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¡ Supervised:
§ Given “labeled data” {𝑥, 𝑦}, learn 𝑓(𝑥) = 𝑦

¡ Unsupervised:
§ Given only “unlabeled data” {𝑥}, learn 𝑓(𝑥)

¡ Semi-supervised:
§ Given some labeled {𝑥, 𝑦} and some unlabeled data 
{𝑥}, learn 𝑓(𝑥) = 𝑦

¡ Active learning:
§ When we predict 𝑓 𝑥 = 𝑦, we then receive true y∗

¡ Transfer learning:
§ Learn 𝑓(𝑥) so that it works well on new domain 𝑓(𝑧)
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Given some data:
¡ “Learn” a function to map from the 

input to the output

¡ Given:
Training examples 𝒙𝒊, 𝒚𝒊 = 𝒇 𝒙𝒊 for some 
unknown function 𝒇

¡ Find:
A good approximation to 𝒇
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¡ Would like to do prediction:
estimate a function 𝒇(𝒙) so that 𝒚 = 𝒇(𝒙)

¡ Where y can be:
§ Real number: Regression
§ Categorical: Classification
§ Complex object:

§ Ranking of items, Parse tree, etc.

¡ Data is labeled:
§ Have many pairs {(𝒙, 𝒚)}

§ x … vector of binary, categorical, real valued features 
§ y … class label, or a real number
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¡ Task: Given data (𝑿, 𝒀) build a model 𝒇() to 
predict 𝒀’ based on 𝑿’

¡ Strategy: Estimate 𝒚 = 𝒇 𝒙
on (𝑿, 𝒀)
Hope that the same 𝒇(𝒙) also 
works to predict unknown 𝒀’
§ The “hope” is called generalization

§ Overfitting: If 𝒇(𝒙) predicts well 𝒀 but unable to predict 𝒀’
§ We want to build a model that generalizes

well to unseen data
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¡ Brawn or Brains?
§ In 2001, Microsoft researchers ran a test to evaluate 

4 of different approaches to ML-based language 
translation

¡ Findings:
§ Size of the dataset used to 

train the model mattered
more than the model itself

§ As the dataset grew large,
performance difference between
the models became small

6/1/23 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 7

Banko, M. and Brill, E. (2001) , “Scaling to Very Very Large Corpora for Natural Language Disambiguation”

http://www.aclweb.org/anthology/P01-1005


¡ The Unreasonable Effectiveness of Data
§ In 2017, Google revisited the same type of experiment with 

the latest Deep Learning models in computer vision

¡ Findings:
§ Performance increases logarithmically

based on volume of training data 
§ Complexity of modern ML models 

(i.e., deep neural nets) allows for even
further performance gains

¡ Large datasets + large ML models => amazing results!!
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A few reasons why this is important:
¡ Classical tasks in NLP and Vision are getting 

commoditized (you take pretrained model and fine 
tune it), but there are many other unique ML tasks.

¡ Deep models are often hard to scale and require 
lots and lots of data. Traditional models allow you to 
encode prior knowledge better and give you more 
control.

¡ Personally, if I am working on a well understood 
problem I’d use deep learning, but if I am the first 
person to work on a new problem/classifier 
I’d use techniques we’ll discuss here.
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¡ Decision trees are part of ML since 1980s
§ Introduced by Leo Breiman in 1984
§ Notable algorithms: ID3, C4.5

¡ More recent innovations include:
§ Boosted decision trees (gradient boosted DT)
§ Random forest

¡ Even though DTs are old, hand-engineered 
and heuristic, they are a method of choice for 
tabular data and for Kaggle competitions. J
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¡ Given one target attribute (e.g., lifespan), try to 
predict the value of new people’s lifespans by means 
of some of the other available attribute

¡ Input attributes:
§ d features/attributes: 𝒙(𝟏), 𝒙(𝟐), … 𝒙(𝒅)
§ Each 𝒙(𝒋) has domain 𝑶𝒋

§ Categorical:  𝑶𝒋 = {𝑚𝑎𝑙𝑒, 𝑓𝑒𝑚𝑎𝑙𝑒}
§ Numerical: 𝑯𝒋 = (1, 200)

§ 𝒀 is output variable with domain 𝑶𝒀:
§ Categorical: Classification e.g. Y = eye color
§ Numerical: Regression e.g. Y = lifespan

¡ Data D:
§ 𝒏 examples (𝒙𝒊, 𝒚𝒊) where 𝒙𝒊 is a 𝒅-dim feature vector, 
𝒚𝒊 ∈ 𝑶𝒀 is output variable

¡ Task:
§ Given an input data vector 𝒙 predict output label 𝒚
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¡ A Decision Tree is 
a tree-structured 
plan of a set of 
attributes to test 
in order to predict 
the output
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¡ Decision trees:
§ Split the data at each

internal node
§ Each leaf node 

makes a prediction
¡ Lecture today:
§ Binary splits: 𝑿(𝒋) < 𝒗
§ Numerical attributes
§ Regression
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¡ Input: Example 𝒙𝒊
¡ Output: Predicted +𝒚𝒊

¡ “Drop” 𝒙𝒊 down 
the tree until it 
hits a leaf node

¡ Predict the value
stored in the leaf
that 𝒙𝒊 hits
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¡ Alternative view:
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¡ Alternative view:
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¡ Training dataset 𝑫∗, |𝑫∗| = 𝟏𝟎𝟎 examples
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¡ Imagine we are currently
at some node G
§ Let DG be the data that reaches G

¡ There is a decision we have
to make: Do we continue 
building the tree?
§ If yes, which variable and which value 

do we use for a split?
§ Continue building the tree recursively

§ If not, how do we make a prediction?
§ We need to build a “predictor node”
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¡ Requires at least a single pass over the data!
20
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(1) How to split? Pick 
attribute & value that 
optimizes some criterion
¡ Regression: Purity
§ Find split (𝑿(𝒊), 𝒗) that 

creates 𝑫,𝑫𝑳, 𝑫𝑹: parent, 
left, right child datasets 
and maximizes: 
𝑫 ⋅ 𝑽𝒂𝒓 𝑫 − 𝑫𝑳 ⋅ 𝑽𝒂𝒓 𝑫𝑳 + 𝑫𝑹 ⋅ 𝑽𝒂𝒓 𝑫𝑹
§ 𝑽𝒂𝒓 𝑫 = 𝟏

|𝑫|
∑𝒊∈𝑫 𝒚𝒊 − 5𝒚 𝟐 … variance of 𝒚𝒊 in 𝑫
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(1) How to split? Pick 
attribute & value that 
optimizes some criterion
¡ Classification:

Information Gain
§ Measures how much

a given attribute 𝑿 tells us about the class 𝒀
§ 𝑰𝑮(𝒀 | 𝑿) : We must transmit 𝒀 over a binary link. 

How many bits on average would it save us if both 
ends of the line knew 𝑿?
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Entropy: 
Consider random variable 𝑿 = 𝑿𝟏, … , 𝑿𝐦
What’s the smallest possible number of bits, on 
average, per symbol, that we need to transmit a 
stream of symbols drawn from  𝑿’s distribution?
The entropy of 𝑿:  𝑯 𝑿 = −∑𝒋"𝟏𝒎 𝒑(𝑿𝒋) 𝒍𝒐𝒈𝒑(𝑿𝒋)

§ “High Entropy”: 𝑿 is from a uniform (boring) distribution
§ A histogram of the frequency distribution of values of 𝑿 is flat

§ “Low Entropy”: 𝑿 is from a varied (peaks/valleys) distrib.
§ A histogram of the frequency distribution of values of 𝑿 would 

have many lows and one or two highs

23
Low entropy High entropy
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes “Casablanca”

24

¡ From this data we estimate
§ 𝑃(𝑌 = 𝑌𝑒𝑠) = 0.5
§ 𝐻(𝑌) = −½log2(½) −½log2(½) = 𝟏
§ 𝑃(𝑋 = 𝐶𝑆) = 0.25
§ 𝑃(𝑋 = 𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 0.25
§ 𝑃(𝑋 = 𝑀𝑎𝑡ℎ) = 0.5
§ 𝐻 𝑋 = ∑:;<= 𝑝 𝑋: 𝑙𝑜𝑔 𝑝 𝑋: = 1.5
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes “Casablanca”
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¡ Def: Specific Conditional Entropy
§ 𝑯(𝒀 | 𝑿 = 𝒗) = The entropy of 𝒀

among only those records in which 𝑿
has value 𝒗

§ Example:
§ 𝐻(𝑌|𝑋 = 𝑀𝑎𝑡ℎ) = 1
§ 𝐻(𝑌|𝑋 = 𝐻𝑖𝑠𝑡𝑜𝑟𝑦) = 0
§ 𝐻(𝑌|𝑋 = 𝐶𝑆) = 0
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
§ 𝑿 = College Major
§ 𝒀 = Likes “Casablanca”
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¡ Def: Conditional Entropy
§ 𝑯(𝒀 | 𝑿) = The average specific 

conditional entropy of 𝒀
§ = if you choose a record at random what 

will be the conditional entropy of 𝒀, 
conditioned on that row’s value of 𝑿

§ = Expected number of bits to transmit 𝒀
if both sides knew the value of 𝑿

§ = ∑𝒋𝑷 𝑿 = 𝒗𝒋 𝑯(𝒀|𝑿 = 𝒗𝒋)
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
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¡ 𝑯(𝒀 | 𝑿) = The average specific 
conditional entropy of 𝒀

=1
𝒋

𝑷 𝑿 = 𝒗𝒋 𝑯(𝒀|𝑿 = 𝒗𝒋)

¡ Example:

¡ So: H(Y|X)=0.5*1+0.25*0+0.25*0 = 0.5

Vj P(X=vj) H(Y|X=vj)

Math 0.5 1
History 0.25 0
CS 0.25 0
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¡ Suppose I want to predict 𝒀 and I have input 𝑿
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CS Yes
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¡ Def: Information Gain
§ 𝑰𝑮(𝒀|𝑿) = I must transmit 𝒀. How 

many bits on average would it save 
me if both ends of the line knew X?

𝑰𝑮(𝒀|𝑿) = 𝑯(𝒀) − 𝑯(𝒀 | 𝑿)

¡ Example:
§ H(Y) = 1
§ H(Y|X) = 0.5
§ Thus IG(Y|X) = 1 – 0.5 = 0.5
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¡ Suppose you are trying to predict whether 
someone is going to live past 80 years 

¡ From historical data you might find:
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆 | 𝑯𝒂𝒊𝒓𝑪𝒐𝒍𝒐𝒓) = 𝟎. 𝟎𝟏
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆 | 𝑺𝒎𝒐𝒌𝒆𝒓) = 𝟎. 𝟒
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆 | 𝑮𝒆𝒏𝒅𝒆𝒓) = 𝟎. 𝟐𝟓
§ 𝑰𝑮(𝑳𝒐𝒏𝒈𝑳𝒊𝒇𝒆 | 𝑳𝒂𝒔𝒕𝑫𝒊𝒈𝒊𝒕𝑶𝒇𝑺𝑺𝑵) = 𝟎. 𝟎𝟎𝟎𝟎𝟏

¡ IG tells us how much information about 𝒀 is 
contained in 𝑿
§ So attribute X that has high 𝑰𝑮(𝒀|𝑿) is a good split!
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(2) When to stop?
¡ Many different heuristic 

options
¡ Two ideas:
§ (1) When the leaf is “pure”

§ The target variable does not
vary too much: 𝑽𝒂𝒓(𝒚) < e

§ (2) When # of examples in 
the leaf is too small
§ For example, |𝑫|£ 𝟏𝟎𝟎
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(3) How to predict?
¡ Many options
§ Regression:

§ Predict average 𝒚𝒊 of the 
examples in the leaf

§ Build a linear regression model
on the examples in the leaf

§ Classification:
§ Predict most common 𝒚𝒊 of the 

examples in the leaf
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¡ Characteristics
§ Classification & Regression

§ Multiple (~10) classes
§ Real valued and categorical features
§ Few (hundreds) of features
§ Usually dense features
§ Complicated decision boundaries

§ Early stopping to avoid overfitting!
¡ Example applications
§ User profile classification
§ Landing page bounce prediction
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¡ Decision trees are the single most popular 
data mining tool:
§ Easy to understand
§ Easy to implement
§ Easy to use
§ Computationally cheap
§ It’s possible to mitigate overfitting (i.e., with 

ensemble methods)
§ They do classification as well as regression!
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¡ Problem: Many times we want to predict association 
between a user 𝑢 and an item 𝑥
§ For example, how likely user 𝑢 is to interact with item 𝑥, e.g. 

how likely is she/he to click on a specific ad

¡ Issue: Many sparse features: 
§ User: Demographics, interests, prior activity, …
§ Ad: Keywords, topic, provider, … 

¡ Goal: Build 𝑓(𝑢, 𝑥)
¡ Notice:

§ Linear model that concatenates features (𝑤 ⋅ [𝑢, 𝑥]) is not able 
to learn that women like healthy food ads.

§ We need to “cross” features: 𝑢×𝑥
§ Create new feature: (gender, ad topic), 
§ E.g. (man, healthy food), (woman, healthy food)

§ Issue: Number of features explodes!
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¡ Solution: Build Feature Transforms using decision trees:
§ Decision tree picks the best cross-features

§ Drop the example into the tree and use 1-hot encoding to 
denote the leaf it ends at.

§ “gender-adTopic” is a new feature; it takes 4 values
§ Use these 1-hot vectors as inputs to a linear classifier
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¡ Overall architecture:
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¡ Learn multiple trees and combine their 
predictions
§ The “wisdom of crowds”
§ A group/ ensemble of base learners that collectively 

achieve a better final prediction.
§ Decision trees are prone to

§ Overfitting (high variance and low bias) when it hasn’t been 
pruned 

§ Underfitting (low variance and high bias) when it’s very 
small, i.e. a decision stump.

§ Ensemble reduces bias or variance, yielding better 
model performance.
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¡ There are two main types of ensemble learning: 
§ Bagging and Boosting

¡ Bagging (bootstrap aggregation):
§ Learns multiple trees in parallel over independent 

samples of the training data
§ 1) Bootstrapping: Given a dataset, create multiple datasets by 

sampling data points randomly  and with replacement.
§ 2) Parallel training: Train decision trees on samples 

independently and in parallel with each other 
§ 3) Aggregation: Depending on the task (i.e. regression or 

classification), an average or a majority of the predictions are 
computed for a more accurate estimate. 
§ Regression, an average is taken of all the outputs predicted by the 

individual classifiers; this is known as “soft voting”. 
§ Classification, the class with the highest majority of votes is accepted; this 

is “hard voting” or majority voting.
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¡ So far we did instance bagging.
§ Decision trees are greedy 
§ They choose which variable to split on using a greedy 

algorithm that minimizes error. 
§ Even with Bagging, the decision trees can have a lot 

of structural similarities and in turn have high 
correlation in their predictions.

¡ Feature Bagging 
§ Pick a random sample of features at each split
§ less correlation among trees
§ Random forest
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https://machinelearningmastery.com/how-to-use-correlation-to-understand-the-relationship-between-variables/
https://machinelearningmastery.com/how-to-use-correlation-to-understand-the-relationship-between-variables/


¡ Train a Bagged Decision Tree
¡ But use a modified tree learning algorithm that 

selects (at each candidate split) a random 
subset of features
§ If we have 𝑑 features, consider 𝑑 random features

¡ This is called: Feature bagging
§ Benefit: Breaks correlation between trees

§ If one feature is very strong predictor, then every tree will 
select it, causing trees to be correlated.

¡ Random Forests achieve state-of-the-art 
results in many classification problems!
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¡ Boosting: Another ensemble learning algorithm
§ Combines the outputs of many “weak” classifiers to produce a 

powerful “committee”
§ Learns multiple trees sequentially, each trying 

to improve upon its predecessor
§ Final classifier is weighted sum of the individual classifiers
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¡ We will show 2 algorithms:
§ Example 1: AdaBoost

§ Where each 𝐺)(𝑥) is a one–level decision tree

§ Example 2: Gradient Boosted Decision Trees (GBDT)
§ Where each 𝐺)(𝑥) is a multi–level decision tree
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¡ AdaBoost = Adaptive Boosting
¡ It builds many weak learners and ensembles 

their predictions
¡ The individual learners can be weak, but as 

long as the performance of each one is 
slightly better than random guessing, the final 
model converge to a strong learner.

¡ Every weak learner used in AdaBoost is 
tweaked in favor of instances misclassified by 
previous weak learners.
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¡ Decision “stumps”:
§ 1-level decision tree
§ A decision boundary based on one feature

§ E.g.: If someone is not a smoker, then predict them 
to live past 80 years old

§ Building blocks of AdaBoost algorithm
§ Decision stump is a weak learner
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Boosting theory:
if weak learners have
>50% accuracy then 
we can learn a perfect 
classifier.

+
+ +

+
– –

–
A decision stump



¡ Initialize equal weights for all observations

¡ At each iteration t:
1. Train a stump using data weighted by
2. Compute the misclassification error adjusted by 
3. Compute the weight of the current tree
4. Reweight each observation based on prediction accuracy
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Suppose we have training data ,



¡ Step1- Train a stump. How to split?
¡ Apply weighting to the splitting criterion function 

and optimize the function to find the best split
§ We'll use information gain as an example
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¡ Recall :
§ Information gain
§ where

¡ After weighting:



¡ Step2- Calculate the weighted misclassification 
error

¡ Step3- Weight the current tree 
in the final classifier:

¡ Step4- Use misclassification error and tree weight 
to reweight the training data:
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Harder to classify training instances get higher weight

A classifier with 50% accuracy is given a weight of zero;

𝑦 = log(
1 − 𝑥
𝑥 )



¡ Final prediction is a weighted sum of the 
predictions from each stump:

¡ More accurate trees are weighted higher in 
the final model
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（1）Train a stump

（2）Compute error

（3）Compute tree weight

（4）Reweight data



¡ Iteratively train weak learners (decision 
stumps) to form a strong model:
§ Trees with high accuracy are given more weights in 

the final model
§ Misclassified data get higher weights in the next 

iteration

¡ AdaBoost is the equivalent to additive training 
with the exponential loss (Friedman et al. 2000) 

¡ We will talk about additive training in more 
general scenarios next!
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CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon

http://cs246.stanford.edu

Note to other teachers and users of these slides: We would be delighted if you found our 
material useful for giving your own lectures. Feel free to use these slides verbatim, or to 
modify them to fit your own needs. If you make use of a significant portion of these slides 
in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

http://www.mmds.org/


(1) How to construct?
§ Regression

§ Purity
§ Classification

§ Information Gain : IG(Y|X)
(2) When to stop?

§ When the leaf is “pure”
§ When # examples in the leaf is too small

(3) How to predict?
§ Regression:

§ Predict average 𝒚𝒊 of the examples in the leaf, 
§ Classification:

§ Predict most common 𝒚𝒊 of the examples in the leaf
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A

B
X(1)<v(1)

C
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|D|=90|D|=10

X(2)<v(2)

X(3)<v(4) X(2)<v(5)

|D|=45|D|=45
.42

|D|=25|D|=20 |D|=30|D|=15



¡ Learn multiple trees, combine their predictions
§ Decision trees are prone to overfitting

¡ Two Ensemble approaches: 
§ Bagging (bootstrap aggregation)

§ Train multiple trees in parallel
§ Instance bagging:

§ sample dataset with replacement, train a tree on each sample set

§ Feature bagging => random forest
§ Sample a subset of features at each split point

§ Boosting
§ Train multiple trees sequentially
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¡ Two boosting algorithms:
§ AdaBoost

§ Where each 𝐺)(𝑥) is a one–level decision tree

§ Gradient Boosted Decision Trees (GBDT)
§ Where each 𝐺)(𝑥) is a multi–level decision tree
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（1）Train a stump

（2）Compute error

（3）Compute tree weight

（4）Reweight data

Equal weight to all data points





¡ Idea: Additive training
§ Start with a constant prediction, add a new 

decision tree each time. It can be multi-level!
§ Let’s see it in an example for regression. 
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drug dosage 
(x)

drug effectiveness
(y)

10 -10

20 7

25 8

35 -7

Since problem is regression, the loss function is 
𝐿 =5(𝑦𝑖 − 7𝑦𝑖)2



¡ Start with a constant prediction:

¡ Compute residuals = observed – predicted

¡ Build next tree by putting
All residuals into a leaf

¡ Compute similarity score
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V𝑦𝑖(0) = 0.5

residuals

similarity score = 
∑ 9:;<=>?@; #

A>BC:9 DE 9:;<=>?@;FG
𝜆 is a regularization hyperparameter



¡ Let’s set
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similarity score = IJK.MFN.MFO.MIO.M
#

PFK
= 4

𝜆 = 0



¡ Let’s set

¡ Let’s grow the tree: 
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similarity score = IJK.MFN.MFO.MIO.M
#

PFK
= 4

𝜆 = 0

Dosage < 15



¡ Let’s set

¡ Let’s grow the tree: 
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similarity score = IJK.MFN.MFO.MIO.M
#

PFK
= 4

𝜆 = 0

Dosage < 15



¡ Let’s set

¡ Let’s grow the tree: 
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similarity score = IJK.MFN.MFO.MIO.M
#

PFK
= 4

𝜆 = 0

Similarity = 8 Similarity = 0

Similarity = 4

Dosage < 22.5



¡ Let’s set

¡ Let’s grow the tree: 
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similarity score = IJK.MFN.MFO.MIO.M
#

PFK
= 4

𝜆 = 0

Similarity = 4.08 Similarity = 56.25

Similarity = 4
Dosage < 30



¡ So far:
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Dosage < 22.5

Similarity = 42.25 Similarity = 0



¡ So far:
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Dosage < 30

Similarity = 98 Similarity = 
56.25



¡ So far we have:

¡ Let’s assume we are done growing this tree!
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¡ So far we have:

¡ To make predictions:
§ Compute an output value for each leaf
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Output value= 
∑ 9:;<=>?@

A>BC:9 DE 9:;<=>?@;FG

output = -10.5

output = 7 output =-7.5



¡ So far we have:
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output = -10.5

output = 7 output =-7.5

New prediction=0.5 + 0.3 x(-10.5)=-2.65



¡ So far we have:
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output = -10.5

output = 7 output =-7.5

New prediction=0.5 + 0.3 x7=2.6



¡ To build the next tree:
§ Compute residuals = 𝒚 − j𝒚

§ Put all residuals into a leaf
§ Compute its similarity score and split.....
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drug 
dosage 
(x)

drug 
effectiveness
(y)

predictions
Q𝒚

residual
𝒚 − Q𝒚

10 -10 -2.65 -7.35

20 7 2.6 4.4

25 8 2.6 5.4

35 -7 -1.75 -5.25

-7.35, 4.4, 5.4, -5.25



¡ Now let’s look at the math
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Prediction at 
training round t

Keep predictions
from previous rounds

New model

XGBoost: A Scalable Tree Boosting System, T. Chen etal, KDD2016



¡ Prediction at round 𝒕 is:
§ we need to decide what 𝑓@() to add 

¡ Goal: Find tree 𝒇𝒕(⋅) that minimizes loss 𝒍(): 
∑A 𝑙 𝑦A , k𝑦A

@B< + 𝑓@ 𝑥A + Ω(𝑓@)

§ 𝑦A:	The ground-truth label 

§ j𝑦A
@B< + 𝑓@ 𝑥A : The prediction made at round 𝑡

§ Ω 𝑓@ : The model complexity
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¡ 𝑂𝑏𝑗 = ∑% 𝑙 𝑦% , +𝑦%
&'( + 𝑓& 𝑥% + Ω(𝑓&)

¡ Take Taylor expansion of the objective:

§ 𝑔 𝑥 + Δ ≈ 𝑔 𝑥 + 𝑔C 𝑥 Δ + <
D
𝑔CC 𝑥 ΔD

¡ So, we get the approximate objective:

§ where:
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We can ignore this part, since we are optimizing over 𝑓!



§ The approximate objective:

¡ Define model complexity of tree f as
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Ω 𝑓 = 𝛾 ∗ 𝑇 +
1
2
𝜆`

S

T

𝑤SU

T… number of leaves of tree 𝑓
𝛾… cost adding a leaf to the tree 𝑓

A

B C

D E

𝒘𝒋 is output value of j-th leaf



¡ So our objective is:

¡ We can re-write it by leaf

§ Notice this is a sum of 𝑇 quadratic functions, each 
function is associated with a leaf node 𝑗
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q(x) denotes the leaf that 
data point x belongs to

𝐼𝑗 contains index of data 
points that are in leaf j

Associated with leaf node 𝑗
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Each quadratic function associated with leaf j:

The minimizer is:

The minimum value of objective is:

𝑤:∗ = −
𝐺𝑗

𝐻𝑗 + 𝜆

𝑂𝑏𝑗 = −
1
2
w
:;<

F 𝐺:D

𝐻𝑗 + 𝜆
+ 𝛾𝑇

The Obj function measures the 
quality of the set of T trees. This 
score is like the impurity score for 
evaluating decision trees, except 
that it is derived for a wider range 
of objective functions



¡ Derive 𝒈 and 𝒉 for square loss:

¡ And 
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𝑤:∗ = −
𝐺𝑗

𝐻𝑗 + 𝜆
= −

∑A∈H: 𝑔𝑖
∑A∈H: ℎ𝑖 + 𝜆



¡ Derive 𝒈 and 𝒉 for square loss:

¡ And 
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𝑤:∗ = −
𝐺𝑗

𝐻𝑗 + 𝜆
= −

∑A∈H: 𝑔𝑖
∑A∈H: ℎ𝑖 + 𝜆

= −
D ∑"∈$% JK &'( BKA

∑"∈$% DLM

=
∑"∈$% NOPAQRST

#VWXYZ[V\ ]^ [VX_LM/D
This is the output 
value we saw before



¡ Derive 𝒈 and 𝒉 for square loss:

¡ And 
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we saw this in 
similarity score

𝑂𝑏𝑗 = −
1
2
w
:;<

F 𝐺:D

𝐻𝑗 + 𝜆
+ 𝛾𝑇

=− <
D
∑:;<F a ∑"∈$% JK &'( BKA #

∑"∈$% DLM

=−∑:;<F ∑"∈$% NOPAQRST
#

#VWXYZ[V\ ]^ [VX_LM/D



Given a tree 𝒇𝒕, we know how to
¡ Calculate the score for 𝑓:

¡ And then set optimal weights for the chosen 𝑓:

In principle we could:
¡ Enumerate possible tree structures 𝑓 and take 

the one that minimizes 𝑂𝑏𝑗
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¡ In practice we grow tree greedily:
§ Start with tree with depth 0
§ For each leaf node in the tree, try to add a split
§ The change of the objective after adding a split is:

§ Take the split that gives best gain
¡ Next: How to find the best split?
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similarity score 
of left child

Similarity score 
of right child

Similarity score 
of parent



¡ For each node, enumerate over all features
§ For each feature, sort the instances by feature value
§ Use a linear scan to decide the best split along that 

feature
§ Take the best split solution along all the features

¡ Pre-stopping:
§ Stop split if the best split have negative gain
§ But maybe a split can benefit future splits..

¡ Post-Prunning:
§ Grow a tree to maximum depth, recursively prune 

all the leaf splits with negative gain.
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¡ Add a new tree 𝒇𝒕(𝒙) in each iteration
§ Compute necessary statistics for our objective

§ Greedily grow the tree that minimizes the objective:

¡ Add 𝒇𝒕(𝒙) to our ensemble model

¡ Repeat until we use 𝑴 ensemble of trees
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𝜂 is called step-size or 
shrinkage, usually set around 0.1 
to 0.3 to prevent overfitting

𝑦(&) = 𝑦(&()) + 𝜂𝑓&(𝑥*)



¡ XGBoost: eXtreme Gradient Boosting
§ A highly scalable implementation of gradient boosted 

decision trees with regularization

Widely used by data scientists and provides state-of-the-
art results on many problems!

¡ System optimizations:
§ Parallel tree constructions using column block 

structure
§ Distributed Computing for training very large models 

using a cluster of machines.
§ Out-of-Core Computing for very large datasets that 

don’t fit into memory.
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