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Modern deep learning toolbox is designed 
for simple sequences & grids



But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e., 

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features
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¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(|𝑉|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering
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End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach
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• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible
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But our graphs look like this:
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End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data
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What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data
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Input
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What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding 
window on the graph

§ Graph is permutation invariant
Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


Single Convolutional neural network (CNN) layer 
with 3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)
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(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
Idea: transform information at the neighbors and combine it:

§ Transform “messages” ℎ! from neighbors: 𝑊! ℎ!
§ Add them up: ∑!𝑊! ℎ!

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


Idea: Node’s neighborhood defines a 
computation graph
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Determine node 
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the 
graph to compute node features

[Kipf and Welling, ICLR 2017]

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


¡ Key idea: Generate node embeddings based 
on local network neighborhoods 
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¡ Intuition: Nodes aggregate information from 
their neighbors using neural networks
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Neural networks
Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


¡ Intuition: Network neighborhood defines a 
computation graph
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Every node defines a computation 
graph based on its neighborhood!

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑢 is its input feature, 𝑥𝑢
§ Layer-𝑘 embedding gets information from nodes that 

are K hops away
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¡ Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers
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What is in the box?

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


¡ Basic approach: Average information from 
neighbors and apply a neural network
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(1) average messages 
from neighbors 

(2) apply neural network
Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


¡ Assume we have a graph 𝑮:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ!×|$| is a matrix of node features
§ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene 

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]
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¡ Basic approach: Average neighbors’ messages 
and apply a neural network
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Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings are 
equal to node features

Embedding after L 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
𝑣 at layer 𝑙h%& = x%

z% = h%
(()

h%
(*+,) = 𝜎(W* 2

-∈/(%)

h-
(*)

N(𝑣)
+ B*h%

(*)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


𝒛0

How do we train the model to 
generate embeddings?

Need to define a loss function on the embeddings
Jure Leskovec & Mina Ghashami, Stanford University 17

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!" : the hidden representation of node 𝑣 at layer 𝑙
¡ 𝑊#: weight matrix for neighborhood aggregation
¡ 𝐵#: weight matrix for transforming hidden vector of 

self
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Trainable weight matrices 
(i.e., what we learn) 

Final node embedding

h!
(#) = x!

z! = h!
(%)

h!
(&'() = 𝜎(W& (

)∈+(!)

h)
(&)

N(𝑣) + B&h!
(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


¡ Node embedding 𝒛! is a function of input graph
¡ Un-supervised setting: Maximum likelihood 

optimization problem

𝑚𝑎𝑥2log(𝑃𝑟(𝑁(𝑣))|𝒛%)

¡ Supervised setting: We minimize the loss ℒ :
min
!
ℒ(𝒚, 𝑓 𝒛" )

§ 𝒚: node label
§ ℒ could be L2 if 𝒚 is real number 
§ ℒ could be cross entropy if 𝒚 is categorical
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Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/


Directly train the model for a supervised task 
(e.g., node classification)

Jure Leskovec & Mina Ghashami, Stanford University 20

Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network



Directly train the model for a supervised task 
(e.g., node classification)
¡ Use cross entropy loss

Jure Leskovec & Mina Ghashami, Stanford University 21

Encoder output:
node embedding

Classification 
weights

Node class 
label

Safe or toxic drug?

ℒ = (
!∈,

𝑦!log(𝜎(z!-𝜃)) + 1 − 𝑦! log(1 − 𝜎 z!-𝜃 )

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/
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(2) Aggregation

(1) Message
GNN Layer 1

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …
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https://arxiv.org/pdf/2011.08843.pdf
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GNN Layer 1

GNN Layer 2

(3) Layer 
connectivity

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Connect GNN layers into a GNN
• Stack layers sequentially
• Ways of adding skip connections
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https://arxiv.org/pdf/2011.08843.pdf


Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN
• Supervised/Unsupervised 

objectives
• Node/Edge/Graph level 

objectives
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
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(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
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¡ Idea of a GNN Layer:
§ Compress a set of vectors into a single vector
§ Two step process:

§ (1) Message
§ (2) Aggregation

Jure Leskovec & Mina Ghashami, Stanford University

Input node embedding 𝐡!
"#$ , 𝐡%∈'(!)

"#$

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡!
"

(2) Aggregation

(1) Message

Node 𝒗

30



¡ (1) Message computation
§ Message function: 

§ Intuition: Each node will create a message, which will be 
sent to other nodes later

§ Example: A Linear layer 𝐦$
(&) = 𝐖 & 𝐡$

&()

§ Multiply node features with weight matrix 𝐖 !

Jure Leskovec & Mina Ghashami, Stanford University

(2) Aggregation

(1) Message

Node 𝒗

𝐦-
(*) = MSG * 𝐡-

*2,
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¡ (2) Aggregation
§ Intuition: Each node will aggregate the messages from 

node 𝑣’s neighbors

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§𝐡*
& = Sum({𝐦$

& , 𝑢 ∈ 𝑁(𝑣)})

𝐡$
(&) = AGG & 𝐦-

* , 𝑢 ∈ 𝑁 𝑣

Jure Leskovec & Mina Ghashami, Stanford University

(2) Aggregation

(1) Message

Node 𝒗
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𝐡*
& = CONCAT AGG 𝐦$

& , 𝑢 ∈ 𝑁 𝑣 ,𝐦*
&

¡ Issue: Information from node 𝑣 itself could get lost
§ Computation of 𝐡*

(&) does not directly depend on 𝐡*
(&())

¡ Solution: Include 𝐡%
(*2,) when computing 𝐡%

(*)

§ (1) Message: compute message from node 𝒗 itself
§ Usually, a different message computation will be performed

§ (2) Aggregation: After aggregating from neighbors, we can 
aggregate the message from node 𝒗 itself
§ Via concatenation or summation

Jure Leskovec & Mina Ghashami, Stanford University

𝐦"
(!) = 𝐁 ! 𝐡"

!%&𝐦'
(!) = 𝐖 ! 𝐡'

!%&

First aggregate from neighbors

Then aggregate from node itself

33



(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation

Jure Leskovec & Mina Ghashami, Stanford University

𝐦-
(*) = MSG * 𝐡-

*2, , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡$
(&) = AGG & 𝐦(

& , 𝑢 ∈ 𝑁 𝑣 ,𝐦$
&

34



¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?

Jure Leskovec & Mina Ghashami, Stanford University

𝐡*
(&) = 𝜎 𝐖 & H

$∈, *

𝐡$
&()

𝑁 𝑣

𝐡*
(&) = 𝜎 H

$∈, *

𝐖 & 𝐡$
&()

𝑁 𝑣

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

35

https://arxiv.org/pdf/1609.02907.pdf


¡ (1) Graph Convolutional Networks (GCN)

¡ Message: 

§ Each Neighbor: 𝐦$
(&) = )

, *
𝐖 & 𝐡$

&()

¡ Aggregation:
§ Sum over messages from neighbors, then apply activation

§ 𝐡*
& = 𝜎 Sum 𝐦$

& , 𝑢 ∈ 𝑁 𝑣

Jure Leskovec & Mina Ghashami, Stanford University

Normalized by node degree
(In the GCN paper they use a slightly 
different normalization)

𝐡*
(&) = 𝜎 H

$∈, *

𝐖 & 𝐡$
&()

𝑁 𝑣
(2) Aggregation

(1) Message

36



¡ (2) GraphSAGE
¡ Inductive model: generalizable to unseen 

nodes during training
¡ Uses Message + Aggregation framework based on 

local neighborhood of a node

Jure Leskovec & Mina Ghashami, Stanford University

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

37

https://arxiv.org/pdf/1706.02216.pdf


¡ (2) GraphSAGE

¡ How to write this as Message + Aggregation?
§ Message is computed within the AGG ⋅
§ Two-stage aggregation

§ Stage 1: Aggregate from node neighbors

§ Stage 2: Further aggregate over the node itself

Jure Leskovec & Mina Ghashami, Stanford University

𝐡*
(&) = 𝜎 𝐖(&) I CONCAT 𝐡*

&() , AGG 𝐡$
&() , ∀𝑢 ∈ 𝑁 𝑣

𝐡((")
(!) ← AGG 𝐡'

(!%&), ∀𝑢 ∈ 𝑁 𝑣

𝐡"
(!) ← 𝜎 𝐖(!) ⋅ CONCAT(𝐡"

!%& , 𝐡((")
(!) )

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017
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¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply 
symmetric vector function Mean(⋅) or Max(⋅)

AGG = 2
-∈E(%)

𝐡-
(*2,)

𝑁(𝑣)

Jure Leskovec & Mina Ghashami, Stanford University

AGG = Mean({MLP(𝐡-
(*2,)), ∀𝑢 ∈ 𝑁(𝑣)})

Message computation

Message computation

Aggregation

Aggregation

39



¡ ℓ# Normalization: 
§ Optional: Apply ℓ- normalization to 𝐡*

(&) at every layer

§ 𝐡$
(&) ← 𝐡#

(%)

𝐡#
(%)

'

∀𝑣 ∈ 𝑉 where 𝑢 * = ∑+ 𝑢+* (ℓ*-norm)

§ Without ℓ* normalization, the embedding vectors have 
different scales (ℓ*-norm) for vectors

§ In some cases (not always), normalization of embedding 
results in performance improvement 

§ After ℓ* normalization, all vectors will have the same 
ℓ*-norm

Jure Leskovec & Mina Ghashami, Stanford University 40



¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE

§ 𝛼%- =
,

E %
is the weighting factor (importance)

of node 𝑢’s message to node 𝑣
§ ⟹ 𝛼%- is defined explicitly based on the 

structural properties of the graph (node degree)
§ ⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important 

to node 𝑣

𝐡%
(*) = 𝜎(∑-∈E % 𝛼%-𝐖(*)𝐡-

(*2,))

Jure Leskovec & Mina Ghashami, Stanford University

Attention weights

41

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]



Can we do better than simple 
neighborhood aggregation?

Can we let weighting factors 𝜶𝒗𝒖 to be 
learned?

¡ Goal: Specify arbitrary learnable importance to 
different neighbors of each node in the graph

¡ Idea: Compute embedding 𝒉!
(&) of each node in the 

graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different nodes 

in a neighborhood

Jure Leskovec & Mina Ghashami, Stanford University

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]
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¡ Let 𝛼"$ be computed as a byproduct of an 
attention mechanism 𝒂:
§ (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across 

pairs of nodes 𝑢, 𝑣 based on their messages:
𝑒%- = 𝑎(𝐖(*)𝐡-

(*2,),𝐖(*)𝒉%
(*2,))

§ 𝒆𝒗𝒖 indicates the importance of 𝒖0𝐬message to node 𝒗

Jure Leskovec & Mina Ghashami, Stanford University

𝐡*
("#$)

𝐡+
("#$)

𝑒*+

𝑒23 = 𝑎(𝐖(&)𝐡2
(&()),𝐖(&)𝐡3

(&()))
43



§ Normalize 𝑒%- into the final attention weight 𝜶𝒗𝒖
§ Use the softmax function, so that ∑$∈, * 𝛼*$ = 1:

𝛼$( =
exp(𝑒$()

∑,∈. $ exp(𝑒$,)

§ Weighted sum based on the final attention weight 
𝜶𝒗𝒖

𝐡$
(&) = 𝜎(∑(∈. $ 𝛼$(𝐖(&)𝐡(

(&/0))

Jure Leskovec & Mina Ghashami, Stanford University

𝛼*+
Weighted sum using 𝛼23, 𝛼25, 𝛼26:
𝐡)
(!) = 𝜎(𝛼)*𝐖(!)𝐡*

(!%&)+𝛼)+𝐖(!)𝐡+
(!%&)+ 

𝛼),𝐖(!)𝐡,
(!%&))

𝐡+
("#$)

𝐡,
("#$)

𝛼*,

𝛼*-

44



¡ What is the form of attention mechanism 𝒂?
§ The approach is agnostic to the choice of 𝑎

§ E.g., use a simple single-layer neural network
§ 𝑎 have trainable parameters (weights in the Linear layer)

§ Parameters of 𝑎 are trained jointly:
§ Learn the parameters together with weight matrices (i.e., 

other parameter of the neural net 𝐖(&)) in an end-to-end 
fashion

Jure Leskovec & Mina Ghashami, Stanford University

𝑒)* = 𝑎 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)

= Linear Concat 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)
𝐡*
("#$) 𝐡+

("#$)

Concatenate Linear
𝑒)*

45



¡ Multi-head attention: Stabilizes the learning 
process of attention mechanism
§ Create multiple attention scores (each replica 

with a different set of parameters):

§ Outputs are aggregated:
§ By concatenation or summation

§ 𝐡*
(&) = AGG(𝐡*

(&) 1 , 𝐡*
(&) 2 , 𝐡*

(&) 3 )

Jure Leskovec & Mina Ghashami, Stanford University

𝐡$
(&)[1] = 𝜎(∑(∈. $ 𝛼$(0 𝐖(&)𝐡(

(&/0))

𝐡$
(&)[2] = 𝜎(∑(∈. $ 𝛼$(* 𝐖(&)𝐡(

(&/0))

𝐡$
(&)[3] = 𝜎(∑(∈. $ 𝛼$(1 𝐖(&)𝐡(

(&/0))

46



¡ Key benefit: Allows for (implicitly) specifying different 
importance values (𝜶𝒗𝒖) to different neighbors

¡ Computationally efficient: 
§ Computation of attentional coefficients can be parallelized 

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient: 
§ Sparse matrix operations do not require more than
𝑂(𝑉 + 𝐸) entries to be stored

§ Fixed number of parameters, irrespective of graph size
¡ Localized:

§ Only attends over local network neighborhoods
¡ Inductive capability: 

§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure

Jure Leskovec & Mina Ghashami, Stanford University 47



Apply activation to 𝒊-th dimension of 
embedding 𝐱
¡ Rectified linear unit (ReLU)

ReLU 𝐱7 = max(𝐱7, 0)
§ Most commonly used

¡ Sigmoid

𝜎 𝐱7 =
1

1 + 𝑒(𝐱"
§ Used only when you want to restrict the 

range of your embeddings
¡ Parametric ReLU
PReLU 𝐱7 = max 𝐱7, 0 + 𝑎7min(𝐱7, 0)

𝑎7 is a trainable parameter
§ Empirically performs better than ReLU

Jure Leskovec & Mina Ghashami, Stanford University
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CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon

http://cs224w.stanford.edu
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(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation
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Our assumption so far has been 
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Feature level: 

§ The input graph lacks features à feature augmentation
§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational 

graph into a GPU
§ It’s just unlikely that the input graph happens to be 

the optimal computation graph for embeddings
Jure Leskovec & Mina Ghashami, Stanford University 51



¡ Graph Feature manipulation
§ The input graph lacks features à feature 

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when 

doing message passing
§ The graph is too large à Sample subgraphs to 

compute embeddings 
§ Will cover later in lecture: Scaling up GNNs
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Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes

Jure Leskovec & Mina Ghashami, Stanford University
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Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors

Jure Leskovec & Mina Ghashami, Stanford University
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[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5
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¡ Feature augmentation: constant vs. one-hot

Jure Leskovec & Mina Ghashami, Stanford University

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a unique ID, 
so node-specific information can 
be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

Low. Cannot generalize to new 
nodes: new nodes introduce new 
IDs, GNN doesn’t know how to 
embed unseen IDs

Computational 
cost

Low. Only 1 dimensional feature High. 𝑂 𝑉 dimensional feature, 
cannot apply to large graphs

Use cases Any graph, inductive settings 
(generalize to new nodes)

Small graph, transductive settings 
(no new nodes)
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1
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1
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Why do we need feature augmentation?
¡ (2) Certain features can help GNN learning
¡ Other commonly used augmented features:
§ Node degree
§ PageRank
§ Clustering coefficient
§ …

¡ Any useful graph statistics can be used!

Jure Leskovec & Mina Ghashami, Stanford University 56



¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via 

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN 

computation, use 𝐴 + 𝐴U

Jure Leskovec & Mina Ghashami, Stanford University
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Authors Papers

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author 

collaboration graph
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¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the 

nodes in the graph
§ Suppose in a sparse graph, two nodes have 

shortest path distance of 10
§ After adding the virtual node, all the nodes 

will have a distance of 2 
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message 
passing in sparse graphs

Jure Leskovec & Mina Ghashami, Stanford University

The virtual 
node
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¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s 
neighborhood for message passing

Jure Leskovec & Mina Ghashami, Stanford University
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Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017
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¡ For example, we can randomly choose 2 
neighbors to pass messages
§ Only nodes 𝐵 and 𝐷 will pass message to 𝐴

Jure Leskovec & Mina Ghashami, Stanford University
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¡ Next time when we compute the embeddings, 
we can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

Jure Leskovec & Mina Ghashami, Stanford University
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¡ In expectation, we can get embeddings similar 
to the case where all the neighbors are used
§ Benefits: greatly reduce computational cost
§ And in practice it works great!

Jure Leskovec & Mina Ghashami, Stanford University
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Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018
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¡ Recap: A general perspective for GNNs
§ GNN Layer: 

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity: 
§ Deciding number of layers
§ Skip connections

§ Graph Manipulation:
§ Feature augmentation
§ Structure manipulation
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