Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Community Detection in Graphs

CS246: Mining Massive Datasets Jure Leskovec, Stanford University Mina Ghashami, Amazon http://cs246.stanford.edu

Networks & Communities

We often think of networks being organized into modules, clusters, communities:

Non-overlapping Clusters

Goal: Find Densely Linked Clusters

Movies and Actors

Clusters in Movies-to-Actors graph:

[Andersen, Lang: Communities from seed sets, 2006]

Micro-Markets in Sponsored Search

Find micro-markets by partitioning the query-to-advertiser graph:

[Andersen, Lang: Communities from seed sets, 2006]

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

The Setting

Graph is large

Assume the graph fits in main memory

- For example, to work with a 200M node and 2B edge graph one needs approx. 16GB RAM.
- But the graph is too big for running anything more than linear time algorithms.
- We will cover a PageRank based algorithm for finding dense clusters.
 - The runtime of the algorithm will be proportional to the cluster size (not the graph size!).

Idea: Seed Nodes

Discovering clusters based on seed nodes

- Given: Seed node s
- Compute (approximate) Personalized PageRank (PPR) around node s (teleport set={s})
- Idea is that if s belongs to a nice cluster, the random walk will get trapped inside the cluster

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Seed Node: Intuition

- Pick a seed node s of interest
- Run PPR with teleport set = {s
- Sort the nodes by the decreasing PPR score
- Sweep over the nodes and find good clusters

What makes a good cluster?

- Undirected graph G(V, E):
- Partitioning task:
 - Divide vertices into 2 disjoint groups $A, B = V \setminus A$

3

Question:

How can we define a "good" cluster in G?

What makes a good cluster?

- What makes a good cluster?
 - Maximize the number of within-cluster connections
 - Minimize the number of between-cluster connections

Graph Cuts

- Express cluster quality as a function of the "edge cut" of the cluster
- Cut: Set of edges (edge weights) with only one node in the cluster:

$$cut(A) = \sum_{i \in A, j \notin A} W_{ij}$$

Note: This works for weighted and unweighted (set all **w**_{ij}=1) undirected graphs

Cut Score

Partition quality: Cut score

 Quality of a cluster is the weight of connections pointing outside the cluster

Problem:

- Only considers external cluster connections
- Does not consider internal cluster connectivity

Graph Partitioning Criteria

Criterion: Conductance:

Connectivity of the group to the rest of the network relative to the density of the group

$$\phi(A) = \frac{|\{(i, j) \in E; i \in A, j \notin A\}|}{\min(vol(A), 2m - vol(A))}$$

vol(A): total weight of the edges with at least one endpoint in A: $vol(A) = \sum_{i \in A} d_i$

Vol(A)=sum of degree of nodes inside A

=2*#edges inside A + #edges pointing out of A

Why use conductance?

Produces more balanced partitions

m... number of edges of the graph
d_i... degree of node *I E*...edge set of the graph

Example: Conductance Score

Algorithm Outline: Sweep

Algorithm outline:

- Pick a seed node s of interest
- Run PPR w/ teleport={s}
- Sort the nodes by the decreasing PPR score
- Sweep over the nodes and find good clusters

Sweep:

- Sort nodes by decreasing PPR score $r_1 > r_2 > \cdots > r_n$
- For each i compute $\phi(A_i = \{u_1, ..., u_i\})$
- Local minima of $\phi(A_i)$ correspond to good clusters

Computing the Sweep

- The whole Sweep curve can be computed in linear time:
 - For loop over the nodes
 - Keep hash-table of nodes in a set A_i

- Node rank *i* in decreasing **PPR** score
- To compute $\boldsymbol{\phi}(\boldsymbol{A_{i+1}}) = Cut(A_{i+1})/Vol(A_{i+1})$
 - $Vol(A_{i+1}) = Vol(A_i) + d_{i+1}$
 - $Cut(A_{i+1}) = Cut(A_i) + d_{i+1} 2\#(edges \ of \ u_{i+1} \ to \ A_i)$

Computing PPR

- How to compute Personalized PageRank (PPR) without touching the whole graph?
 - Power method won't work since each single iteration accesses all nodes of the graph:

$$\mathbf{r}^{(\mathbf{t+1})} = \beta M \cdot \mathbf{r}^{(t)} + (1-\beta) \left[\frac{1}{N}\right]_{N \times 1}$$

- *M* is the transition matrix
- *r* is the personalized PageRank vector
- $\left[\frac{1}{N}\right]_{N \times 1}$ is the teleportation vector when we teleport to all nodes uniformly at random
- In case of teleport set S={s}:

$$\mathbf{r}^{(t+1)} = \beta M \cdot \mathbf{r}^{(t)} + (1-\beta)\mathbf{a}$$

• a is a teleport vector: $a = [0 \dots 0 1 0 \dots 0]^T$

At index S

Computing PPR

- Approximate PageRank (AKA PageRank-Nibble) [Andersen, Chung, Lang, '07]
 - A fast method for computing approximate Personalized PageRank (PPR) with teleport set S={s}
 - ApproxPageRank(s, β, ε)
 - **s** ... seed node
 - β ... teleportation parameter
 - ε ... approximation error parameter

Approximate PPR: Overview

- Approximate PPR on <u>undirected graph</u>
 - Lazy random walk, which is a variant of a random walk that stays put with probability 1/2 at each time step, and walks to a random neighbor the other half of the time:

$$r_u^{(t+1)} = \frac{1}{2}r_u^{(t)} + \frac{1}{2}\sum_{i \to u} \frac{1}{d_i}r_i^{(t)} \qquad \qquad d_i \dots \text{ degree of } i$$

- Keep track of <u>residual</u> PPR score $q_u = p_u r_u^{(t)}$
 - Residual q_u : how well is PPR score p_u of u is approximated
 - *p_u*... is the "true" PageRank of node *u*

• $r_u^{(t)}$... is PageRank estimate of node u at around tIf residual q_u of node u is too big $\frac{q_u}{d_u} \ge \varepsilon$ then push the walk further (distribute some of residual q_u to all u's neighbors along outgoing edges), else we don't touch the node

"Push" Operation

residual PPR score $q_u = p_u - r_u$

Idea: a...teleport vector

- *r*... approx. PageRank, *q*... its residual PageRank
- Start with trivial approximation: r = 0 and q = a
- Iteratively push PageRank from q to r until q is small

Push: 1 step of a lazy random walk from node u:

Push(u, r, q):

$$r' = r, q' = q$$

 $r'_{u} = r_{u} + (1 - \beta)q_{u}$
 $q'_{u} = \frac{1}{2}\beta q_{u}$
for each v such that $u \rightarrow v$:
 $q'_{v} = q_{v} + \frac{1}{2}\beta \frac{q_{u}}{d_{u}}$
return r', q'

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

 $1-\beta$...teleport prob

Update r Do 1 step of a walk: Stay at u with prob. $\frac{1}{2}$ Spread remaining $\frac{1}{2}$ fraction of q_u as if a single step of random walk were applied to u₂₃

Intuition Behind Push Operation

Push(u, r, q):

r' = r, q' = q

 $q'_u = \frac{1}{2}\beta q_u$

 $r'_u = r_u + (1 - \beta)q_u$

for each v such that $u \rightarrow v$:

- If *q_u* is large, this means that we have underestimated the importance of node *u*
- Then we want to take some of that residual (q_u) and give it away, since we know that we have too much of it
- So, we keep ¹/₂ βq_u and then give away the rest to our neighbors, so that we can get rid of it

• This correspond to the spreading of $\frac{1}{2}\beta q_u/d_u$ term

 Each node wants to keep giving away this excess
 PageRank until all nodes have no or a very small gap in the excess PageRank

Approximate PPR

ApproxPageRank(S, β, ε): Set $r = \overline{0}$, q = [0 ... 0 1 0 ... 0]While $\max_{u \in V} \frac{q_u}{d_u} \ge \varepsilon$: At index **S** Choose any vertex \boldsymbol{u} where $\frac{q_u}{d_u} \ge \varepsilon$ **Push**(*u*, *r*, *q*): r' = r, q' = q $r'_{u} = r_{u} + (1 - \beta)q_{u}$ $q'_u = \frac{1}{2}\beta q_u$ For each v such that $u \rightarrow v$: $q_{\nu}' = q_{\nu} + \frac{1}{2}\beta q_u/d_u$ r = r', q = q'Return *r*

 $\begin{array}{l} r \ \dots \ PPR \ vector \\ r_u \ \dots PPR \ score \ of \ u \\ q \ \dots residual \ PPR \ vector \\ q_u \ \dots \ residual \ of \ node \ u \\ d_u \ \dots \ degree \ of \ u \end{array}$

Update **r**: Move $(1 - \beta)$ of the prob. from **q**_u to **r**_u

1 step of a lazy random walk:

- Stay at **u** with prob. ¹/₂

- Spread remaining $\frac{1}{2} \beta$ fraction of $\mathbf{q}_{\mathbf{u}}$ as if a single step of random walk were applied to \mathbf{u}

Observations (1)

Runtime:

- Approximate PageRank computes PPR in time $\left(\frac{1}{\varepsilon(1-\beta)}\right)$ with residual error $\leq \varepsilon$
 - Power method would take time $O(\frac{\log n}{\epsilon(1-R)})$
- Graph cut approximation guarantee:
 - If there exists a cut of conductance ϕ and volume k then the method finds a cut of conductance $O(\sqrt{\phi/\log k})$
 - Details in [Andersen, Chung, Lang. Local graph partitioning using PageRank vectors, 2007]
 http://www.math.ucsd.edu/~fan/wp/localpartfull.pdf Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Observations (2)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Observations (3)

Example

Summary of Approx PPR Alg.

- Pick a seed node s of interest
- Run **PPR** with teleport set = {**s**}
- Sort the nodes by the decreasing PPR score
- Sweep over the nodes and find good clusters

Community Detection Motivation

Cells Are Heterogenous

Every cell in a tissue has a specific role

Challenge: How to determine roles of cells?

Cell Type Identification Task

Cell type identification task: Given gene expressions of cells, assign cells to cell types

 Boils down to a clustering task: group cells according to their gene expression similarities

Cell Type Identification Task

Challenges with Standard Clustering

- Can we use standard clustering methods such as K-means to solve this problem?
- Why standard cluster methods do not work well?
 - Data is very high-dimensional (~20k genes per cell)
 - Data is noisy and sparse (most values will be zero)
 - Number of clusters (cell types) is unknown
 - Cell types are hierarchically organized
 - Definition of cell type is provisional
 - One cell type can have multiple cell subtypes
 - Where to put a threshold on a definition of a cell type?

Idea: Represent Cells as a Graph

 Idea: Construct a graph between data points (cells) and detect hierarchical network communities in a graph

Why is graph a good representation?

- Natural representation: models cell-cell interaction
- Cells with more similar gene expressions are more likely to interact
 - Construct a graph based on similarities between gene expressions of cells
- Hierarchical network communities model well cell type hierarchy

We will cover next:

- How to construct a graph from high-dimensional data?
 - Efficient k-NN graph construction
- **2)** How to define network communities?
 - Modularity
- **3)** How to detect communities?
 - Louvain algorithm

Efficient K-NN Graph Construction

- K nearest neigbor (K-NN) graph: Directed graph with vertex set V and an edge from each v ∈ V to its K most similar objects in V under a given similarity measure
 - *E.g.*, cosine similarity, l_2 distance, l_1 distance

Computing K-NN Graph

Brute force algorithm:

- Takes $O(n^2)$ time
- Only practical for small datasets!

How to efficiently compute K-NN graph?

- NN-Descent [Dong, Charikar, Li. '11]
 - Scalable method for creating approximate K-NN graph
 - Suitable for large-scale datasets
 - Empirical cost is around $O(n^{1.14})$
 - Suitable for distributed implementation (*e.g.*, Map Reduce)

NN-Descent Heuristic

- Idea: a notion of triangle inequality
 - a neighbor of a neighbor is also likely to be a neighbor
 - Δ = diameter of the whole dataset
 - Diameter = longest distance between any pair of points
 - Diameter = 2*radius
 - Heuristic argument: if K is large enough then even if we start from a random K-NN approximation we are likely to find for each object K items with a radius of Δ/2 by exploring its neighbors' neighbors.
 - Conceptually we iteratively shrink the radius until the nearest neighbors are found.

NN-Descent Heuristic

NN-Descent is an iterative refinement algorithm:

- Start with a random KNN graph
 - Each node picks K random other nodes as its nearest neighbors.
- Iteratively refine the list of nearest neighbors of each node:

A neighbor of a neighbor could also be my neighbor.

Keep doing this until convergence.

NN-Descent Algorithm

- Start with a random K-NN list by sampling K items for every node $v \in V$
- Then iteratively for every node $v \in V$:
 - B[v] ... is the current/approximate K-NN of v
 - R[v] ... is the current/approximate reverse K-NN of v
 - Reverse K-NN: $R[v] = \{u \in V | v \in B[u]\}$
 - Get general neighbors $B^*[v] = B[v] \cup R[v]$
 - For each general neighbor u ∈ B*[v], check the similarity between v and B*[u] (general neighbors of u are candidates for new neighbors of v)
 - Update nearest neighbors list if similarity is higher compared to the set of current approximate neighbors

Efficient KNN Graph Construction

```
NNDescent(V, \sigma, K):
    B[v] = Random sample of K items V, \forall v \in
    V
    Loop:
           R = reverse(B)
           \boldsymbol{B}^*[\boldsymbol{v}] = \boldsymbol{B}[\boldsymbol{v}] \cup \boldsymbol{R}[\boldsymbol{v}], \ \forall \boldsymbol{v} \in \boldsymbol{V}
           c = 0
           for v \in V:
                for u_1 \in B^*[v], u_2 \in B^*[u_1]:
                     l = \sigma(v, u_2)
                      c = c + updateNN (B[v], \langle u_2, l \rangle)
           return B if c = 0
reverse(B):
   R[v] = \{u \mid \langle v, \dots \rangle \in B[u]\}, \forall v \in V
```

return R

 $V \dots$ dataset ∂ σ ...similarity oracle $K \dots$ number of neighbors $B[v] \dots$ approximate neighbors of v $R[v] \dots$ approximate reverse neighbors of v $B^*[v] \dots$ approximate general neighbors of v $c \dots$ counter

B[v] is organized as a heap \rightarrow updates cost O(logK)

 updateNN(H, (u, l, ...)): Update KNN heap H return 1 if changed, 0 if not

Example: K = 2

Neighbors: $B[s] = \{c, d\}$ **Reverse neighbors:** $R[s] = \{b, c, e\}$ **General neighbors:** $B^*[s] = \{b, c, d, e\}$ Let's look at neighbors of neighbors: $B^*[b] = \{a, c, s\}$ $B^*[c] = \{b, d, s\}$ New candidates $B^*[d] = \{c, e, s\}$

 $B^*[e] = \{d, f, g, s\}$

for B[s]

We will check {a, b, e, f, g} as next candidates for B[s]: Compute $\sigma(s, a), \sigma(s, b), \sigma(s, e), \sigma(s, f), \sigma(s, g)$ and update NNs of s

Arrows denote neighbors of a particular node. For example, arrow from *b* to *s* means that *b* selected *s* as its neighbor (but the opposite does not need to be true).

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Further Improvements

Basic algorithm can be further optimized:

- Local join: Given node v and its neighbors B
 [v],
 compute similarity between each pair of different p, q ∈
 B*[v] and update B[p] and B[q] with the similarity
 (reduces number of comparisons)
- Incremental search: Attach a Boolean flag to remember if the objects have already been compared
- Early termination: Count the number of K-NN list updates in each iteration, and stop when it becomes less than δKN where δ is a precision parameter
- MapReduce implementation

Details in [Dong, Charikar, Li. *Efficient K-Nearest Neighbor Graph Construction for Generic Similarity Measures*, 2011]

https://dl.acm.org/doi/pdf/10.1145/1963405.1963487

Cell Type Identification Example

Which similarity measure σ to use?

- Cells are compared based on their gene expression profiles
- Challenge: Number of genes is very high-dimensional

Approach: First apply SVD (around 50 dimensions) and then compute l₂ distance in the low-dimensional space

After KNN Graph Construction

Once we created K-NN graph of cells, how do we define and detect network communities?

Step 2: Modularity Maximization

Network Communities

- To evaluate clusters in a hierarchical way, we define a new metric called modularity
- Modularity Q:
 - A measure of how well a network is partitioned into communities

- Communities: sets of tightly connected nodes
- Given a partitioning of the network into groups S:
 - $Q \propto \sum_{s \in S} [$ (# edges within group s) (expected # edges within group s)]

Need a null model!

Null Model: Configuration Model

 Given a graph G on n nodes and m edges, construct a rewired network G'

- Remove edges and let spokes remain
- Nodes have same degrees as before but random connections
- Consider G' as a multigraph
- The expected number of edges between nodes
 - *i* and *j* of degrees k_i and k_j equals to: $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$

_

The expected number of edges in (multigraph) G':

$$= \frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_i k_j}{2m} = \frac{1}{2} \cdot \frac{1}{2m} \sum_{i \in N} k_i \left(\sum_{j \in N} k_j \right)$$
$$= \frac{1}{4m} 2m \cdot 2m = m$$

= 2m

Note:

Modularity of partitioning S of graph G:

• $\mathbf{Q} \propto \sum_{s \in S} [$ (# edges within group s) – (expected # edges within group s)]

•
$$Q(G,S) = \underbrace{\frac{1}{2m}}_{S \in S} \sum_{i \in S} \sum_{j \in S} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

Normalizing const.: -1A_{ij} = 1 \text{ if } i \rightarrow j, 0 \text{ else}

Modularity values take range [-1,1]

- It is positive if the number of edges within groups exceeds the expected number
- Q greater than 0.3-0.7 means significant community structure

0 else

Modularity: 2 Defs

$$Q(G,S) = \frac{1}{2m} \sum_{s \in S} \sum_{i \in S} \sum_{j \in S} \left(A_{ij} - \frac{k_i k_j}{2m} \right)$$

Equivalently modularity can be written as:

$$Q = rac{1}{2m}\sum_{ij}igg[A_{ij} - rac{k_ik_j}{2m}igg]\delta(c_i,c_j)$$

- A_{ij} represents the edge weight between nodes i and j;
- k_i and k_j are the sum of the weights of the edges attached to nodes i and j, respectively;
- 2m is the sum of all of the edge weights in the graph;
- c_i and c_j are the communities of the nodes; and
- $\, \bullet \, \delta \,$ is an indicator function

Idea: We can identify communities by maximizing modularity

Louvain Algorithm

Louvain Algorithm

- It is NP-hard to find optimal partitioning
- Louvain algorithm:
 - Greedy algorithm for community detection
 - Heuristic and works very well in practice
 - Supports weighted graphs
 - Provides hierarchical communities
 - $O(n \log n)$ run time
- Widely utilized to study large networks because:
 - Fast, has rapid convergence
 - High modularity output (i.e., "better communities") Jure Leskovec & Mina Ghashami, Stanford CS24

"Fast unfolding of communities in large networks" Blondel et al. (2908)

Louvain Algorithm: At High Level

- Louvain algorithm greedily maximizes modularity
 Each pass is made of 2 phases:
 - Phase 1: Modularity is optimized by allowing only local changes to node-communities memberships
 - Phase 2: The identified communities are aggregated into super-nodes to build a new network
 - Goto Phase 1

The passes are repeated iteratively until no increase of modularity is possible.

Louvain: 1st phase (Partitioning)

- Put each node in a graph into a distinct community (one node per community)
- For each node *i*, perform two calculations:
 - Compute the modularity delta (ΔQ) when putting node *i* into the community of some neighbor *j*
 - Move i to a community of node j that yields the largest gain in ΔQ

Phase 1 runs until no movement yields a gain

This first phase stops when a local maxima of the modularity is attained, i.e., when no individual node move can improve the modularity.

Note that the output of the algorithm depends on the order in which the nodes are considered. Research indicates that the ordering of the nodes does not have a significant influence on the overall modularity that is obtained.

What is ΔQ if we move node *i* to community *C*?

Assume node *i* is in community *D*, And we are moving it to community *C*

• Then:
$$\Delta Q = \Delta Q(i \rightarrow C) + \Delta Q(D \rightarrow i)$$

Putting node i into community C

Taking node i out of community D

• Let's look at computation of $\Delta Q(i \rightarrow C)$

- We only need to consider the modularity contribution from *i* and *C* before and after merging
- contribution from the rest of the network stays constant and can be ignored

$\Delta Q(i \rightarrow C) = Q_{partial,after} - Q_{partial,before}$

Some notation:

$$\Delta Q(i \to C) = \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m}\right)^2\right] - \left[\frac{\sum_{in} - \left(\frac{\sum_{tot} - k_i}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2\right]$$

- where:
 - Σ_{in}... sum of link weights <u>between</u> nodes in C
 - Σ_{tot} ... sum of <u>all</u> link weights of nodes in C
 - *k_{i,in}*... sum of link weights <u>between</u> node *i* and *C*
 - k_i... sum of <u>all</u> link weights (i.e., degree) of node i

So $\Delta Q(i \rightarrow C) = Q_{\text{partial,after}} - Q_{\text{partial,before}}$

First, we compute *Q***partial, before:**

• $Q_{\text{partial,before}} = Q_{\text{partial,before},i} + Q_{\text{partial,before},C}$

•
$$Q_{\text{partial,before},i} = 0 - (\frac{k_i}{2m})^2$$

•
$$Q_{\text{partial,before,C}} = \frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m}\right)^2$$

• $Q_{\text{partial,before}} = \frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2$

So $\Delta Q(i \rightarrow C) = Q_{\text{partial,after}} - Q_{\text{partial,before}}$

Second, we compute *Q*_{partial,after}:

Ci is a single supernode

$$\begin{split} \Delta Q(i \rightarrow C) &= \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m}\right)^2\right] - \left[\frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2\right] \\ & \text{Modularity contribution} \\ & \text{after merging node } i \end{split} \\ \end{split}$$

$$\Delta Q(i \rightarrow C) &= \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m}\right)^2\right] \\ & = \left[\frac{\sum_{in} - \left(\frac{\sum_{in} + k_{i,in}}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2\right] \\ & \text{Self-edge weight} \\ & \sum_{in} & \sum_{in} & \sum_{k_{i,in}/2} & \text{Modularity of C} & \text{Modularity of } i \\ & \text{Modularity of C} & \text{Modularity of } i \\ & \text{Modularity of C} & \text{Modularity of } i \\ & \text{By applying the Modularity definition:} \\ & Q = \frac{1}{2m} \sum_{ij} \left[A_{ij} - \frac{k_i k_j}{2m}\right] \delta(c_i, c_j) \end{split}$$

What is ΔQ if we move node i to community
 C?

$$\Delta Q(i \to C) = \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m}\right)^2\right] - \left[\frac{\sum_{in} - \left(\frac{\sum_{tot} - k_i}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2\right]$$

Also need to derive $\Delta Q(D → i)$ of taking node *i* out of community *D*.

• And then:
$$\Delta Q = \Delta Q(i \rightarrow C) + \Delta Q(D \rightarrow i)$$

Louvain: 2nd phase (Restructuring)

- The communities obtained in the first phase are contracted into super-nodes, and the network is created accordingly:
 - Super-nodes are connected if there is at least one edge between the nodes of the corresponding communities
 - The weight of the edge between the two supernodes is the sum of the weights from all edges between their corresponding communities
- Phase 1 is then run on the super-node network

Louvain Algorithm

Algorithm 1: Sequential Louvain Algorithm **Input**: G = (V, E): graph representation. **Output**: C: community sets at each level; Q: modularity at each level. Var: \hat{c} : vertex u's best candidate community set. 1 Loop outer $C \leftarrow \{\{u\}\}, \forall u \in V;$ 2 $\Sigma_{in}^c \leftarrow \Sigma w_{u,v}, e(u,v) \in E, u \in c \text{ and } v \in c ;$ 3 $\Sigma_{tot}^{c} \leftarrow \overline{\Sigma} w_{u,v}, \ e(u,v) \in E, \ u \in c \text{ or } v \in c ;$ 4 // Phase 1. 5 Loop inner 6 for $u \in V$ and $u \in c$ do 7 // Find the best community for vertex u. 8 $\hat{c} \leftarrow$ $\Delta Q_{u \to c'}$; Modularity gain argmax 9 $\forall c', \exists e(u,v) \in E, v \in c'$ if $\Delta Q_{\mu \to \hat{c}} > 0$ then 10 // Update Σ_{tot} and Σ_{in} . 11 $\begin{array}{c} \Sigma_{tot}^{\hat{c}} \leftarrow \Sigma_{tot}^{\hat{c}} + w(u) ; \Sigma_{in}^{\hat{c}} \leftarrow \Sigma_{in}^{\hat{c}} + w_{u \rightarrow \hat{c}} ; \\ \Sigma_{tot}^{c} \leftarrow \Sigma_{tot}^{c} - w(u) ; \Sigma_{in}^{c} \leftarrow \Sigma_{in}^{c} - w_{u \rightarrow c} ; \\ \end{array} \\ \hline // Update the community information. \end{array}$ 12 13 14 $\hat{c} \leftarrow \hat{c} \cup \{u\}$; $c \leftarrow c - \{u\}$; 15 if No vertex moves to a new community then 16 exit inner Loop; 17 Halting criterion for 1st Phase

// Calculate community set and modularity. 18 $Q \leftarrow 0$; 19 for $c \in C$ do 20 $Q \leftarrow Q + \frac{\Sigma_{in}^c}{2m} - (\frac{\Sigma_{tot}^c}{2m})^2$; 21 $C' \leftarrow \{c\}, \forall c \in C \text{ ; print } C' \text{ and } Q \text{ ;}$ // Phase 2: Rebuild Graph. 22 23 $V' \leftarrow C$; Communities contracted into super-nodes 24 $E' \leftarrow \{e(c,c')\}, \exists e(u,v) \in E, u \in c, v \in c';$ 25 $w_{c,c'} \leftarrow \sum w_{u,v}, \forall e(u,v) \in E, u \in c, v \in c'$; 26 if No community changes then 27 exit outer Loop; 28 $V \leftarrow V'$; $E \leftarrow E'$; Halting criterion 29 for 2nd Phase the weights of the edges between the new super-nodes are given by the sum of the weights of the edges between vertices in the corresponding two communities

Louvain Algorithm

Back to Detecting Cell Types

Input:

Single-cell gene expression data

Steps:

- 1) Apply SVD to cell gene expression data (~50 dim)
- 2) Create K-NN (K=15) graph between the lowdim cell gene expressions
- 2) Apply the Louvain algorithm to identify the clusters

Cell Type Identification Task

Louvain Hierarchical Groups

<u>Summary:</u> Modularity

Modularity:

- Overall quality of the partitioning of a graph into communities
- Used to determine the number of communities

Louvain modularity maximization:

- Greedy strategy
- Great performance, scales to large networks