

¡ We prove this by induction:
§ Assume that after n elements, the sample contains

each element seen so far with probability s/n
§ We need to show that after seeing element n+1

the sample maintains the property
§ Sample contains each element seen so far with

probability s/(n+1)
¡ Base case:
§ After we see n=s elements the sample S has the

desired property
§ Each out of n=s elements is in the sample with

probability s/s = 1

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 20

¡ Inductive hypothesis: After n elements, the sample
S contains each element seen so far with prob. s/n

¡ Inductive step:
§ New element n+1 arrives, it goes to S with prob s/(n+1)
§ For all other elements currently in S:

§ They were in S with prob. s/n
§ The probability that they remain in S:

§ tuples stayed in S with prob. n/(n+1)
¡ So P(tuple is in S at time n+1) = 𝒔

𝒏
⋅ 𝒏
𝒏#𝟏

= 𝒔
𝒏#𝟏

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 21

1
1

11
1

+
=÷

ø
ö

ç
è
æ -
÷
ø
ö

ç
è
æ

+
+÷
ø
ö

ç
è
æ

+
-

n
n

s
s

n
s

n
s

Element n+1 discarded Element n+1
not discarded

Element in the
sample not picked

¡ Each element of data stream is a tuple
¡ A filter S that is a list of keys
¡ Determine which tuples of stream have key in S

¡ Obvious solution: Hash table
§ But suppose we do not have enough memory to

store all of S in a hash table
§ E.g., we might be processing millions of filters at the same

time on the stream

5/31/23 23Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Example: Email spam filtering
§ 1 million users, each user has 1000 “good” email

addresses (trusted addresses)
§ If an email comes from one of these, it is NOT spam

¡ Publish-subscribe systems
§ You are collecting lots of messages (news articles)
§ People express interest in certain sets of keywords
§ Determine whether each message matches a user’s

interest
¡ Content filtering
§ You want to make sure the user does not see the

same ad/recommendation multiple times
5/31/23 24Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Bloom Filter algorithm:
Given a set of keys S that we want to filter
¡ Create a bit array B of n bits, initially all 0s
¡ Choose a hash function h with range [0,n)
¡ Hash each member of sÎ S to one of

n buckets, and set that bit to 1, i.e., B[h(s)]=1
¡ Hash each element a of the stream and

output only those that hash to bit that was
set to 1
§ Output a if B[h(a)] == 1

255/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Creates false positives
§ Items that are hashed to a 1 bucket may or may not be in S

¡ but no false negatives
§ Items that are hashed to 0 bucket are surely not in S

26

FilterItem

0010001011000

Output the item since it may be in S.
Item hashes to a bucket that at least
one of the items in S hashed to.

Hash
func h

Drop the item.
It hashes to a bucket set
to 0 so it is surely not in S.

Bit array B

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ |S| = 1 billion email addresses

Naive Dictionary approach: 1 billion email address, every
email address is ~20 characters long à 160 GB to store email
addresses + overhead of dictionary à 200 GB!

Bloom Filter:|B|= 1GB = 8 billion bits

¡ If the email address is in S, then it surely hashes to a bucket
that has the bit set to 1, so it always gets through (no false
negatives)

¡ Approximately 1/8 of the bits are set to 1, so about 1/8th of
the addresses not in S get through to the output (false
positives)
§ Actually, less than 1/8th, because more than one address might

hash to the same bit

275/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Let’s do a more accurate analysis of number
of false positives, we know that:
§ Fraction of 1s in array B = prob. of false positive

¡ Darts & Targets: If we throw m darts into n
equally likely targets, what is the probability
that a target gets at least one dart?

¡ In our case:
§ Targets = bits/buckets
§ Darts = hash values of items

285/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ We have m darts, n targets
¡ What is the probability that a target gets at

least one dart?

29

(1 – 1/n)

Probability some
target X not hit

by a dart

m

1 -

Probability at
least one dart
hits target X

n(/ n)

Equivalent
Equals 1/e
as n ®∞

1 – e–m/n

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Approximation is
especially accurate
when n is large

¡ Fraction of 1s in the array B =
probability of false positive = 1 – e-m/n

¡ Example: 109 darts, 8·109 targets
§ Fraction of 1s in B = 1 – e-1/8 = 0.1175

§ Compare with our earlier estimate: 1/8 = 0.125

¡ To reduce false positive rate of bloom filter
we use multiple hash functions

305/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

1 billion email
addresses 1 GB = 8 billion bits

¡ Consider: |S| = m keys, |B| = n bits
¡ Use k independent hash functions h1 ,…, hk
¡ Initialization:
§ Set B to all 0s
§ Hash each element sÎ S using each hash function hi,

set B[hi(s)] = 1 (for each i = 1,.., k)
¡ Run-time:
§ When a stream element with key x arrives

§ If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S
§ That is, x hashes to a bucket set to 1 for every hash function hi(x)

§ Otherwise discard the element x
5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 31

(note: we have a
single array B!)

¡ What fraction of the bit vector B are 1s?
§ Throwing k·m darts at n targets
§ So fraction of 1s is (1 – e-km/n)

¡ But we have k independent hash functions
and we only let the element x through if all k
hash element x to a bucket of value 1

¡ So, false positive probability = (1 – e-km/n)k

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 32

¡ m = 1 billion, n = 8 billion
§ k = 1: (1 – e-1/8) = 0.1175
§ k = 2: (1 – e-1/4)2 = 0.0489

¡ What happens as we
keep increasing k?

¡ Optimal value of k: 𝒏
𝒎
𝑙𝑛 𝟐

§ In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6
§ Error at k = 6: (1 – e-3/4)6 = 0.0216

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 33

0 2 4 6 8 10 12 14 16 18 20
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of hash functions, k

Fa
ls

e
po

si
tiv

e
pr

ob
.

Optimal k: k which gives the lowest false positive probability

¡ Bloom filters guarantee no false negatives,
and use limited memory
§ Great for pre-processing before more

expensive checks
¡ Suitable for hardware implementation
§ Hash function computations can be parallelized

¡ Is it better to have 1 big B or k small Bs?
§ It is the same: (1 – e-km/n)k vs. (1 – e-m/(n/k))k

§ But keeping 1 big B is simpler

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 34

¡ Problem:
§ Data stream consists of elements chosen from a

universal set of size N
§ Maintain a count of the number of distinct

elements seen so far

¡ Obvious approach:
Maintain a dictionary of elements seen so far
§ keep a hash table of all the distinct elements seen so far
§ What if number of distinct elements are huge?
§ What if there are many streams that need to be processed

at once?

365/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ How many unique users a website has seen in
each given month?
§ Universal set = set of logins for that month
§ Stream element = each time someone logs in

¡ How many different words are found at a site
which is among the Web pages being crawled?
§ Unusually low or high numbers could indicate artificial

pages (spam?)

¡ How many distinct products have we sold in the
last week?

375/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Real problem: What if we do not have space
to maintain the set of elements seen so far in
every stream?
§ We have limited working storage

¡ We use a variety of hashing and randomization to
get approximately what we want

¡ Estimate the count in an unbiased way

¡ Accept that the count may have a little error, but
limit the probability that the error is large

385/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Estimates number of distinct elements by
hashing elements to a bit-string that is
sufficiently long
§ The length of the bit-string is large enough that it

produces more result than size of universal set.

¡ Idea: hash elements to a binary string
§ the more different elements we see in the stream,

the more different hash values we shall have.
§ Number of trailing 0s in these hash values

estimates number of distinct elements.

395/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Pick a hash function h that maps each of the N
elements to at least log2 N bits

§ So hash values are binary strings
E.g. for a stream element a, h(a) = 1100

¡ Let r(a) be the number of trailing 0s in h(a)
§ r(a) = position of first 1 counting from the right

§ E.g., for h(a) = 1100, the r(a) = 2

¡ Record R = the maximum r(a) seen
§ R = maxa r(a), over all the items a seen so far

¡ Estimated number of distinct elements = 2R

405/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Very rough and heuristic intuition why
Flajolet-Martin works:
§ h(a) hashes a with equal prob. to any of N values
§ All elements have equal prob. to have a tail of r zeros
§ The prob. of a given h(a) to have a tail of r zeros is:

Pr(a tail of r zeros)= 2-r

§ About 50% of as hash to ***0
§ About 25% of as hash to **00

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 41

¡ Let 𝒎 be the number of distinct elements
seen so far

¡ Then the probability that we have at least
one tail of r zeros is

𝟏 − 𝟏 − 𝟐!𝒓 𝒎

45

Prob. that a given h(a)
does not have a tail of r

zeros

Prob. no element has
tail of r zeros.

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Therefore pr(finding at least one tail of r zeros) =
¡ 1 − 1 − 2() * = 1 − 1 − 2() +&(*+'&) ≈ 1 − 𝑒(*+'&

§ If m << 2r, then prob. tends to 1
§ 1 − 𝑒(*+'& ≈ 0 as m/2r® 0
§ So, the probability of finding a tail of length r tends to 0

§ If m >> 2r, then prob. tends to 0
§ 1 − 𝑒(*+'& ≈ 1 as m/2r ®¥
§ So, the probability of finding a tail of length r tends to 1

¡ Thus, 2R will almost always be around m!

465/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ E[2R] is actually infinite
§ Probability halves when R ® R+1, but value doubles

¡ Workaround involves using many hash
functions hi and getting many samples of Ri

¡ How are samples Ri combined?
§ Average? What if one very large value 𝟐𝑹𝒊?
§ Median? All estimates are a power of 2
§ Solution:

§ Partition your samples into small groups
§ Take the median of groups
§ Then take the average of the medians

475/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

Two flavor of a problem:
1. Finding the most common elements
2. Finding the most common “recent” elements

¡ Example:
§ In a stream of movie tickets from all over the world,

what are most popular movies “currently”?
§ In a stream of items sold at Amazon, what are most

popular items “recently”?
§ In a stream of tweets, who are the most active users

“currently”?

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 49

¡ What is “recent”?
¡ One approach:
§ Get a sliding window of size N
§ Estimate the count in the window

¡ Sharp distinction between
“recent” and “distant past”

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 50

time

brtbhbgbbgzcbabbcbdbdbnbrbpbqbbsbtbababebcbbbvbwbxbwbbbcbdbcgfbabb

Solution: Exponentially decaying windows
Two type of windows:
1. Sliding window of fixed length

§ Holds last N elements

2. Decaying window
§ Takes all elements of the stream
§ Weights the recent elements more heavily

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 51

time

brtbhbgbbgzcbabbcbdbdbnbrbpbqbbsbtbababebcbbbvbwbxbwbbbcbdbcgfbabb

¡ Computes a smooth aggregation over stream
¡ If stream is a1, a2,…, at then the exponentially

decaying window at time t is

∑𝒊&𝟎𝒕)𝟏𝒂𝒕)𝒊 𝟏 − 𝒄 𝒊

= 𝒂𝒕 + 𝒂𝒕)𝟏 𝟏 − 𝒄 + 𝒂𝒕)𝟐 𝟏 − 𝒄 𝟐 +⋯

§ c is a constant, presumably tiny, like 10-6 or 10-9

§ at is a non-negative integer in general
¡ When new at+1 arrives:

Multiply current sum by (1-c) and add at+1

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 52

¡ Given a stream of items, form a binary stream
per item:
§ 1 = item present; 0 = not present

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 53

1001010110001011010101010101011010101010101110101010111010100010110010

brtbhbgbbgzcbabbcbdbdbnbrbpbqbbsbtbababebcbbbvbwbxbwbbbcbdbcgfbabbzdba

Binary stream for item “b”

Stream of items:

¡ On all binary streams, compute exponentially decaying
window
§ If each at is an “item” we can compute the characteristic

function of each item x as an Exponentially Decaying
Window:

§ That is: ∑𝒕/𝟏𝑻 𝜹𝒕 ⋅ 𝟏 − 𝒄 𝑻(𝒕

where 𝜹𝒕 = 𝟏 if 𝒂𝒕 = 𝒙, and 𝟎 otherwise

§ In other words: Imagine that for each item 𝒙 we have a
binary stream (𝟏 if 𝒙 appears, 𝟎 if 𝒙 does not appear)

§ Then, when a new item at arrives:
§ Multiply the summation by (𝟏 − 𝒄)
§ Add +1 to the summation if item = 𝒙

¡ Call this sum the “weight” of item 𝒙
5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 54

¡ Important property: Sum over all weights
∑𝒕𝟏 ⋅ 𝟏 − 𝒄 𝒕 = 1/[1 – (1 – c)] = 𝟏/𝒄

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 57

1/c

. . .

Spreads out weights of the stream as far back as the stream goes

¡ What are “currently” most popular movies?
¡ Suppose we want to find movies of weight > ½

§ Important property: Sum over all weights
∑! 𝛿! ⋅ 1 − 𝑐 ! is 1/[1 – (1 – c)] = 𝟏/𝒄
§ That means that no item can have weight greater than 1/c
§ The item will have weight 𝟏/𝒄 if its stream is [1,1,1,1,1…]. Note

we have a separate binary stream for each item. So, at a given
time only one item will have a 𝛿"=1, and other items will get a 0.

¡ Thus:
§ There cannot be more than 𝟐/𝒄 movies with weight of ½

or more
§ Why? Assume weight of item is ½. How many items n can we

have so that the sum is <1/c; Answer: ½n<1/c à 𝑛 < 2/𝑐
¡ So, 𝟐/𝒄 is a limit on the number of movies being

counted at any time
585/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Algorithm for finding items of weight > ½ :
1. Keep 2/c counters and initialize them to 0
2. When an item at arrives in the stream:

§ Multiply all counts by (1-c)
§ Drop all counters whose count < 1/2
§ If the new item is among the counters, increment its count

by 1
§ Otherwise, if there is an empty counter assign it to at and

set it to 1
3. At any point in the stream, the most common

recent items are the ones in the counter set.
595/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Extension: Count (some) itemsets
§ What are currently “hot” itemsets?

§ Problem: Too many itemsets to keep counts of
all of them in memory

¡ When a basket 𝑩 comes in:
§ Multiply all counts by (𝟏 − 𝒄)
§ For uncounted items in 𝑩, create new count
§ Add 𝟏 to count of any item in 𝑩 and to any itemset

contained in 𝑩 that is already being counted
§ Drop counts < ½
§ Initiate new counts (next slide)

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 60

¡ Start a count for an itemset S ⊆ B if every
proper subset of S had a count prior to arrival
of basket B.
§ Intuitively: If all subsets of S are being counted

this means they are “frequent/hot” and thus S has
a potential to be “hot”

¡ Example:
§ Start counting S={i, j} iff both i and j were counted

prior to seeing B
§ Start counting S={i, j, k} iff {i, j}, {i, k}, and {j, k}

were all counted prior to seeing B

615/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Counts for single items < (2/c)·(avg. number
of items in a basket)

¡ Counts for larger itemsets = ??

¡ But we are conservative about starting
counts of large sets
§ If we counted every set we saw, one basket

of 20 items would initiate 1M counts

625/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

¡ Sampling a fixed proportion of a stream
§ Sample size grows as the stream grows

¡ Sampling a fixed-size sample
§ Reservoir sampling

¡ Check existence of a set of keys in the stream
§ Bloom filter

¡ Counting distinct elements in a stream
§ Flajolet-Martin algorithm

¡ Counting frequent elements in a stream
§ Exponentially decaying window

5/31/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 63

