Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to

modify them to fit your own needs. If you make use of a significant portion of these slides

in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Graph Representation
Learning



http://www.mmds.org/

Representation Learning in Graphs

It is to learn a mapping that embeds nodes,
subgraphs, or the entire graphs, as points in a
low-dimensional vector space.

........................................... Zy,
i ¥ :
\ P S /—\v ............................................................
original network embedding space

Such that geometric relationships in the learned
space reflect the structure of the original graph.
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Example: Link Prediction
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Examples of link prediction task:
- Identifying real-world friends in social network
- Discovering novel interactions between genes in genomics

- Recommender systems
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Example: Node Classification
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Example: Node Classification
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Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel

protein—protein interactions. Nature.

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

5/11/23


https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience
https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience

Machine Learning Lifecycle

(Supervised) Machine Learning Lifecycle
requires feature engineering every
single time!

Raw Structured Leaming
Data Data Algorithm

t Automatically Downstream
Eng g learn the features task
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Feature Learning in Graphs

Goal: Efficient task-independent
feature learning for machine learning

in networks!
node vec
u >
. d
fru—->R N - Y,
Rd

Feature representation,
embedding
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Why network embedding?

Task: We map each node in a network to a
point in a low-dimensional space

5/11/23

Distributed representation for nodes

Similarity of embedding between nodes indicates
their network similarity

Encode network information and generate node
representation
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Latent Dimensions _
e Anomaly Detection

e Attribute Prediction
> >e Clustering
e Link Prediction

Adjacency Matrix

V| d << |v]|



Example Node Embedding

2D embedding of nodes of the Zachary’s
Karate Club network:
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Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.
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https://arxiv.org/pdf/1403.6652.pdf

Embedding Nodes



Setup

Assume we have a graph G:
Vis the vertex set

A is the adjacency matrix (assume binary)
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Embedding Nodes

Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)

approximates similarity in the original
network

o Zv
/ \\u encode nodes ‘
T~ / \ ““““““
\ / I
ENC(v)
original network embedding space
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Embedding Nodes

e . . T
Goal: similarity(u,v) ~ z, z,
in the original network Similarity of the embedding

Need to definel

.Zu
\ """"""""" .Z’U
<\ /“\ encpde nodes g
\/ ——w e
ENC(v)
original network embedding space
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Learning Node Embeddings

5/11

/23

Define an encoder (i.e., a mapping from
nodes to embeddings)

Define a node similarity function (i.e., a
measure of similarity in the original
network)

Optimize the parameters of the encoder
so that:

similarity (u, v) ~ z, 2z,

in the original network Similarity of the embedding

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets



Two Key Components

Encoder maps each node to a low-
dimensional vector d-dimensional
ENC(U) —z, embedding
node In the input graph
Similarity function specifies how relationships

in vector space map to relationships in the
original network

similarity (u, v) ~ ZI Zy,
Similarity of wand vin dot product between node

the original network embeddings
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“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

ENC(v) = Zv

7 c Rdx \V‘ Matrix, each column is d-dim node

5/11

/23

embedding [what we learnl]

‘V‘ Indicator vector, all zeroes
V & H except fora “1” at the
position that corresponds to
node v
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“Shallow” Encoding

Simplest encoding approach: encoder is just
an embedding-lookup

embedding vector for a

embedding specific node
matrix

Dimension/size
of embeddings

7 =

L] L]
!l_ -Il

one column per node
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“Shallow” Encoding

Simplest encoding approach: encoder is
just an embedding-lookup

Each node is assighed a unique
embedding vector

Many methods: node2vec, DeepWalk, LINE
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How to Define Node Similarity?

Key choice of methods is how they define node
similarity.

E.g., should two nodes have similar embeddings
if they...
are connected?
share neighbors?

similar “structural roles”?
?
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Random Walk Approaches to
Node Embeddings


https://arxiv.org/pdf/1403.6652.pdf
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

Random-walk Embeddings

Probabllity that u

ZT 7 e and v cO-Occur on
u U a random walk over

the network

Z, ... embedding of node u
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Random-walk Embeddings

The probability of visiting node v on a
random walk starting from node u using
some random walk strategy R

N

Z, Z, ~ Pr(V|W)

Optimize the embeddings to

capture node similarity \
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Why Random Walks?

5/11

/23

Expressivity: Flexible stochastic
definition of node similarity that
incorporates both local and higher-
order neighborhood information

Efficiency: Do not need to consider all
node pairs when training; only need to
consider pairs that co-occur on random
walks



Unsupervised Feature Learning

-

~ Pp(v|U
Zu Z’U ~Y R( ‘ )
For every u, what v to consider?

Idea: Consider nearby nodes

For a node u, consider all v in neighborhood of u

N (u) ... neighbourhood of u obtained by some
strategy R

5/11/23



Feature Learning as Optimization

Given G = (V,E). Our goal is to learn a mapping
z:u - R

Given node u, we want to learn feature

representations predictive of nodes in its
neighborhood Ny (u)

Maximum likelihood optimization problem:
Maximize Log-probability of observing neighborhood:

max ) log P(Ng ()] 7,)

ueEv
where Ny (u) is neighborhood of node u
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Random Walk Optimization

Run short fixed-length random walks
starting from each node on the graph using
some strategy R

For each node u collect Ni (u), the multiset”
of nodes visited on random walks starting

from u
Optimize embeddings according to: Given

node u, predict its neighbors Ni (u)

max Z log P(Ng ()| z,,)

uev

NR(u) can have repeat eIements smce nodes can be V|S|ted multiple times on random walks
5/11/23 ure Les ¢ & Mina Ghashami, Stanford C246: Mining Massive



Random Walk Optimization

max Z log P(Ng ()| z,)

uev
Conditional independence

Likelihood of observing a neighborhood node is
independent of observing any other neighborhood node

PVe@lz) = | [ P12

VENR(U)
Symmetry in feature space Why softmax?
. . We want node v to be
Softmax parametrization: most similar to node u
. (out of all nodes n).
P(z,|z,) = SXP(Zy Zy) Intuition: 3, exp(x;) ~

ZneV exp(zn-zy) max exp(x;)
l
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Random Walk Optimization

Putting it all together:

D R )

eX
u€V veNR(u) nev p(

Optimizing random walk embeddings =

Finding node embeddings z that minimize L
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Random Walk Optimization

X F (s

eXP\Z,, Z
u€V veNRg(u) nev p( w

Nested sum over nodes gives
O(|V]%) complexity!
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Random Walk Optimization

=3 P o ()

€X
ucV veENR(u) nev p(
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Negative Sampling

Solution: Negative sampling

-

exp(z,, Z,

o (znev exp(zT)zn>>

~ log(o(z, z,))

sigmoid function

(makes each term a “probability”

between 0 and 1)

Z log(o

Why is the approximation valid?
Technically, this is a different objective. But
Negative Sampling is a form of Noise
Contrastive Estimation (NCE) which approx.
maximizes the log probability of softmax.

New formulation corresponds to using a
logistic regression (sigmoid func.) to
distinguish the target node v from nodes n;
sampled from background distribution P,.

More at https://arxiv.org/pdf/1402.3722.pdf

(z zn)) n; ~ Py

random distribution over

a

Il nodes

Instead of normalizing w.r.t. all nodes, just
normalize against k random “negative samples” n;

5/11/23

Jure

Les

kove

¢ & Mina Ghashami, Stanford C246: Mining Mass

ive Datase

ts


https://arxiv.org/pdf/1402.3722.pdf

Negative Sampling

random distribution
over all nodes

| ( exp(z, Z,) )
0g
ZnEV eXp(ZZZn)
k

~log(o(z,20)) — » log(o(2, 2zn,)),ni ~ Py
1=1
. Sample k negative nodes proportional to degree
= Two considerations for k (# negative samples):
1. Higher k gives more robust estimates
2. Higher k corresponds to higher computation cost

In practice k =5-20
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Random Walks: Stepping Back

5/11

/23

Run short fixed-length random walks starting from
each node on the graph using some strategy R.

For each node u collect N 4(u), the multiset of
nodes visited on random walks starting from u

Optimize embeddings using Stochastic Gradient
Descent:

L = Z Z log (U‘Zu))

ueV veNg(u)

ure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets



How should we randomly walk?

= So far we have described how to optimize
embeddings given random walk statistics

= What strategies should we use to run these
random walks?
= Simplest idea: Just run fixed-length, unbiased

random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013).

= The issue is that such notion of similarity is too constrained

= How can we generalize this?
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https://arxiv.org/abs/1403.6652

Overview of node2vec

5/11
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Goal: Embed nodes with similar network
neighborhoods close in the feature space

We frame this goal as prediction-task independent
maximum likelihood optimization problem

Key observation: Flexible notion of network
neighborhood Np(u) of node u leads to rich node
embeddings

Develop biased 2" order random walk R to
generate network neighborhood N (1) of node u

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets



node2vec: Biased Walks

Idea: use flexible, biased random walks that can
trade off between and views of the
network (Grover and Leskovec, 2016).



https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf

node2vec: Biased Walks

Two classic strategies to define a neighborhood
N (u) of a given node u:

Walk of length 3 (N (u) of size 3):
Nprs(u) = { 51,52,53} Local microscopic view

Nprs(u) = { s4,55,5,} Global macroscopic view

5/11/23



Interpolating BFS and DFS

Biased fixed-length random walk R that given a
node u generates neighborhood N (u)
Two parameters:
Return parameter p:
Return back to the previous node

In-out parameter q:

Moving outwards (DFS) vs. spreading (BFS)
Intuitively, q is the “ratio” of BFS vs. DFS
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Biased Random Walks

Biased 2"d-order random walks explore network
neighborhoods:

Rnd. walk just traversed edge (s;, w) and is now at w
Insight: Neighbors of w can only be:

Same distance to s4

Back to s4

Idea: Remember where that walk came from

5/11/23



Biased Random Walks

Walker came over edge (s;, w) and is at w.
Where to go next?

1/p,1/q,1 are
unnormalized
probabllities

p, g model transition probabilities
p ... return parameter
q ... “walk away” parameter
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Biased Random Walks

Walker came over edge (s1, w) and is at w.

Where to go next?

Targett Prob. Dist. (s4, 1)

w—= S]] 1 1
ss|11/q ] 2
s,11/q ] 2
Unnormalized
BFS-like walk: Low value of p transition prob.

segmented based
on distance from s,

DFS-like walk: Low value of g
N (u) are the nodes visited by the biased walk
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node2vec algorithm

5/11

1) Compute random walk probabilities
2) Simulate r random walks of length [ starting

from each node u
3) Optimize the node2vec objective using

Stochastic Gradient Descent

Linear-time complexity.
All 3 steps are individually parallelizable

/23



BFS vs. DFS

BFS: DFS:
Micro-view of Macro-view of
neighbourhood neighbourhood
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Experiments: Micro vs. Macro

Small network of interactions of characters in a
novel:

g gl y
@S 0% " ..;‘ff >0 - @ g0
W = : Vi f@O A .0. :
a3 ’ pe Y T
0% e
o=1, g=2 p=1, g=0.5
Microscopic view of the Macroscopic view of the

network neighbourhood network neighbourhood
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Node2vec: Incomplete Network

/

Predictive performance

0.05 -

Predictive performance

0.0 0.1 0.2 0.3 0.4 0.5 0.6 ‘ 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction of missing edges Fraction of additional edges

How does predictive performance change as we
randomly remove a fraction of edges (left)
randomly add a fraction of edges (right)

5/11/23 Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets



Other random walk ideas

(not covered in detailed here but for your reference)

Different kinds of biased random walks:
Based on node attributes (Dong et al., 2017).
Based on a learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:

Directly optimize based on 1-hop and 2-hop random walk
probabilities (as in LINE from Tang et al. 2015).

Network preprocessing techniques:

Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et al.

2016’s HARP).
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https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf
https://arxiv.org/abs/1710.09599
https://arxiv.org/abs/1503.03578
https://arxiv.org/pdf/1704.03165.pdf
https://arxiv.org/abs/1706.07845
https://arxiv.org/abs/1706.07845

How to Use Embeddings

5/11/23

How to use embeddings z; of nodes:

Clustering/community detection: Cluster
nodes/points based on z;

Node classification: Predict label f (z;) of node i
based on z;

Link prediction: Predict edge (i, j) based on f(z;, z;)
Where we can: concatenate, avg, product, or take a
difference between the embeddings:

Concatenate: f(z;, zj)= 9(|zi, z;])

Hadamard: f (z;, zj)= g(z; * z;) (per coordinate product)
Sum/Avg: f(zi,zj)= 9(z; + z)

Distance: f(z;, z)= g(||z; — z|12)

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets
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Basic idea: Embed nodes so that similarities
in embedding space reflect node similarities
in the original network.

Different notions of node similarity:
Adjacency-based (i.e., similar if connected)
Multi-hop similarity definitions.

Random walk approaches (covered today)

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets
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So what method should | use..?
No one method wins in all cases....

E.g., node2vec performs better on node classification
while multi-hop methods perform better on link
prediction (Goyal and Ferrara, 2017 survey)

Random walk approaches are generally more
efficient

In general: Must choose def’n of node
similarity that matches your application!

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets


https://arxiv.org/abs/1705.02801

