
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon

http://cs246.stanford.edu

2Jure Leskovec & Mina Ghashami, Stanford University

Images

Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids

But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e.,

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

3

vs.

Networks Images

Text

Jure Leskovec & Mina Ghashami, Stanford University

¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ 𝑂(|𝑉|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering

Jure Leskovec & Mina Ghashami, Stanford University 5
End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

But our graphs look like this:

Jure Leskovec & Mina Ghashami, Stanford University 6

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding
window on the graph

§ Graph is permutation invariant
Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

Single Convolutional neural network (CNN) layer
with 3x3 filter:

Jure Leskovec & Mina Ghashami, Stanford University 7

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
Idea: transform information at the neighbors and combine it:

§ Transform “messages” ℎ! from neighbors: 𝑊! ℎ!
§ Add them up: ∑!𝑊! ℎ!

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

Idea: Node’s neighborhood defines a
computation graph

Jure Leskovec & Mina Ghashami, Stanford University 8

Determine node
computation graph

𝑖

Propagate and
transform information

𝑖

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

¡ Key idea: Generate node embeddings based
on local network neighborhoods

Jure Leskovec & Mina Ghashami, Stanford University 9

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

Jure Leskovec & Mina Ghashami, Stanford University 10

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks
Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

¡ Intuition: Network neighborhood defines a
computation graph

Jure Leskovec & Mina Ghashami, Stanford University 11

Every node defines a computation
graph based on its neighborhood!

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑢 is its input feature, 𝑥𝑢
§ Layer-𝑘 embedding gets information from nodes that

are K hops away

Jure Leskovec & Mina Ghashami, Stanford University 12

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0

¡ Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

Jure Leskovec & Mina Ghashami, Stanford University 13

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

¡ Basic approach: Average information from
neighbors and apply a neural network

Jure Leskovec & Mina Ghashami, Stanford University 14

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages
from neighbors

(2) apply neural network
Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

¡ Assume we have a graph 𝑮:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ!×|$| is a matrix of node features
§ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]

Jure Leskovec & Mina Ghashami, Stanford University 15

¡ Basic approach: Average neighbors’ messages
and apply a neural network

Jure Leskovec & Mina Ghashami, Stanford University 16

Average of neighbor’s
previous layer embeddings

Total number
of layers

Initial 0-th layer embeddings are
equal to node features

Embedding after L
layers of neighborhood

aggregation

Non-linearity
(e.g., ReLU)

embedding of
𝑣 at layer 𝑙h%& = x%

z% = h%
(()

h%
(*+,) = 𝜎(W* 2

-∈/(%)

h-
(*)

N(𝑣)
+ B*h%

(*)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

𝒛0

How do we train the model to
generate embeddings?

Need to define a loss function on the embeddings
Jure Leskovec & Mina Ghashami, Stanford University 17

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!" : the hidden representation of node 𝑣 at layer 𝑙
¡ 𝑊#: weight matrix for neighborhood aggregation
¡ 𝐵#: weight matrix for transforming hidden vector of

self
Jure Leskovec & Mina Ghashami, Stanford University 18

Trainable weight matrices
(i.e., what we learn)

Final node embedding

h!
(#) = x!

z! = h!
(%)

h!
(&'() = 𝜎(W& (

)∈+(!)

h)
(&)

N(𝑣) + B&h!
(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

¡ Node embedding 𝒛! is a function of input graph
¡ Un-supervised setting: Maximum likelihood

optimization problem

𝑚𝑎𝑥2log(𝑃𝑟(𝑁(𝑣))|𝒛%)

¡ Supervised setting: We minimize the loss ℒ :
min
!
ℒ(𝒚, 𝑓 𝒛")

§ 𝒚: node label
§ ℒ could be L2 if 𝒚 is real number
§ ℒ could be cross entropy if 𝒚 is categorical

Jure Leskovec & Mina Ghashami, Stanford University 19

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

Directly train the model for a supervised task
(e.g., node classification)

Jure Leskovec & Mina Ghashami, Stanford University 20

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

Directly train the model for a supervised task
(e.g., node classification)
¡ Use cross entropy loss

Jure Leskovec & Mina Ghashami, Stanford University 21

Encoder output:
node embedding

Classification
weights

Node class
label

Safe or toxic drug?

ℒ = (
!∈,

𝑦!log(𝜎(z!-𝜃)) + 1 − 𝑦! log(1 − 𝜎 z!-𝜃)

Credit: Stanford CS224W

http://web.stanford.edu/class/cs224w/

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon

http://cs246.stanford.edu

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

23

https://arxiv.org/pdf/2011.08843.pdf

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

GNN Layer 1

GNN Layer 2

(3) Layer
connectivity

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Connect GNN layers into a GNN
• Stack layers sequentially
• Ways of adding skip connections

24

https://arxiv.org/pdf/2011.08843.pdf

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure augmentation

25

https://arxiv.org/pdf/2011.08843.pdf

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN
• Supervised/Unsupervised

objectives
• Node/Edge/Graph level

objectives

26

https://arxiv.org/pdf/2011.08843.pdf

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

27

https://arxiv.org/pdf/2011.08843.pdf

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon

http://cs246.stanford.edu

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

29

https://arxiv.org/pdf/2011.08843.pdf

¡ Idea of a GNN Layer:
§ Compress a set of vectors into a single vector
§ Two step process:

§ (1) Message
§ (2) Aggregation

Jure Leskovec & Mina Ghashami, Stanford University

Input node embedding 𝐡!
"#$, 𝐡%∈'(!)

"#$

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡!
"

(2) Aggregation

(1) Message

Node 𝒗

30

¡ (1) Message computation
§ Message function:

§ Intuition: Each node will create a message, which will be
sent to other nodes later

§ Example: A Linear layer 𝐦$
(&) = 𝐖 & 𝐡$

&()

§ Multiply node features with weight matrix 𝐖 !

Jure Leskovec & Mina Ghashami, Stanford University

(2) Aggregation

(1) Message

Node 𝒗

𝐦-
(*) = MSG * 𝐡-

*2,

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

31

¡ (2) Aggregation
§ Intuition: Each node will aggregate the messages from

node 𝑣’s neighbors

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§𝐡*
& = Sum({𝐦$

& , 𝑢 ∈ 𝑁(𝑣)})

𝐡$
(&) = AGG & 𝐦-

* , 𝑢 ∈ 𝑁 𝑣

Jure Leskovec & Mina Ghashami, Stanford University

(2) Aggregation

(1) Message

Node 𝒗

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

32

𝐡*
& = CONCAT AGG 𝐦$

& , 𝑢 ∈ 𝑁 𝑣 ,𝐦*
&

¡ Issue: Information from node 𝑣 itself could get lost
§ Computation of 𝐡*

(&) does not directly depend on 𝐡*
(&())

¡ Solution: Include 𝐡%
(*2,) when computing 𝐡%

(*)

§ (1) Message: compute message from node 𝒗 itself
§ Usually, a different message computation will be performed

§ (2) Aggregation: After aggregating from neighbors, we can
aggregate the message from node 𝒗 itself
§ Via concatenation or summation

Jure Leskovec & Mina Ghashami, Stanford University

𝐦"
(!) = 𝐁 ! 𝐡"

!%&𝐦'
(!) = 𝐖 ! 𝐡'

!%&

First aggregate from neighbors

Then aggregate from node itself

33

(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as 𝜎(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation

Jure Leskovec & Mina Ghashami, Stanford University

𝐦-
(*) = MSG * 𝐡-

*2, , 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡$
(&) = AGG & 𝐦(

& , 𝑢 ∈ 𝑁 𝑣 ,𝐦$
&

34

¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?

Jure Leskovec & Mina Ghashami, Stanford University

𝐡*
(&) = 𝜎 𝐖 & H

$∈, *

𝐡$
&()

𝑁 𝑣

𝐡*
(&) = 𝜎 H

$∈, *

𝐖 & 𝐡$
&()

𝑁 𝑣

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

35

https://arxiv.org/pdf/1609.02907.pdf

¡ (1) Graph Convolutional Networks (GCN)

¡ Message:

§ Each Neighbor: 𝐦$
(&) =)

, *
𝐖 & 𝐡$

&()

¡ Aggregation:
§ Sum over messages from neighbors, then apply activation

§ 𝐡*
& = 𝜎 Sum 𝐦$

& , 𝑢 ∈ 𝑁 𝑣

Jure Leskovec & Mina Ghashami, Stanford University

Normalized by node degree
(In the GCN paper they use a slightly
different normalization)

𝐡*
(&) = 𝜎 H

$∈, *

𝐖 & 𝐡$
&()

𝑁 𝑣
(2) Aggregation

(1) Message

36

¡ (2) GraphSAGE
¡ Inductive model: generalizable to unseen

nodes during training
¡ Uses Message + Aggregation framework based on

local neighborhood of a node

Jure Leskovec & Mina Ghashami, Stanford University

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

37

https://arxiv.org/pdf/1706.02216.pdf

¡ (2) GraphSAGE

¡ How to write this as Message + Aggregation?
§ Message is computed within the AGG ⋅
§ Two-stage aggregation

§ Stage 1: Aggregate from node neighbors

§ Stage 2: Further aggregate over the node itself

Jure Leskovec & Mina Ghashami, Stanford University

𝐡*
(&) = 𝜎 𝐖(&) I CONCAT 𝐡*

&() , AGG 𝐡$
&() , ∀𝑢 ∈ 𝑁 𝑣

𝐡((")
(!) ← AGG 𝐡'

(!%&), ∀𝑢 ∈ 𝑁 𝑣

𝐡"
(!) ← 𝜎 𝐖(!) ⋅ CONCAT(𝐡"

!%& , 𝐡((")
(!))

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

38

https://arxiv.org/pdf/1706.02216.pdf

¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply
symmetric vector function Mean(⋅) or Max(⋅)

AGG = 2
-∈E(%)

𝐡-
(*2,)

𝑁(𝑣)

Jure Leskovec & Mina Ghashami, Stanford University

AGG = Mean({MLP(𝐡-
(*2,)), ∀𝑢 ∈ 𝑁(𝑣)})

Message computation

Message computation

Aggregation

Aggregation

39

¡ ℓ# Normalization:
§ Optional: Apply ℓ- normalization to 𝐡*

(&) at every layer

§ 𝐡$
(&) ← 𝐡#

(%)

𝐡#
(%)

'

∀𝑣 ∈ 𝑉 where 𝑢 * = ∑+ 𝑢+* (ℓ*-norm)

§ Without ℓ* normalization, the embedding vectors have
different scales (ℓ*-norm) for vectors

§ In some cases (not always), normalization of embedding
results in performance improvement

§ After ℓ* normalization, all vectors will have the same
ℓ*-norm

Jure Leskovec & Mina Ghashami, Stanford University 40

¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE

§ 𝛼%- =
,

E %
is the weighting factor (importance)

of node 𝑢’s message to node 𝑣
§ ⟹ 𝛼%- is defined explicitly based on the

structural properties of the graph (node degree)
§ ⟹ All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important

to node 𝑣

𝐡%
(*) = 𝜎(∑-∈E % 𝛼%-𝐖(*)𝐡-

(*2,))

Jure Leskovec & Mina Ghashami, Stanford University

Attention weights

41

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors 𝜶𝒗𝒖 to be
learned?

¡ Goal: Specify arbitrary learnable importance to
different neighbors of each node in the graph

¡ Idea: Compute embedding 𝒉!
(&) of each node in the

graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different nodes

in a neighborhood

Jure Leskovec & Mina Ghashami, Stanford University

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

42

¡ Let 𝛼"$ be computed as a byproduct of an
attention mechanism 𝒂:
§ (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across

pairs of nodes 𝑢, 𝑣 based on their messages:
𝑒%- = 𝑎(𝐖(*)𝐡-

(*2,),𝐖(*)𝒉%
(*2,))

§ 𝒆𝒗𝒖 indicates the importance of 𝒖0𝐬message to node 𝒗

Jure Leskovec & Mina Ghashami, Stanford University

𝐡*
("#$)

𝐡+
("#$)

𝑒*+

𝑒23 = 𝑎(𝐖(&)𝐡2
(&()),𝐖(&)𝐡3

(&()))
43

§ Normalize 𝑒%- into the final attention weight 𝜶𝒗𝒖
§ Use the softmax function, so that ∑$∈, * 𝛼*$ = 1:

𝛼$(=
exp(𝑒$()

∑,∈. $ exp(𝑒$,)

§ Weighted sum based on the final attention weight
𝜶𝒗𝒖

𝐡$
(&) = 𝜎(∑(∈. $ 𝛼$(𝐖(&)𝐡(

(&/0))

Jure Leskovec & Mina Ghashami, Stanford University

𝛼*+
Weighted sum using 𝛼23, 𝛼25, 𝛼26:
𝐡)
(!) = 𝜎(𝛼)*𝐖(!)𝐡*

(!%&)+𝛼)+𝐖(!)𝐡+
(!%&)+

𝛼),𝐖(!)𝐡,
(!%&))

𝐡+
("#$)

𝐡,
("#$)

𝛼*,

𝛼*-

44

¡ What is the form of attention mechanism 𝒂?
§ The approach is agnostic to the choice of 𝑎

§ E.g., use a simple single-layer neural network
§ 𝑎 have trainable parameters (weights in the Linear layer)

§ Parameters of 𝑎 are trained jointly:
§ Learn the parameters together with weight matrices (i.e.,

other parameter of the neural net 𝐖(&)) in an end-to-end
fashion

Jure Leskovec & Mina Ghashami, Stanford University

𝑒)* = 𝑎 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)

= Linear Concat 𝐖(!)𝐡)
(!%&),𝐖(!)𝐡*

(!%&)
𝐡*
("#$) 𝐡+

("#$)

Concatenate Linear
𝑒)*

45

¡ Multi-head attention: Stabilizes the learning
process of attention mechanism
§ Create multiple attention scores (each replica

with a different set of parameters):

§ Outputs are aggregated:
§ By concatenation or summation

§ 𝐡*
(&) = AGG(𝐡*

(&) 1 , 𝐡*
(&) 2 , 𝐡*

(&) 3)

Jure Leskovec & Mina Ghashami, Stanford University

𝐡$
(&)[1] = 𝜎(∑(∈. $ 𝛼$(0 𝐖(&)𝐡(

(&/0))

𝐡$
(&)[2] = 𝜎(∑(∈. $ 𝛼$(* 𝐖(&)𝐡(

(&/0))

𝐡$
(&)[3] = 𝜎(∑(∈. $ 𝛼$(1 𝐖(&)𝐡(

(&/0))

46

¡ Key benefit: Allows for (implicitly) specifying different
importance values (𝜶𝒗𝒖) to different neighbors

¡ Computationally efficient:
§ Computation of attentional coefficients can be parallelized

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient:
§ Sparse matrix operations do not require more than
𝑂(𝑉 + 𝐸) entries to be stored

§ Fixed number of parameters, irrespective of graph size
¡ Localized:

§ Only attends over local network neighborhoods
¡ Inductive capability:

§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure

Jure Leskovec & Mina Ghashami, Stanford University 47

Apply activation to 𝒊-th dimension of
embedding 𝐱
¡ Rectified linear unit (ReLU)

ReLU 𝐱7 = max(𝐱7, 0)
§ Most commonly used

¡ Sigmoid

𝜎 𝐱7 =
1

1 + 𝑒(𝐱"
§ Used only when you want to restrict the

range of your embeddings
¡ Parametric ReLU
PReLU 𝐱7 = max 𝐱7, 0 + 𝑎7min(𝐱7, 0)

𝑎7 is a trainable parameter
§ Empirically performs better than ReLU

Jure Leskovec & Mina Ghashami, Stanford University

𝑥

𝑦

0
𝑥

𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒!"

48

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon

http://cs224w.stanford.edu

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

50

https://arxiv.org/pdf/2011.08843.pdf

Our assumption so far has been
¡ Raw input graph = computational graph
Reasons for breaking this assumption
§ Feature level:

§ The input graph lacks features à feature augmentation
§ Structure level:

§ The graph is too sparse à inefficient message passing
§ The graph is too dense à message passing is too costly
§ The graph is too large à cannot fit the computational

graph into a GPU
§ It’s just unlikely that the input graph happens to be

the optimal computation graph for embeddings
Jure Leskovec & Mina Ghashami, Stanford University 51

¡ Graph Feature manipulation
§ The input graph lacks features à feature

augmentation
¡ Graph Structure manipulation
§ The graph is too sparse à Add virtual nodes / edges
§ The graph is too dense à Sample neighbors when

doing message passing
§ The graph is too large à Sample subgraphs to

compute embeddings
§ Will cover later in lecture: Scaling up GNNs

Jure Leskovec & Mina Ghashami, Stanford University 52

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ a) Assign constant values to nodes

Jure Leskovec & Mina Ghashami, Stanford University

1

1

1

1

1

1

53

Why do we need feature augmentation?
¡ (1) Input graph does not have node features
§ This is common when we only have the adj. matrix

¡ Standard approaches:
¡ b) Assign unique IDs to nodes
§ These IDs are converted into one-hot vectors

Jure Leskovec & Mina Ghashami, Stanford University

1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5
One-hot vector for node with ID=5

54

¡ Feature augmentation: constant vs. one-hot

Jure Leskovec & Mina Ghashami, Stanford University

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are
identical, but GNN can still learn
from the graph structure

High. Each node has a unique ID,
so node-specific information can
be stored

Inductive learning
(Generalize to
unseen nodes)

High. Simple to generalize to new
nodes: we assign constant
feature to them, then apply our
GNN

Low. Cannot generalize to new
nodes: new nodes introduce new
IDs, GNN doesn’t know how to
embed unseen IDs

Computational
cost

Low. Only 1 dimensional feature High. 𝑂 𝑉 dimensional feature,
cannot apply to large graphs

Use cases Any graph, inductive settings
(generalize to new nodes)

Small graph, transductive settings
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1

55

Why do we need feature augmentation?
¡ (2) Certain features can help GNN learning
¡ Other commonly used augmented features:
§ Node degree
§ PageRank
§ Clustering coefficient
§ …

¡ Any useful graph statistics can be used!

Jure Leskovec & Mina Ghashami, Stanford University 56

¡ Motivation: Augment sparse graphs
¡ (1) Add virtual edges
§ Common approach: Connect 2-hop neighbors via

virtual edges
§ Intuition: Instead of using adj. matrix 𝐴 for GNN

computation, use 𝐴 + 𝐴U

Jure Leskovec & Mina Ghashami, Stanford University

A

B

C

D

E

Authors Papers

§ Use cases: Bipartite graphs
§ Author-to-papers (they authored)
§ 2-hop virtual edges make an author-author

collaboration graph
57

¡ Motivation: Augment sparse graphs
¡ (2) Add virtual nodes
§ The virtual node will connect to all the

nodes in the graph
§ Suppose in a sparse graph, two nodes have

shortest path distance of 10
§ After adding the virtual node, all the nodes

will have a distance of 2
§ Node A – Virtual node – Node B

§ Benefits: Greatly improves message
passing in sparse graphs

Jure Leskovec & Mina Ghashami, Stanford University

The virtual
node

58

¡ Previously:
§ All the nodes are used for message passing

¡ New idea: (Randomly) sample a node’s
neighborhood for message passing

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

59

https://arxiv.org/pdf/1706.02216.pdf

¡ For example, we can randomly choose 2
neighbors to pass messages
§ Only nodes 𝐵 and 𝐷 will pass message to 𝐴

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

60

¡ Next time when we compute the embeddings,
we can sample different neighbors
§ Only nodes 𝐶 and 𝐷 will pass message to 𝐴

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

61

¡ In expectation, we can get embeddings similar
to the case where all the neighbors are used
§ Benefits: greatly reduce computational cost
§ And in practice it works great!

Jure Leskovec & Mina Ghashami, Stanford University

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

62

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA

¡ Recap: A general perspective for GNNs
§ GNN Layer:

§ Transformation + Aggregation
§ Classic GNN layers: GCN, GraphSAGE, GAT

§ Layer connectivity:
§ Deciding number of layers
§ Skip connections

§ Graph Manipulation:
§ Feature augmentation
§ Structure manipulation

Jure Leskovec & Mina Ghashami, Stanford University 63

