A General Perspective on
Graph Neural Networks

Modern ML Toolbox

Patterns of Local Em

Contrast

ST
1]
)
e
LE'S

Face
Features

NS
RIS
AN
Jeletele
NELRL
.B§§$5"”553§;
°1:1't°1°t
NI ISR T
XK DR

1e
X

P

Output Layer

%
@,
%

A

X4

2Q

NI&

260
4

Images

e 9 9

Text/Speech A A A
| | |
® ® ©

Modern deep learning toolbox is designed
for simple sequences & grids

UlC CC OLIVIITTa OTTastiallil, v,

Why is it Hard?

But networks are far more complex!

Arbitrary size and complex topological structure (i.e.,
no spatial locality like grids)

Text

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features

Graph Neural Networks

A Naive Approach

Join adjacency matrix and features
Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3

A B C D E Feat
r N\ output layer
Al o 1.1 1 o 10
&) B Bl 1 o o 1 1 0 0 ,
k ’@ cl 1 0010 o0 1 "
© © D| 1 1 1 0 1 1 1
E
01010 1 0 |

Issues with this idea:
O(|V]) parameters
Not applicable to graphs of different sizes

Sensitive to node ordering

Jure Leskovec & Mina Ghashami, Stanford University 5

Real-World Graphs

But our graphs look like this:

° P or this: .

= There Is no fixed notion of locality or sliding
window on the graph

= Graph is permutation invariant
| Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

From Images to Graphs

Single Convolutional neural network (CNN) layer
with 3x3 filter:

O
>
O

Image Graph

Idea: transform information at the neighbors and combine it:

Transform “messages” h; from neighbors: W; h;
Add them up: };; W; h;

Credit: Stanford CS224\W

Jure Leskovec & Mina Ghashami, Stanford University

http://web.stanford.edu/class/cs224w/

[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

ldea: Node’s neighborhood defines a
computation graph
i

Determine node Propagate and
computation graph transform information
Learn how to propagate information across the

graph to compute node features
Credit: Stanford CS5224W

Jure Leskovec & Mina Ghashami, Stanford University

http://web.stanford.edu/class/cs224w/

ldea: Aggregate Neighbors

Key idea: Generate node embeddings based
on local network neighborhoods

ARGET NODE ® A‘;ﬁ)

"

a

A .”“

. |
K A e .
A' e
A < > TETTPETYPTTTTTEITY ‘ V'
3
Q.’
.0

°-n
INPUTGRAPH T T A

Credit: Stanford CS224\W

Jure Leskovec & Mina Ghashami, Stanford University

http://web.stanford.edu/class/cs224w/

ldea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

A
‘/ B «

INPUT GRAPH

Neural networks
Credit: Stanford CS224\W

Jure Leskovec & Mina Ghashami, Stanford University 10

http://web.stanford.edu/class/cs224w/

ldea: Aggregate Neighbors

Intuition: Network neighborhood defines a

computation graph
Every node defines a computation .
graph based on its neighborhood! /

INPUT GRAPH
o o ® o O
]]] o]]
.%uﬁ 8 o %mcé. - .% ¢. % o
°® o o0 o o
Ypgw N » Aagt o= e me
P o p% = Y =% PRI) = » o =
aae®® %% (o0’ ®edge0® LT ®e o® %o, o ®

Credit: Stanford CS224\W

Jure Leskovec & Mina Ghashami, Stanford University 11

http://web.stanford.edu/class/cs224w/

Deep Model: Many Layers

Model can be of arbitrary depth:

Nodes have embeddings at each layer

Layer-0 embedding of node u is its input feature, x,,
Layer-k embedding gets information from nodes that

are K hops away

TARGET NODE ‘4‘: """"""""""" © XC
i Layer-2 .~ ® XA

| |
“w ___________ ‘ X
, < e ol b

N
INPUTGRAPH o e A

Jure Leskovec & Mina Ghashami, Stanford University

12

Neighborhood Aggregation

Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

.......... A
B ® A‘:‘ﬁ)
1 What is in the box?.~ A
A
“.' A
/ BRe 7 : 4- 3:::2.’
] ‘..‘. '

' N
INPUTGRAPH T T A

Credit: Stanford CS224\W

Jure Leskovec & Mina Ghashami, Stanford University 13

http://web.stanford.edu/class/cs224w/

Neighborhood Aggregation

Basic approach: Average information from
neighbors and apply a neural network

(1) average messages

....... A

TARGET NODE from neighbors 04‘2‘12221 __________________ PS
A o 4_-:,:‘.;‘_‘;’ff_‘.'.': B
/ A : : '

°-n
INPUOTGRAPH & T A

(2) apply neural network
Credit: Stanford CS224\W

Jure Leskovec & Mina Ghashami, Stanford University 14

http://web.stanford.edu/class/cs224w/

Setup: Learning from Graphs

Assume we have a graph G:
V is the vertex set
A is the adjacency matrix (assume binary)

X € R™*IVl is a matrix of node features
v:anodeinV; N(v): the set of neighbors of v.

Node features:
Social networks: User profile, User image

Biological networks: Gene expression profiles, gene
functional information

When there is no node feature in the graph dataset:

Indicator vectors (one-hot encoding of a node)
Vector of constant 1: [1, 1, ..., 1]

Jure Leskovec & Mina Ghashami, Stanford University 15

The Math: Deep Encoder

Basic approach: Average neighbors’ messages
and apply a neural network

embedding of

hY = x
v v / v at layer [

(D
h;,
(1+1) (l)

UEN (V) \
=M i

Average of neighbor’s Total number
previous layer embeddings = of |ayers

Non-linearity

(e.g., ReLU) Credit: Stanford CS224W

Jure Leskovec & Mina Ghashami, Stanford University 16

http://web.stanford.edu/class/cs224w/

Training the Model

How do we train the model to
generate embeddings?

o
.-t

Z, ® <

Need to define a loss function on the embeddings
Credit: Stanford CS224\W

Jure Leskovec & Mina Ghashami, Stanford University 17

http://web.stanford.edu/class/cs224w/

Model Parameters

Trainable weight matrices
h(O) — x (i.e., what we learn)

7 / FT)\

[+1 [
h(* = o (W Z NG Bjh®), vl € {0, .., L — 1}
_ h(L) UEN(U)

v
~—

Final node embedding

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

hl: the hidden representation of node v at layer [
W, : weight matrix for neighborhood aggregation
B}, : weight matrix for transforming hidden vector of

self Credit: Stanford CS224W

Jure Leskovec & Mina Ghashami, Stanford University

http://web.stanford.edu/class/cs224w/

How to train a GNN

Node embedding z,, is a function of input graph
Un-supervised setting: Maximum likelihood
optimization problem

max Z log(Pr(N(v))|z,)

Supervised setting: We minimize the loss L :
m(ain L(y, f(zv))

y: node label
L could be L2 if y is real number

L could be cross entropy if y is categorical
Credit: Stanford CS224\W

Jure Leskovec & Mina Ghashami, Stanford University

http://web.stanford.edu/class/cs224w/

Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

Safe or toxic

Safe or toxic drug?

drug?
I

® E.g., a drug-drug
interaction network

Jure Leskovec & Mina Ghashami, Stanford University 20

Supervised Training

Directly train the model for a supervised task
(e.g., node classification)
Use cross entropy loss

L= og(o @) + (1 -

veV

Encoder output: / Classification
weights

node embedding

Node class

. oq @ label
Safe or toxic drug? g n ®

oo Credit: Stanford CS224W

Jure Leskovec & Mina Ghashami, Stanford University 21

http://web.stanford.edu/class/cs224w/

Designing a GNN

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (1)

GNN Layer = Message + Aggregation
* Different instantiations under this perspective
 GCN, GraphSAGE, GAT, ...

— Lo

(2) Aggregation

TARGET NODE
A

INPUT GRAPH

GNN Layer 1 FRR
: % & (1) Message

Jure Leskovec & Mina Ghashami, Stanford University 23

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (2)

Connect GNN layers into a GNN
e Stack layers sequentially
‘/“ * Ways of adding skip connections

— Lo

. GNN Layer 1

TARGET NODE

INPUT GRAPH

! ®

connectlwty ‘ i | .. :

GNN Layer 2 % }« »

Jure Leskovec & Mina Ghashami, Stanford University 24

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (3)

Idea: Raw input graph # computational graph
| * Graph feature augmentation
‘/“' * Graph structure augmentation

|

TARGET NODE

INPUT GRAPH

% o P

#' ® .b

Xtmr o @
00°
(4) Graph augmentation

Jure Leskovec & Mina Ghashami, Stanford University 25

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (4)

TARGET NODE
A

INPUT GRAPH

How do we train a GNN
* Supervised/Unsupervised
objectives .

« Node/Edge/Graph level ‘
objectives

.b
%m ;:a pr '0

®

Jure Leskovec & Mina Ghashami, Stanford University 26

https://arxiv.org/pdf/2011.08843.pdf

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A General GNN Framework (5)

TARGET NODE
A

INPUT GRAPH

— Lo

(2) Aggregation

. GNN Layer 1

% & (1) Message

(3) Layer

connectlwty ‘ i |

GNN Layer 2 =

(4) Graph augmentation

Jure Leskovec & Mina Ghashami, Stanford University 27

https://arxiv.org/pdf/2011.08843.pdf

A Single Layer of a GNN

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

A GNN Layer

GNN Layer = Message + Aggregation
* Different instantiations under this perspective
 GCN, GraphSAGE, GAT, ...

— Lo

(2) Aggregation

TARGET NODE
A

INPUT GRAPH

GNN Layer 1 FRR
: % & (1) Message

Jure Leskovec & Mina Ghashami, Stanford University 29

https://arxiv.org/pdf/2011.08843.pdf

A Single GNN Layer

Compress a set of vectors into a single vector
Two step process:
(1) Message

Output node embedding hff)

|
L TN

(2) Aggregation

(2) Aggregation 1
& o ¢» (1) Message ‘|: ® 6 ©
o O Input node embedding h{ ™ , h';1)

(from node itself + neighboring nodes)

Jure Leskovec & Mina Ghashami, Stanford University 30

Message Computation

Message function: mg) = MSGW (hg_l))

Intuition: Each node will create a message, which will be
sent to other nodes later

Example: A Linear layer mfp = w(l)hg—l)
Multiply node features with weight matrix W

Node v
TARGE‘l NODE I
4 (2) Aggregation
/ %E¢ (1) Message
INPUT GRAPH . ‘ .

Jure Leskovec & Mina Ghashami, Stanford University 31

Message Aggregation

Intuition: Each node will aggregate the messages from
node v’s neighbors

h’ = AG6® ({m$,u € N(v)})

Example: Sum(-), Mean(-) or Max(-) aggregator
hl = sSum(m®,u e N}

TARGET NODE Node v

l N -

A

/ (2) Aggregation

¥ o ¢® (1) Message

INPUT GRAPH . . .

Jure Leskovec & Mina Ghashami, Stanford University 32

Message Aggregation: Issue

Information from node v itself could get lost

Computation of hl(,l) does not directly depend on hl(,l_l)
Include h,(]l_l) when computing hg)

compute message from node v itself
Usually, a different message computation will be performed

l - l -1
000) - wini™ m{ = BORY ™

After aggregating from neighbors, we can
aggregate the message from node v itself

Via or
Then aggregate from node itself

Jure Leskovec & Mina Ghashami, Stanford University 33

A Single GNN Layer

Putting things together:
(1) Message: each node computes a message
m'"” = MSG® (h,(f_l)),u € {N(v) U v}
(2) Aggregation: aggregate messages from neighbors
h = AGGW ({ D e N(v)} “))
Adds expressiveness

Often written as g (-): ReLU(+), Sigmoid(-), ...
Can be added to message or aggregation

i

(2) Aggregation

QY mm ¢® (1) Message
® O O

Jure Leskovec & Mina Ghashami, Stanford University 34

T. Kipf, M. Welling. , ICLR 2017

Classical GNN Layers: GCN

0 _ 0 EE u
h, ' = W
v =9 IN(v)|
UEN (v)

How to write this as Message + Aggregation?

Message
................................ i
[-1
h(l) — 0 2 w(l) h‘EL) u (2) Aggregation
v |N(U)| & o ¢» (1) Message
\uEN(v)' ® o ©

Jure Leskovec & Mina Ghashami, Stanford University 35

https://arxiv.org/pdf/1609.02907.pdf

Classical GNN Layers: GCN

(1=1) i
hi(}l) =0 2 W(l) hu L (2) Aggregation
EN() |N(U)| & o, ¢» (1) Message
Message:

(D

Each Nelgh bor: mu — W(l) hg_l) (In the GCN paper they use a slightly

different normalization)

Aggregation:

Sum over messages from neighbors, then apply activation

hl(,l) =0 (Sum ({mg),u € N(v)}))

Jure Leskovec & Mina Ghashami, Stanford University 36

Hamilton et al. , NeurlIPS 2017

Classical GNN Layers: GraphSAGE

Inductive model: generalizable to unseen
nodes during training

aggregator; /
aggregator,. label

-
2. Aggregate feature information 3 Pr‘edlct graph context and label
from neighbors using aggregated information

https://arxiv.org/pdf/1706.02216.pdf

Hamilton et al. , NeurlIPS 2017

Classical GNN Layers: GraphSAGE

h = 5 (w@ . CONCAT (h,(,l_l),AGG ({hg-D, Vi € N(v)})))

Message is computed within the AGG(:)

Stage 1: Aggregate from node neighbors
h'Y < AGG ({hg_l),‘v’u € N(v)})

N(v)
Stage 2: Further aggregate over the node itself
h$’ « o (W® - coNcAT(h{ ™, h{))

ovec & Mina Ghashami, Stanford University

https://arxiv.org/pdf/1706.02216.pdf

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors
h¢— D

AGG = z u
: N (v :
Aggregation uEN(v)l (v)|| Message computation

Pool: Transform neighbor vectors and apply
symmetric vector function Mean(-) or Max(-)

AGG =|Nean ({MLP(h! "), vu € N(v)})

Aggregation |Message computation

Jure Leskovec & Mina Ghashami, Stanford University 39

GraphSAGE: L2 Normalization

£, Normalization:
Optional: Apply ¢, normalization to h,(,l) at every layer

NORI 5 V wh - (¢
Hh(Z)H Vv € V where |[ull, = [X,u? (£,-norm)

Without £, normalization, the embedding vectors have
different scales (£,-norm) for vectors

In some cases (not always), normalization of embedding
results in performance improvement

After £, normalization, all vectors will have the same
£,-norm

Jure Leskovec & Mina Ghashami, Stanford University 40

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Classical GNN Layers: GAT

l -1
hi()) — O-(ZuEN(v) avuw(l)hg))

Ay = Nl is the weighting factor (importance)
of node u’s message to node v

= ., is defined

— All neighbors u € N(v) are equally important
to node v

Jure Leskovec & Mina Ghashami, Stanford University 41

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Classical GNN Layers: GAT

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors a,,, to be
learned?

Goal: Specify arbitrary learnable importance to
different neighbors of each node in the graph

Idea: Compute embedding hl(,l) of each node in the
graph following an :
Nodes attend over their neighborhoods’ message

Implicitly specifying different weights to different nodes
in a neighborhood

Jure Leskovec & Mina Ghashami, Stanford University 42

Attention Mechanism (1)

Let «,,,, be computed as a byproduct of an
attention mechanism a:

(1) Let a compute attention coefficients e, across
pairs of nodes u, v based on their messages:

e,y = a(W(l)h,(f_l), W(l)hf,l_l))

e, indicates the importance of u's message to node v

eap = a(WORY™ wORI™)

Jure Leskovec & Mina Ghashami, Stanford University 43

Attention Mechanism (2)

Normalize e, into the final attention weight a,,,

Use the softmax function, so that X, ey) @pu = 1:
exp(epy)

B Zke]\](v) exp(evk)
Weighted sum based on the final attention weight

) _ (1-1)
hv — U(ZuEN(v) W(l)hu)

Weighted sum using a5, s, dsp:
hg) = O'(CXABW(l)hg_l)+aACW(l)h(Cl_1)+
a,p WORY D)

Jure Leskovec & Mina Ghashami, Stanford University

Attention Mechanism (3)

What is the form of attention mechanism a?

The approach is agnhostic to the choice of a

E.g., use a simple single-layer neural network

a have trainable parameters (weights in the Linear layer)

I |:| Concatenateﬂ Linear esp = a (w(l)hgl—l)’w(l)hg—l))

(™D p(D = Linear (Concat (W(l)hg_l), W(l)hg_l)))

Parameters of a are trained jointly:

Learn the parameters together with weight matrices (i.e.,

other parameter of the neural net W) in an end-to-end
fashion

Jure Leskovec & Mina Ghashami, Stanford University 45

Attention Mechanism (4)

Multi-head attention: Stabilizes the learning
process of attention mechanism

Create

h"[1
h"[2
h"[3

By concatenation or summation

= AGG(h[1],h$’[2],h{°[3])

h)

Jure Leskovec & Mina Ghashami, Stanford Univers

ity

(each replica
with a different set of parameters):

[—

= O-(ZuEN(v) avuw()h(1))
[—

= O-(ZueN(v) avuw()h(1))
[—

= O-(ZueN(v) avuw()h(1))

46

Benefits of Attention Mechanism

Key benefit: Allows for (implicitly) specifying different
importance values («,,,,) to different neighbors

Computationally efficient:

Computation of attentional coefficients can be parallelized
across all edges of the graph

Aggregation may be parallelized across all nodes
Storage efficient:

Sparse matrix operations do not require more than
O(V + E) entries to be stored

Fixed number of parameters, irrespective of graph size
Localized:

Only attends over local network neighborhoods
Inductive capability:

It is a shared edge-wise mechanism
It does not depend on the global graph structure

Jure Leskovec & Mina Ghashami, Stanford University 47

Activation (Non-linearity)

Rectified linear unit (RelLU)
ReLU(x;) = max(x;, 0)
Most commonly used

Sigmoid

o(X;) =

Used only when you want to restrict the
range of your embeddings

Parametric RelLU
PReLU(x;) = max(x;,0) + a;min(x;, 0)
a; is a trainable parameter
Empirically performs better than RelLU

Jure Leskovec & Mina Ghashami, Stanford University

1

1+e™

Graph Manipulation in GNNs

J.You, R.Ying, J. Leskovec. , NeurlPS 2020

General GNN Framework

Idea: Raw input graph # computational graph
| * Graph feature augmentation
‘/“' * Graph structure manipulation

|

TARGET NODE

INPUT GRAPH

% o P

#' ® .b

Kb o @
00°
(4) Graph manipulation

Jure Leskovec & Mina Ghashami, Stanford University 50

https://arxiv.org/pdf/2011.08843.pdf

Why Manipulate Graphs

Our assumption so far has been
Raw input graph = computational graph
Reasons for breaking this assumption
Feature level:
The input graph lacks features = feature augmentation

Structure level:

The graph is too sparse = inefficient message passing
The graph is too dense =2 message passing is too costly

The graph is too large = cannot fit the computational
graph into a GPU

It’s just unlikely that the input graph happens to be
the optimal computation graph for embeddings

Jure Leskovec & Mina Ghashami, Stanford University 51

Graph Manipulation Approaches

Graph Feature manipulation

The input graph lacks features = feature
augmentation

Graph Structure manipulation
The graph is too sparse = Add virtual nodes / edges

The graph is too dense = Sample neighbors when
doing message passing

The graph is too large = Sample subgraphs to
compute embeddings

Will cover later in lecture: Scaling up GNNs

Jure Leskovec & Mina Ghashami, Stanford University 52

Feature Augmentation on Graphs

Why do we need feature augmentation?
(1) Input graph does not have node features

This is common when we only have the adj. matrix
Standard approaches:
a) Assign constant values to nodes

INPUT GRAPH

Jure Leskovec & Mina Ghashami, Stanford University

Feature Augmentation on Graphs

Why do we need feature augmentation?
(1) Input graph does not have node features

This is common when we only have the adj. matrix
Standard approaches:
b) Assign unique IDs to nodes

These IDs are converted into one-hot vectors

? One-hot vector for node with ID=5
14 3 ID=5
|
. / 6 [0,0,0,0,1,0]

5 Y
INPUT GRAPH Total number of IDs =6

Jure Leskovec & Mina Ghashami, Stanford University 54

Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot

Constant node feature

PPPPPPPPPP

One-hot node feature

2
1 3
4/ 6
5
INPUT GRA

Expressive power

Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature

High. O(|V|) dimensional feature,
cannot apply to large graphs

Use cases

Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

Jure Leskovec & Mina Ghashami, Stanford University

55

Feature Augmentation on Graphs

(2) Certain features can help GNN learning
Other commonly used augmented features:

Node degree
PageRank
Clustering coefficient

Add Virtual Nodes [Edges

Common approach: Connect 2-hop neighbors via
virtual edges

Intuition: Instead of using adj. matrix A for GNN

computation, use
Authors Papers

Use cases: Bipartite graphs

Author-to-papers (they authored)

2-hop virtual edges make an author-author
collaboration graph

Jure Leskovec & Mina Ghashami, Stanford University 57

Add Virtual Nodes [Edges

The virtual node will connect to all the

nodes in the graph The virtual g
node Py ¢/

Suppose in a sparse graph, two nodes have
shortest path distance of 10

After adding the virtual node, all the nodes
will have a distance of 2
Node A —Virtual node — Node B /

Benefits: Greatly improves message
passing in sparse graphs

INPUT GRAPH

Jure Leskovec & Mina Ghashami, Stanford University 58

Hamilton et al. , NeurlIPS 2017

Node Neighborhood Sampling

All the nodes are used for message passing

T NODE ® i CE— <

.
0"
l ""‘
A
‘o‘
A »"
* o
V' A e ‘
o
A <« D TELTRRTTTETEERITY vv
.0
.,

INPUT GRAPH R\

(Randomly) sample a node’s
neighborhood for message passing

Jure Leskovec & Mina Ghashami, Stanford University 59

https://arxiv.org/pdf/1706.02216.pdf

Neighborhood Sampling Example

For example, we can randomly choose 2
neighbors to pass messages

Only nodes B and D will pass message to A

4
TARGET NODE ‘A“
A
r%
- A«
W.,
INPUT GRAPH o

Neighborhood Sampling Example

Next time when we compute the embeddings,
we can sample different neighbors

Only nodes C and D will pass message to A

TARGET NODE

l e
@ B < R .4—.}:_’::
INPUT GRAPH e

Jure Leskovec & Mina Ghashami, Stanford University 61

Ying et al. , KDD 2018

Neighborhood Sampling Example

In expectation, we can get embeddings similar
to the case where all the neighbors are used

Benefits: greatly reduce computational cost
And in practice it works great!

‘‘‘‘‘‘‘‘‘ A
ARGET NODE ® A‘:‘ﬁf ____________________ <
. @ @)
A ""’
S A ®.9 R
A <« ¢ ‘ 4‘.1
2‘ e
oy
INPUTGRAPH . T ey A

Jure Leskovec & Mina Ghashami, Stanford University 62

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

Summary of the lecture

Recap: A general perspective for GNNs
GNN Layer:

Transformation + Aggregation

Classic GNN layers: GCN, GraphSAGE, GAT
Layer connectivity:

Deciding number of layers
Skip connections
Graph Manipulation:

Feature augmentation
Structure manipulation

Jure Leskovec & Mina Ghashami, Stanford University 63

