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¡ We often think of networks being organized 
into modules, clusters, communities:
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¡ Clusters in Movies-to-Actors graph:

[Andersen, Lang: Communities from seed sets, 2006]
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¡ Find micro-markets by partitioning the 
query-to-advertiser graph:

advertiser

qu
er
y

[Andersen, Lang: Communities from seed sets, 2006]
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¡ Graph is large
§ Assume the graph fits in main memory 

§ For example, to work with a 200M node and 2B edge 
graph one needs approx. 16GB RAM.

§ But the graph is too big for running anything 
more than linear time algorithms.

¡ We will cover a PageRank based algorithm 
for finding dense clusters.
§ The runtime of the algorithm will be proportional 

to the cluster size (not the graph size!).
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¡ Discovering clusters based on seed nodes
§ Given: Seed node s
§ Compute (approximate) Personalized PageRank 

(PPR) around node s (teleport set={s})
§ Idea is that if s belongs to a nice cluster, the 

random walk will get trapped inside the cluster

Seed node
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¡ Algorithm outline:
§ Pick a seed node s of interest
§ Run PPR with teleport set = {s}
§ Sort the nodes by the decreasing PPR score
§ Sweep over the nodes and find good clusters

Node rank in decreasing PPR score
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¡ Undirected graph 𝑮(𝑽, 𝑬):

¡ Partitioning task:
§ Divide vertices into 2 disjoint groups 𝐴, 𝐵 = 𝑉\𝐴

¡ Question:
§ How can we define a “good” cluster in 𝑮?
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¡ What makes a good cluster?
§ Maximize the number of within-cluster

connections
§ Minimize the number of between-cluster 

connections
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A

¡ Express cluster quality as a function of the 
“edge cut” of the cluster

¡ Cut: Set of edges (edge weights) with only 
one node in the cluster:

cut(A) = 2
1

3

2

5

4 6

Note: This works for
weighted and unweighted
(set all wij=1) undirected 
graphs
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¡ Partition quality: Cut score
§ Quality of a cluster is the weight of connections 

pointing outside the cluster
¡ Not so uncommon case:

¡ Problem:
§ Only considers external cluster connections
§ Does not consider internal cluster connectivity

“Optimal cut”
Minimum cut
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¡ Criterion: Conductance:
Connectivity of the group to the rest of the 
network relative to the density of the group

𝒗𝒐𝒍(𝑨): total weight of the edges with at least 
one endpoint in 𝑨: 𝐯𝐨𝐥 𝑨 = ∑𝒊∈𝑨𝒅𝒊
n Vol(A)=sum of degree of nodes inside A

=2*#edges inside A + #edges pointing out of A
n Why use conductance?

n Produces more balanced partitions

[Shi-Malik]
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m… number of edges of 
the graph
di… degree of node I
E...edge set of the graph
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𝝓 = 𝟐/𝟒 = 𝟎. 𝟓 𝝓 = 𝟔/𝟗𝟐 = 𝟎. 𝟎𝟔𝟓
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¡ Algorithm outline:
§ Pick a seed node s of 

interest
§ Run PPR w/ teleport={s}
§ Sort the nodes by the 

decreasing PPR score
§ Sweep over the nodes 

and find good clusters
Node rank i in decreasing PPR score
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¡ Sweep:
§ Sort nodes by decreasing PPR score 𝑟! > 𝑟" > ⋯ > 𝑟#
§ For each 𝒊 compute 𝝓(𝑨𝒊 = 𝒖𝟏, …𝒖𝒊 )
§ Local minima of 𝝓(𝑨𝒊) correspond to good clusters
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¡ The whole Sweep 
curve can be 
computed in linear
time:
§ For loop over the nodes
§ Keep hash-table of

nodes in a set 𝐴#
§ To compute 𝝓 𝑨𝒊$𝟏 = 𝐶𝑢𝑡(𝐴#$%)/𝑉𝑜𝑙(𝐴#$%)

§ 𝑉𝑜𝑙 𝐴$%& = 𝑉𝑜𝑙 𝐴$ + 𝑑$%&
§ 𝐶𝑢𝑡 𝐴$%& = 𝐶𝑢𝑡 𝐴$ + 𝑑$%& − 2#(𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝑢$%& 𝑡𝑜 𝐴$)
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¡ How to compute Personalized PageRank 
(PPR) without touching the whole graph?
§ Power method won’t work since each single 

iteration accesses all nodes of the graph:

𝐫(𝐭$𝟏) = 𝛽 𝑀. 𝐫(𝒕) + 1 − 𝛽 %
* *×%

§ 𝑀 is the transition matrix
§ 𝒓 is the personalized PageRank vector

§
"
# #×"

is the teleportation vector when we teleport to all nodes uniformly at random

§ In case of teleport set S={s}: 
𝐫(𝐭$𝟏) = 𝛽𝑀 ⋅ 𝐫(𝒕) + 1 − 𝛽 𝒂

§ 𝒂 is a teleport vector:   𝒂 = 𝟎 …𝟎 𝟏 𝟎 …𝟎 𝑻
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¡ Approximate PageRank (AKA PageRank-Nibble)
[Andersen, Chung, Lang, ‘07]
§ A fast method for computing approximate 

Personalized PageRank (PPR) with teleport set S={s}
§ ApproxPageRank(s, β, ε)

§ s … seed node
§ β … teleportation parameter
§ ε … approximation error parameter
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¡ Approximate PPR on undirected graph
§ Lazy random walk, which is a variant of a random walk 

that stays put with probability 1/2 at each time step, and 
walks to a random neighbor the other half of the time:

𝑟$
%&! =

1
2
𝑟$
% +

1
2
(
'→$

1
𝑑'
𝑟'
%

§ Keep track of residual PPR score 𝒒𝒖 = 𝒑𝒖 − 𝒓𝒖
(𝒕)

§ Residual 𝒒𝒖: how well is PPR score 𝒑𝒖 of 𝒖 is approximated
§ 𝒑𝒖… is the “true” PageRank of node 𝒖
§ 𝒓𝒖

(𝒕)… is PageRank estimate of node 𝒖 at around 𝒕
If residual 𝒒𝒖 of node 𝒖 is too big 𝒒𝒖

𝒅𝒖
≥ 𝜺 then push the walk 

further (distribute some of residual 𝑞0 to all 𝑢’s neighbors along 
outgoing edges), else we don’t touch the node
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𝑑"… degree of 𝑖
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¡ Idea: 𝒂…teleport vector
§ 𝒓… approx. PageRank, 𝒒… its residual PageRank
§ Start with trivial approximation: 𝒓 = 𝟎 and 𝒒 = 𝒂
§ Iteratively push PageRank from 𝒒 to 𝒓 until 𝒒 is small

¡ Push: 1 step of a lazy random walk from node 𝒖: 

Do 1 step of a walk:
Stay at u with prob. ½
Spread remaining ½
fraction of qu as if a 
single step of random 
walk were applied to u

Update r

𝑷𝒖𝒔𝒉(𝒖, 𝒓, 𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖* = 𝒓𝒖 + 𝟏 − 𝜷 𝒒𝒖
𝒒𝒖* =

𝟏
𝟐
𝜷𝒒𝒖

for each 𝒗 such that 𝒖 → 𝒗:
𝒒𝒗* = 𝒒𝒗 +

𝟏
𝟐𝜷

𝒒𝒖
𝒅𝒖

return 𝒓*, 𝒒*
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residual PPR score 𝒒𝒖 = 𝒑𝒖 − 𝒓𝒖

1-𝛽…teleport prob
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¡ If 𝒒𝒖 is large, this 
means that we have 
underestimated the 
importance of node 𝒖

¡ Then we want to take some 
of that residual (𝒒𝒖) and give 
it away, since we know that we have too much of it

¡ So, we keep 𝟏
𝟐
𝜷𝒒𝒖 and then give away the rest to our 

neighbors, so that we can get rid of it
§ This correspond to the spreading of 𝟏𝟐𝜷 𝒒𝒖/𝒅𝒖 term

¡ Each node wants to keep giving away this excess 
PageRank until all nodes have no or a very small gap in 
the excess PageRank
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𝑷𝒖𝒔𝒉(𝒖, 𝒓, 𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖" = 𝒓𝒖 + 𝟏 − 𝜷 𝒒𝒖
𝒒𝒖" =

𝟏
𝟐
𝜷𝒒𝒖

for each 𝒗 such that𝒖 → 𝒗:
𝒒𝒗" = 𝒒𝒗 +

𝟏
𝟐
𝜷 𝒒𝒖
𝒅𝒖

return 𝒓", 𝒒"
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¡ ApproxPageRank(S, β, ε):
Set 𝒓 = 0, 𝒒 = [0 . . 0 1 0…0]
While 𝐦𝐚𝐱

𝒖∈𝑽
𝒒𝒖
𝒅𝒖
≥ 𝜺:

Choose any vertex 𝒖 where 5"
6"
≥ 𝜀

𝑷𝒖𝒔𝒉(𝒖, 𝒓, 𝒒):
𝒓′ = 𝒓, 𝒒′ = 𝒒
𝒓𝒖* = 𝒓𝒖 + 𝟏 − 𝜷 𝒒𝒖
𝒒𝒖* =

𝟏
𝟐
𝜷𝒒𝒖

For each 𝒗 such that 𝒖 → 𝒗:
𝒒𝒗* = 𝒒𝒗 +

𝟏
𝟐
𝜷𝒒𝒖/𝒅𝒖

𝒓 = 𝒓*, 𝒒 = 𝒒*
Return 𝒓

r … PPR vector
ru …PPR score of u
q …residual PPR vector
qu … residual of node u
du … degree of u

Update r: Move (1 − 𝛽)
of the prob. from qu to ru

1 step of a lazy 
random walk:
- Stay at u with prob. ½ 
- Spread remaining ½ 𝜷
fraction of qu as if a 
single step of random 
walk were applied to u

At index S
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¡ Runtime:
§ Approximate PageRank computes PPR in time 

𝟏
𝜺 𝟏=𝜷

with residual error ≤ 𝜺

§ Power method would take time 𝑶( 𝐥𝐨𝐠 𝒏
𝜺(𝟏A𝜷))

¡ Graph cut approximation guarantee:
§ If there exists a cut of conductance 𝝓 and volume 𝒌

then the method finds a cut of conductance 
𝐎( 𝝓/ 𝒍𝒐𝒈𝒌)

§ Details in [Andersen, Chung, Lang. Local graph 
partitioning using PageRank vectors, 2007]
http://www.math.ucsd.edu/~fan/wp/localpartfull.pdf
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¡ The smaller the ε the farther the random 
walk will spread!

Seed node
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[Andersen, Lang: Communities from seed sets, 2006]
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¡ Algorithm summary:
§ Pick a seed node s of interest
§ Run PPR with teleport set = {s}
§ Sort the nodes by the decreasing PPR score
§ Sweep over the nodes and find good clusters

Seed node
Node rank in decreasing PPR score
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Every cell in a tissue has a specific role

Challenge:
How to determine roles of cells? 

33
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Ce
lls

Gene expressions 
(~20k genes) Cell types

Genes

¡ Cell type identification task: Given gene 
expressions of cells, assign cells to cell types
§ Boils down to a clustering task: group cells according 

to their gene expression similarities

¡ Understanding the 
roles of cells: 
Identification of 
cell types

Single cells 
(1k-1m cells)
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Cells assigned to 
endothelial cell type

T cells

duct principal

duct 
epithelial

epithelial of 
proximal tubule

mesangial B cells

macrophage

endothelial

[UMAP. McInnes, Healy, Melville. ‘18]
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¡ Can we use standard clustering methods such 
as K-means to solve this problem?

¡ Why standard cluster methods do not work 
well?
§ Data is very high-dimensional (~20k genes per cell)
§ Data is noisy and sparse (most values will be zero)
§ Number of clusters (cell types) is unknown
§ Cell types are hierarchically organized

§ Definition of cell type is provisional
§ One cell type can have multiple cell subtypes
§ Where to put a threshold on a definition of a cell type?

36
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¡ Idea: Construct a graph between data points 
(cells) and detect hierarchical network 
communities in a graph

Why is graph a good representation?
¡ Natural representation: models cell-cell interaction
¡ Cells with more similar gene expressions are more 

likely to interact
§ Construct a graph based on similarities between gene 

expressions of cells
¡ Hierarchical network communities model well cell 

type hierarchy

37
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1) How to construct a graph from high-dimensional 
data?

§ Efficient k-NN graph construction
2) How to define network communities?
§ Modularity

3) How to detect communities?
§ Louvain algorithm

We will cover next:

38





¡ K nearest neigbor (K-NN) graph: Directed 
graph with vertex set 𝑉 and an edge from 
each 𝑣 ∈ 𝑉 to its 𝑲 most similar objects in 𝑉
under a given similarity measure
§ E.g., cosine similarity, 𝑙> distance, 𝑙% distance
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seed node 𝒗

3-nearest 
neighbors of 𝑣
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How to efficiently compute K-NN graph?
¡ NN-Descent [Dong, Charikar, Li. ‘11]

§ Scalable method for creating approximate K-NN graph
§ Suitable for large-scale datasets
§ Empirical cost is around 𝑶 𝒏𝟏.𝟏𝟒

§ Suitable for distributed implementation (e.g., Map 
Reduce)

¡ Brute force algorithm:
§ Takes 𝑶 𝒏𝟐 time
§ Only practical for small datasets!

41
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¡ Idea: a notion of triangle inequality
§ a neighbor of a neighbor is also likely to be a 

neighbor
§ 𝚫 = diameter of the whole dataset

§ Diameter = longest distance between any pair of points
§ Diameter = 2*radius

§ Heuristic argument: if 𝐾 is large enough then even 
if we start from a random K-NN approximation we 
are likely to find for each object 𝐾 items with a 
radius of 𝚫/2 by exploring its neighbors’ neighbors.

§ Conceptually we iteratively shrink the radius until 
the nearest neighbors are found.

42



NN-Descent is an iterative refinement algorithm:
¡ Start with a random KNN graph
§ Each node picks K random other nodes as its nearest 

neighbors.
¡ Iteratively refine the list of nearest neighbors of 

each node:
§ A neighbor of a neighbor could also be my neighbor.

¡ Keep doing this until convergence.
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¡ Start with a random K-NN list by sampling 𝐾 items 
for every node 𝑣 ∈ 𝑉

¡ Then iteratively for every node 𝑣 ∈ 𝑉:
§ 𝑩 𝒗 … is the current/approximate K-NN of 𝑣
§ 𝑹 𝒗 … is the current/approximate reverse K-NN of 𝑣

§ Reverse K-NN: 𝑹 𝒗 = 𝒖 ∈ 𝑽 𝒗 ∈ 𝑩[𝒖]}
§ Get general neighbors 𝑩∗ 𝒗 = 𝑩 𝒗 ∪ 𝑹[𝒗]
§ For each general neighbor 𝒖 ∈ 𝑩∗ 𝒗 , check the similarity 

between 𝒗 and 𝑩∗ 𝑢 (general neighbors of 𝑢 are 
candidates for new neighbors of 𝑣)

§ Update nearest neighbors list if similarity is higher 
compared to the set of current approximate neighbors
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¡ NNDescent(𝑽,𝝈, 𝑲):
𝑩 𝒗 = 𝑹𝒂𝒏𝒅𝒐𝒎 𝒔𝒂𝒎𝒑𝒍𝒆 𝑜𝑓 𝑲 𝒊𝒕𝒆𝒎𝒔 𝑽, ∀𝒗 ∈
𝑽
Loop:

𝑹 = 𝒓𝒆𝒗𝒆𝒓𝒔𝒆 (𝑩)
𝑩∗ 𝒗 = 𝑩 𝒗 ∪ 𝑹 𝒗 , ∀𝒗 ∈ 𝑽
𝒄 = 𝟎
𝐟𝐨𝐫 𝒗 ∈ 𝑽:

𝐟𝐨𝐫 𝒖𝟏 ∈ 𝑩∗ 𝒗 , 𝒖𝟐 ∈ 𝑩∗ 𝒖𝟏 :
𝒍 = 𝝈 𝒗, 𝒖𝟐
𝒄 = 𝒄 + 𝒖𝒑𝒅𝒂𝒕𝒆𝑵𝑵 (𝑩 𝒗 , 𝒖𝟐, 𝒍 )

return 𝑩 if 𝒄 = 𝟎

V … dataset∂
𝝈…similarity oracle
K …number of neighbors
𝑩[𝒗]… approximate 
neighbors of 𝒗
𝑹[𝒗]… approximate reverse 
neighbors of 𝒗
𝑩∗[𝒗]… approximate general 
neighbors of 𝒗
𝒄 … counter
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¡ 𝒓𝒆𝒗𝒆𝒓𝒔𝒆 𝑩 :
𝑹 𝒗 = 𝒖 𝒗,… ∈ 𝑩[𝒖]}, ∀𝒗 ∈ 𝑽
return 𝑹

¡ 𝒖𝒑𝒅𝒂𝒕𝒆𝑵𝑵 𝑯, ⟨𝒖, 𝒍, … ⟩ :
𝑼𝒑𝒅𝒂𝒕𝒆 𝑲𝑵𝑵 𝒉𝒆𝒂𝒑 𝑯
return 𝟏 𝐢𝐟 𝐜𝐡𝐚𝐧𝐠𝐞𝐝, 𝟎 if not

𝑩[𝒗] is organized as a heap 
à updates cost 𝑶(𝒍𝒐𝒈𝑲)
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Neighbors:
𝑩 𝒔 = 𝒄, 𝒅

Reverse	neighbors:
𝑹 𝒔 = 𝒃, 𝒄, 𝒆

General	neighbors:
𝑩∗[𝒔] = 𝒃, 𝒄, 𝒅, 𝒆
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b
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Arrows denote neighbors of a particular node. For example, arrow from 𝑏 to 𝑠 means that 𝑏 selected 𝑠 as its 
neighbor (but the opposite does not need to be true).

We will check {a, b, e, f, g} as next candidates for B[s]:
Compute σ(s, a), σ(s, b), σ(s, e), σ(s, f), σ(s, g) and update NNs of s

Let’s	look	at	neighbors	of	neighbors:
𝑩∗ 𝒃 = 𝒂, 𝒄, 𝒔
𝑩∗ 𝒄 = 𝒃, 𝒅, 𝒔
𝑩∗ 𝒅 = {𝒄, 𝒆, 𝒔}
𝑩∗ 𝒆 = {𝒅, 𝒇, 𝒈, 𝒔}

New candidates 
for B[s]



¡ Basic algorithm can be further optimized:
§ Local join: Given node 𝑣 and its neighbors C𝐵[𝑣], 

compute similarity between each pair of different 𝑝, 𝑞 ∈
𝐵∗ 𝑣 and update 𝐵[𝑝] and 𝐵[𝑞] with the similarity 
(reduces number of comparisons) 

§ Incremental search: Attach a Boolean flag to remember 
if the objects have already been compared

§ Early termination: Count the number of K-NN list 
updates in each iteration, and stop when it becomes less 
than 𝛿𝐾𝑁 where 𝛿 is a precision parameter

§ MapReduce implementation
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Details in [Dong, Charikar, Li. Efficient K-Nearest Neighbor Graph 
Construction for Generic Similarity Measures, 2011]

https://dl.acm.org/doi/pdf/10.1145/1963405.1963487
47
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¡ Which similarity measure 𝝈 to use?
§ Cells are compared based on their 

gene expression profiles
§ Challenge: Number of genes is very high-dimensional
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ba

… …
Gene expression vector 
(~20k dimensions)

§ Approach: First apply SVD  (around 50 
dimensions) and then compute 𝑙> distance in the 
low-dimensional space

𝝈(𝒂, 𝒃)
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¡ Once we created K-NN graph of cells, how do 
we define and detect network communities?
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¡ To evaluate clusters in a hierarchical way, we 
define a new metric called modularity 

¡ Modularity 𝑸: 
§ A measure of how well a network is 

partitioned into communities
§ Communities: sets of tightly connected nodes
§ Given a partitioning of the network into groups 𝑺:
Q µ ∑sÎ S [ (# edges within group s) –

(expected # edges within group s) ]

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Need a null model!
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¡ Given a graph 𝑮 on 𝒏 nodes and 𝒎 edges, 
construct a rewired network 𝑮’
§ Remove edges and let spokes remain
§ Nodes have same degrees as before

but random connections
§ Consider 𝑮’ as a multigraph
§ The expected number of edges between nodes 
𝒊 and 𝒋 of degrees 𝒌𝒊 and 𝒌𝒋 equals to: 𝒌𝒊 ⋅

𝒌𝒋
𝟐𝒎

= 𝒌𝒊𝒌𝒋
𝟐𝒎

§ The expected number of edges in (multigraph) G’:

§ = 𝟏
𝟐
∑𝒊∈𝑵∑𝒋∈𝑵

𝒌𝒊𝒌𝒋
𝟐𝒎

= 𝟏
𝟐
⋅ 𝟏
𝟐𝒎
∑𝒊∈𝑵𝒌𝒊 ∑𝒋∈𝑵𝒌𝒋 =

§ = 𝟏
𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎
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j

i

4
'∈)

𝑘' = 2𝑚
Note:
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¡ Modularity of partitioning S of graph G:
§ Q µ ∑sÎ S [ (# edges within group s) –

(expected # edges within group s) ]

§ 𝑸 𝑮, 𝑺 = 𝟏
𝟐𝒎
∑𝒔∈𝑺∑𝒊∈𝒔∑𝒋∈𝒔 𝑨𝒊𝒋 −

𝒌𝒊𝒌𝒋
𝟐𝒎

¡ Modularity values take range [−1,1]
§ It is positive if the number of edges within 

groups exceeds the expected number
§ Q greater than 0.3-0.7 means significant 

community structure
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Aij = 1 if i®j, 
0 elseNormalizing const.: -1<Q<1
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𝑸 𝑮, 𝑺 =
𝟏
𝟐𝒎

:
𝒔∈𝑺

:
𝒊∈𝒔

:
𝒋∈𝒔

𝑨𝒊𝒋 −
𝒌𝒊𝒌𝒋
𝟐𝒎

Equivalently modularity can be written as:

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

is an indicator function

Idea: We can identify communities by 
maximizing modularity
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¡ It is NP-hard to find optimal partitioning
¡ Louvain algorithm:

§ Greedy algorithm for community detection
§ Heuristic and works very well in practice
§ Supports weighted graphs
§ Provides hierarchical communities
§ 𝑂(𝑛 log 𝑛) run time

¡ Widely utilized to study 
large networks because:
§ Fast, has rapid convergence
§ High modularity output 

(i.e., “better communities”)
“Fast unfolding of communities in large networks” Blondel et al. (2008)

Network and communities:

Dendrogram:
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¡ Louvain algorithm greedily maximizes modularity
¡ Each pass is made of 2 phases:
§ Phase 1: Modularity is optimized by allowing only 

local changes to node-communities memberships
§ Phase 2: The identified communities are aggregated

into super-nodes to build a new network
§ Goto Phase 1

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

The passes are repeated 
iteratively until no increase of 

modularity is possible.

63



¡ Put each node in a graph into a distinct 
community (one node per community)

¡ For each node 𝑖, perform two calculations: 
§ Compute the modularity delta (∆𝑄) when putting 

node 𝑖 into the community of some neighbor 𝑗
§ Move 𝑖 to a community of node 𝑗 that yields the 

largest gain in ∆𝑄
¡ Phase 1 runs until no movement yields a gain

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

This first phase stops when a local maxima of the modularity is attained, i.e., when no individual node 
move can improve the modularity. 
Note that the output of the algorithm depends on the order in which the nodes are considered. 
Research indicates that the ordering of the nodes does not have a significant influence on the overall 
modularity that is obtained.
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What is 𝚫𝑸 if we move node 𝒊 to community 𝑪?

¡ Assume node 𝑖 is in community 𝐷, And we are 
moving it to community 𝐶

¡ Then: Δ𝑄 = Δ𝑄 𝑖 → 𝐶 + Δ𝑄 𝐷 → 𝑖
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Taking node i out 
of community D

Putting node i
into community C
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¡ Let’s look at computation of Δ𝑄 𝑖 → 𝐶
§ We only need to consider the modularity 

contribution from 𝑖 and 𝐶 before and after merging
§ contribution from the rest of the network stays 

constant and can be ignored

𝚫𝑸 𝒊 → 𝑪 = 𝑸𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝒂𝒇𝒕𝒆𝒓 −𝑸𝒑𝒂𝒓𝒕𝒊𝒂𝒍,𝒃𝒆𝒇𝒐𝒓𝒆



Some notation:

§ where:
§ Σ$Q… sum of link weights between nodes in 𝐶
§ ΣRSR… sum of all link weights of nodes in 𝐶
§ 𝑘$,$Q… sum of link weights between node 𝑖 and 𝐶
§ 𝑘$… sum of all link weights (i.e., degree) of node 𝑖

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Δ𝑄 𝑖 → 𝐶

Σ"$:

Σ%&%:
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S𝐨 𝚫𝑸 𝒊 → 𝑪 = 𝑸𝐩𝐚𝐫𝐭𝐢𝐚𝐥,𝐚𝐟𝐭𝐞𝐫 −𝑸𝐩𝐚𝐫𝐭𝐢𝐚𝐥,𝐛𝐞𝐟𝐨𝐫𝐞

First, we compute 𝑸𝐩𝐚𝐫𝐭𝐢𝐚𝐥,𝐛𝐞𝐟𝐨𝐫𝐞:
§ 𝑄efghifj,klmngl = 𝑄efghifj,klmngl,# + 𝑄efghifj,klmngl,o

§ 𝑄efghifj,klmngl,# = 0 − ( p#
>q
)>

§ 𝑄efghifj,klmngl,o =
∑#$
>q

− (∑%&%
>q

)>

§ 𝑄efghifj,klmngl = ∑#$
>q

− (∑%&%
>q

)> −( p#
>q
)>

reminder:

𝑄 =
Σ"$
2𝑚 − (

Σ%&%
2𝑚)'
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S𝐨 𝚫𝑸 𝒊 → 𝑪 = 𝑸𝐩𝐚𝐫𝐭𝐢𝐚𝐥,𝐚𝐟𝐭𝐞𝐫 −𝑸𝐩𝐚𝐫𝐭𝐢𝐚𝐥,𝐛𝐞𝐟𝐨𝐫𝐞

Second, we compute 𝑸𝐩𝐚𝐫𝐭𝐢𝐚𝐥,𝐚𝐟𝐭𝐞𝐫:
§ 𝐶𝑖 is a single supernode

𝛴*+ + 𝑘 *,*+

§ 𝑄efghifj,fmhlg =
∑#$ $p#,#$

>q
− (∑%&% $p#

>q
)>

reminder:

𝑄 =
Σ"$
2𝑚 − (

Σ%&%
2𝑚)'

ci
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Δ𝑄 𝑖 → 𝐶

Modularity contribution 
before merging node i

Modularity contribution 
after merging node i

Modularity of C Modularity of i

By applying the Modularity definition:

+
Edge weight of the resulting super-
node from merging C and i

Self-edge weight

rest of the graph
(modeled as a single node)

70

Δ𝑄 𝑖 → 𝐶



¡ What is 𝚫𝑸 if we move node 𝒊 to community 
𝑪?

¡ Also need to derive Δ𝑄 𝐷 → 𝑖 of taking 
node 𝑖 out of community 𝐷.

¡ And then: Δ𝑄 = Δ𝑄 𝑖 → 𝐶 + Δ𝑄 𝐷 → 𝑖
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Δ𝑄 𝑖 → 𝐶



¡ The communities obtained in the first phase 
are contracted into super-nodes, and the 
network is created accordingly:
§ Super-nodes are connected if there is at least one 

edge between the nodes of the corresponding 
communities

§ The weight of the edge between the two super-
nodes is the sum of the weights from all edges 
between their corresponding communities

¡ Phase 1 is then run on the super-node 
network
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Modularity gain

Halting criterion for 1st Phase

Communities contracted into super-nodes

Halting criterion 
for 2nd Phase

the weights of the edges 
between the new super-nodes 
are given by the sum of the 
weights of the edges between 
vertices in the corresponding 
two communities
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Input:
Single-cell gene expression data

Steps:
¡ 1) Apply SVD to cell gene expression data 

(~50 dim)
¡ 2) Create K-NN (K=15) graph between the low-

dim cell gene expressions
¡ 2) Apply the Louvain algorithm to identify the 

clusters
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duct principal

T cell

macrophage

mesangial
B cell

epithelial of 
proximal tubule

duct epithelial

endothelial

Ground truth annotations Louvain algorithm
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Super-node

epithelial of 
proximal tubule

duct epithelial
epithelial cells
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¡ Modularity:
§ Overall quality of the partitioning of a graph into 

communities
§ Used to determine the number of communities

¡ Louvain modularity maximization:
§ Greedy strategy
§ Great performance, scales to large networks
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