Note to other teachers and users of these slides: We would be delighted if you found our
material useful for giving your own lectures. Feel free to use these slides verbatim, or to

modify them to fit your own needs. If you make use of a significant portion of these slides

in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Community Detection In
Graphs

http://www.mmds.org/

Networks & Communities

We often think of networks being organized
into modules, clusters, communities:

-
\,'l‘.‘.-—‘ i

»
- %A
-

N
o‘\\e

Y

’ -/

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Non-overlapping Clusters

Nodes
000000000000

Nodes

o
o
o
o
o
o
)
)
)
)
)
)
A

Network djacency matrix

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 3

W
-
)
afd
n
=
U
O
)
=
=
—
2
)
W
c
)
Qo
O
=
LL.

Goal

/ 3

=1

=

17/ g ‘.E

\ B

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Movies and Actors

Clusters in Movies-to-Actors graph:

AN
Y
\
> ’ ..
v :
ETL . . ;
in o
—‘r, % 'osg
.2
-
-2, =
.
s qans l.;‘.
SR) ;
) ']
. v . : . b, . 1‘/:':. Ny
= <, . Germany °
' v‘\4 AL e | ¢“
‘R
’, -// 3
" “2 .‘
.

[Andersen, Lang: Communities from seed sets, 20006]

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Micro-Markets in Sponsored Search

Find micro-markets by partitioning the

query-to-advertiser graph:

query

e ot e OO

sports
betting .

'''''
1l
~ .

advertiser

[Andersen, Lang: Communities from seed sets, 20006]

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

The Setting

Graph is large

Assume the graph fits in main memory

For example, to work with a 200M node and 2B edge
graph one needs approx. 16GB RAM.

But the graph is too big for running anything
more than linear time algorithmes.

We will cover a PageRank based algorithm
for finding dense clusters.

The runtime of the algorithm will be proportional
to the cluster size (not the graph size!).

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 7

ldea: Seed Nodes

Discovering clusters based on seed nodes
Given: Seed node s

Compute (approximate) Personalized PageRank
(PPR) around node s (teleport set={s})

ldea is that if s belongs to a nice cluster, the
random walk will get trapped inside the cluster

Seed node

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 8

Seed Node: Intuition

—
:

Seed node

:GL_:,

309t

208

S 07 Good clusters
Y : [t

S 05 []

> A / /

£ 0.4 / /

S 0.3 _é X /

2 0.2 et :
E 01 . .'.....“..‘s“!l-...';........?.. ‘.-'_ll"
g 0 | | lll|

o

0 10 20 30 40 20 60
Algorithm outline; Node rank in decreasing PPR score

Pick a seed node s of interest

Run PPR with teleport set = {s}

Sort the nodes by the decreasing PPR score
Sweep over the nodes and find good clusters

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 9

What makes a good cluster?

Undirected graph G(V, E):

Partitioning task:
Divide vertices into 2 disjoint groups A,B = V'\A

A (5) B=M4
0o (oo

Question:
How can we define a “good” cluster in G?

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

What makes a good cluster?

What makes a good cluster?
Maximize the number of within-cluster
connections

Minimize the number of between-cluster
connections

A J V\A

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 11

Graph Cuts

Express cluster quality as a function of the
“edge cut” of the cluster

Cut: Set of edges (edge weights) with only
one node in the cluster:

Note: This works for

Cut(A) — Z Wl] weighted and unweighted

(set all w;=1) undirected

icd,jeA graphs

) - cut(A) =2

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 12

Cut Score

Partition quality: Cut score

Quality of a cluster is the weight of connections
pointing outside the cluster

Not so uncommon case:

“Optimal cut”
/ Minimum cut

Problem:
Only considers external cluster connections
Does not consider internal cluster connectivity

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 13

[Shi-Malik]

Graph Partitioning Criteria

Criterion: Conductance:
Connectivity of the group to the rest of the
network relative to the density of the group

sy LG EEiie A jg 4}
min(vol(A), 2m —vol(A))

vol(A): total weight of the edges with at least
one endpointin A: vol(4) = Y,;c4d;
Vol(A)=sum of degree of nodes inside A
=2*#edges inside A + #edges pointing out of A

Why use conductance?
Produces more balanced partitions

m... number of edges of
the graph

d;... degree of node /
E...edge set of the graph

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 14

Example: Conductance Score

$¢=2/4=0.5 ®=6/92 =0.065

Algorithm Outline: Sweep

1 =

Algorithm outline: 09 H

Pick a seed node s of 3 8'3 ‘: Good clusters
interest © 06 I / /

— c 05 !g / /
Run PPR w/ teleport={s} g0 /
Sort the nodes by the Sosl |/
decreasing PPR score S 0.2 by

© 0.1 " “ ‘“!.""n-g.. -

Sweep over the nodes 0 e e R e,

and find good clusters 0 10 20 30 40 50 60
Node rank i in decreasing PPR score

Sweep:
Sort nodes by decreasing PPR scorer; > 15, > - > 13,
For each i compute ¢p(4; = {uq, ... u;})
Local minima of ¢p(A;) correspond to good clusters

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 16

Computing the Swee

1T
09 H
The whole Sweep <08
507 Good clusters
curve can be 2 06 -
. . € 05
computed in linear Soslt /L //
. . 5 03 /
tImEo g 02 "
© 01 R oo -
For loop over the nodes o P "270" "30 40 '"--5|O .
Keep hash-table of Node rank i in decreasing PPR score

nodes in a set A;

To compute ¢ (A1) = Cut(4;11)/Vol(Ai4q)
Vol(Ai+1) = Vol(4;) + ditq
Cut(A;41) = Cut(4;) + d;11 — 2#(edges of u; 1 to A;)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 17

Computing PPR

How to compute Personalized PageRank
(PPR) without touching the whole graph?

Power method won’t work since each single
iteration accesses all nodes of the graph:

1
r&D =M@+ (1-p) [
N1nx1
M is the transition matrix
T is the personalized PageRank vector

[%]N 1is the teleportation vector when we teleport to all nodes uniformly at random
In case of teleport set S={s}:
ri+D =g . r® + (1 - Ba

ais ateleportvector: a=1[0..010 ... 0]”

At index S

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 18

Computing PPR

Approximate PageRank (AKA PageRank-Nibble)
[Andersen, Chung, Lang, ‘07]

A fast method for computing approximate
Personalized PageRank (PPR) with teleport set S={s}
ApproxPageRank(s, B, €)

s ... seed node

B ... teleportation parameter

€ ... approximation error parameter

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 19

Approximate PPR: Overview

Approximate PPR on undirected graph

Lazy random walk, which is a variant of a random walk
that stays put with probability 1/2 at each time step, and
walks to a random neighbor the other half of the time:

1
t+1 t
Tlf) () +sz d;... degree of i

I-u
Keep track of residual PPR score q,, = p,, — r()

Residual g,: how well is PPR score p,, of u is approximated
Py, is the “true” PageRank of node u

(t) .. is PageRank estimate of node u ataroundt

If re5|dual q, of node u is too blg > £ then push the walk

further (distribute some of re5|dual q, to all u’s neighbors along
outgoing edges), else we don’t touch the node

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 20

“"Push” Operation

residual PPR scoreq, = p, — 1,

Idea: a...teleport vector
r... approx. PageRank, q... its residual PageRank
Start with trivial approximation:r = 0andq = a
Iteratively push PageRank from q to r until g is small

Push: 1 step of a lazy random walk from node u:

Push(u,r,q):
‘l‘: =T, q’ =q 1-B...teleport prob
ry =1yt 1 - pB)qy
;1 Update r

qQu = EﬁQu Do 1 step of a walk:

for each v such that u - v: Stay at u with prob. %2
, 1,4y Spread remaining 72

Qv = qy + Eﬁ d, fraction of q, as if a

single step of random

returnr’, q'
q walk were applied tou

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Intuition Behind Push Operation

Push(u,r,q):
If q,, is large, this r'=rq =q
means that we have ry =1, + 1 —pqy
underestimated the qQu = %ﬂqu
importance of node u for each v such ;hatu - v
@ =qy+;B,
Then we want to take some return ', g’ 27 du

of that residual (g,,) and give
it away, since we know that we have too much of it

1 .
So, we keep Eﬁqu and then give away the rest to our
neighbors, so that we can get rid of it

This correspond to the spreading of %ﬁ q,/d, term

Each node wants to keep giving away this excess
PageRank until all nodes have no or a very small gap in
the excess PageRank

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 24

Approximate PPR

ApproxPageRank(S, B, €):
Setr =0,q=[0..010...0]

While max & > &: L At index S
uey dy
Choose any vertex u where Z—“ = £
u
Push(u,r,q):
r’ = 'r, q’ = q
r;l =1y, + (1 —B)qy
1
qQu = 5 Bqu

For each v such that u — v:
1
CI; =(qy T Eﬂqu/du
r=r,q=q
Returnr

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

r ... PPR vector
r,...PPR score of u

q ...residual PPR vector
du ... residual of node u
d, ... degree of u

Update r: Move (1 —)
of the prob. from q, to r,

1 step of a lazy
random walk:

- Stay at u with prob. 72
- Spread remaining 72 8
fraction of q, as if a
single step of random
walk were applied to u

25

Observations (1)

Runtime:
Approximate PageRank computes PPR in time

1 . .
(8(1_3)) with residual error < ¢

Power method would take time O(

logn)

e £(1-B)

Graph cut approximation guarantee:
If there exists a cut of conductance ¢ and volume k
then the method finds a cut of conductance

O(,/¢/log k)

Details in [Andersen, Chung, Lang. Local graph

partitioning using PageRank vectors, 2007]
http://www.math.ucsd.edu/~fan/wp/localpartfull.pdf

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 27

~
NN
~
n
-
A
)
)
>
—
)
n
O
O

The smaller the € the farther the random

I
]
]

I
+
%
w\ I-isw.‘-mks I/‘ .m
7 < ; |
1 Vs 1 H
S b
0 ,
=
3
d !
e m..u |
7 ¥
‘-.w ++
* 3
1
+
1
*
¥
*]
= }
5 7
' T
ﬂ F
(G A
e X
o]
(V)] / ----ﬂf-l,ll#,“
#
I.I B
el
S . |
S |
AwfxmwllmHHHHHHHHHHHHHnuLm
[A
= .
< % ! 0 0
20UL30NPU)

90

80

70

60

50

40

30

20

10

Node index

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

28

Observations (3)

Cutsize

12000

10000

I

8000 |
510100 SRR S S S

4000

2000

0 2000 4000 6000 8000 10000 12000 14000 Nodes

[Andersen, Lang: Communities from seed sets, 20006]
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 29

Example

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 30

Summary of Approx PPR Alg.

—
L

o o
™ ©

0.7 1 Good clusters

0.6
0.5

Cluster “quality” (lower is better)

Seed node 0 10 20 30 40 50 60

Algorithm summary: Node rank in decreasing PPR score
Pick a seed node s of interest
Run PPR with teleport set = {s}
Sort the nodes by the decreasing PPR score
Sweep over the nodes and find good clusters

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 31

Community Detection
Motivation

Cells Are Heterogenous

Every cell in a tissue has a specific role

4

o
LAY
&\
/A

Plasma blast/cell

PR
%,C

7
3
N/

g ’ :
O.) : - ‘ l g

f
L

ot IR

Challenge:
How to determine roles of cells?

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 33

Cell Type Identification Task

Gene expressions

(~20k genes)

, Genes
Single cells .
(1k-1m cells) . = = Understanding the
” roles of cells:
S - |dentification of

cell types

Cell type identification task: Given gene
expressions of cells, assign cells to cell types

Boils down to a clustering task: group cells according
to their gene expression similarities

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 34

Cell Type Identification Task

duct principal

Cells assigned to epithelial of * * oo
. . 8
endothellal Ce" type proxima| tubule oy e%0® .‘:.:méfi.
3se * gl

\ 3,0

mesangial @°° op

‘s‘:}

T cells

UMAP2

endothelial

macrophage

UMAP1

[UMAP. Mclnnes, Healy, Melville. '18]

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 35

Challenges with Standard Clustering

Can we use standard clustering methods such
as K-means to solve this problem?

Why standard cluster methods do not work
well?
Data is very high-dimensional (~20k genes per cell)
Data is noisy and sparse (most values will be zero)
Number of clusters (cell types) is unknown

Cell types are hierarchically organized
Definition of cell type is provisional
One cell type can have multiple cell subtypes
Where to put a threshold on a definition of a cell type?

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 36

ldea: Represent Cells as a Graph

Idea: Construct a graph between data points
(cells) and detect hierarchical network
communities in a graph

Why is graph a good representation?

Natural representation: models cell-cell interaction
Cells with more similar gene expressions are more
likely to interact

Construct a graph based on similarities between gene
expressions of cells

Hierarchical network communities model well cell
type hierarchy

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 37

We will cover next:

How to construct a graph from high-dimensional
data?

Efficient k-NN graph construction
How to define network communities?

Modularity
How to detect communities?

Louvain algorithm

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 38

Efficient K-NN Graph
Construction

K-NN Graph

K nearest neigbor (K-NN) graph: Directed
graph with vertex set V and an edge from
each v € V to its K most similar objects in V
under a given similarity measure

E.g., cosine similarity, [, distance, [; distance

O
» ./I\L{ seed node v
O

. P S~ 3-nearest

neighbors of v

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 40

Computing K-NN Graph

Brute force algorithm:
Takes O(n?) time
Only practical for small datasets!

How to efficiently compute K-NN graph?

NN-Descent [Dong, Charikar, Li. “11]

Scalable method for creating approximate K-NN graph
Suitable for large-scale datasets

Empirical cost is around 0(n1'14)

Suitable for distributed implementation (e.g., Map
Reduce)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 41

NN-Descent Heuristic

Idea: a notion of triangle inequality

a neighbor of a neighbor is also likely to be a
neighbor

A = diameter of the whole dataset

Diameter = longest distance between any pair of points
Diameter = 2*radius

Heuristic argument: if K is large enough then even
if we start from a random K-NN approximation we
are likely to find for each object K items with a
radius of A/2 by exploring its neighbors’ neighbors.

Conceptually we iteratively shrink the radius until
the nearest neighbors are found.

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 42

NN-Descent Heuristic

NN-Descent is an iterative refinement algorithm:
Start with a random KNN graph

Each node picks K random other nodes as its nearest
neighbors.
Iteratively refine the list of nearest neighbors of

each node:

A neighbor of a neighbor could also be my neighbor.
Keep doing this until convergence.

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

NN-Descent Algorithm

Start with a random K-NN list by sampling K items
for everynodev € V
Then iteratively for every node v € V:

B|v] ...is the current/approximate K-NN of v

R|v] ... is the current/approximate reverse K-NN of v
Reverse K-NN: R|v]| = {u € V|v € B[u]}

Get general neighbors B*|v| = B|v] U R[V]

For each general neighbor u € B*|v], check the similarity

between v and B*|u] (general neighbors of u are
candidates for new neighbors of v)

Update nearest neighbors list if similarity is higher
compared to the set of current approximate neighbors

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 44

Efficient KNN Graph Construction

NNDescent(V,o, K): V... daFIaSit@ |
_ : o ...similarity oracle
l;[v] Random sample of K itemsV, Vv € K . number of neighbors
B[v] ... approximate
Loop neighbors of v
R =reverse (B) R[v] ... approximate reverse
B*|v] = B[v]UR|v], VvV EV neighbors of v
c =20 B*[v] ... approximate general
forveV: neighbors of v
for uq € B* [v]’ u, = B*[ul]: c ... counter
l=0(v,u,)
c=c+ (Blvl,(uz, 1) | By is organized as a heap
return Bifc = 0 > updates cost 0(logK)
reverse(B):
R[v]={ul(v,..) €EBu]}, Vv EV Update KNN heap H

return R return 1 if changed, 0 if not

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 45

Example: K = 2

Neighbors:

B|s] = {c,d}
Reverse neighbors:
R[s]| =1{b,c, e}
General neighbors:
B*[s] = {b,c,d, e}

Let’s look at neighbors of neighbors:
B*[b] = {a,c,s}

B*[c] = {b,d, s}

B*[d] = {c, e, s}

B*le] ={d.f, 9,5}

We will check {a, b, e, f, g} as next candidates for B[s]:
Compute ofs, a), ofs, b), ofs, e), a(s, f), o(s, g) and update NNs of s

0

Arrows denote neighbors of a particular node. For example, arrow from b to s means that b selected s as its

neighbor (but the opposite does not need to be true).
Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 46

Further Improvements

Basic algorithm can be further optimized:

Local join: Given node v and its neighbors B|[v],
compute similarity between each pair of different p, g €
B*|v] and update B[p] and B[q] with the similarity
(reduces number of comparisons)

Incremental search: Attach a Boolean flag to remember
if the objects have already been compared

Early termination: Count the number of K-NN list
updates in each iteration, and stop when it becomes less
than KN where ¢ is a precision parameter

MapReduce implementation
Details in [Dong, Charikar, Li. Efficient K-Nearest Neighbor Graph

Construction for Generic Similarity Measures, 2011]

https://dl.acm.org/doi/pdf/10.1145/1963405.1963487

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 47

https://dl.acm.org/doi/pdf/10.1145/1963405.1963487

Cell Type Identification Example

Which similarity measure o to use?

Cells are compared based on their
gene expression profiles

Challenge: Number of genes is very high-dimensional

= =

= = Gene expression vector
= . . = < (~20k dimensions)

- a(a, b) 0

- -

Approach: First apply SVD (around 50
dimensions) and then compute [, distance in the
low-dimensional space

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 48

After KNN Graph Construction

Once we created K-NN graph of cells, how do
we define and detect network communities?

Step 2:
Modularity Maximization

Network Communities

To evaluate clusters in a hierarchical way, we

define a new metric called modularity
Modularity Q:

A measure of how well a network is

partitioned into communities

Communities: sets of tightly connected nodes
Given a partitioning of the network into groups S:

0 < > ._¢[(# edges within group s) —
(expected # edges within group s) |

~"

Need a null model!

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 51

Null Model: Configuration Model

Given a graph G on n nodes and m edges,
construct a rewired network G’
Remove edges and let spokes remain
Nodes have same degrees as before /ﬂi = 1
but random connections o— \,0\’
Consider G’ as a multigraph
The expected number of edges between nodes

_ kik;
i and j of degrees k; and k; equals to: k; - 2m =--
The expected number of edges in (multigraph) G’:
ki _ 1 1
— ZlENZ]EN om 2 ZleENk (ZJEN) =
Note

=—2m-2m=m '
am ZkuZZm

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Modularity

Modularity of partitioning S of graph G:

Qo). .g| (# edges within group s) —
(expected # edges within group s) |

kik;
Q(G, S) :izses ZieS ZjEs (Aij N])

2m
Aij =1if I—)J,

Normalizing const.: -1<Q<1 0 else

Modularity values take range [-1,1]

It is positive if the number of edges within
groups exceeds the expected number

Q greater than 0.3-0.7 means significant
community structure

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 53

Modularity: 2 Defs

6.9 =532, 2. 2 (45~ 2

SES IESs JEs

Equivalently modularity can be written as:

1 kik;
Q=g 2 ER LOR

« A;; represents the edge weight between nodes 7 and j;

o k; and k; are the sum of the weights of the edges attached to nodes 7 and j, respectively;
« 2m is the sum of all of the edge weights in the graph;

e c; and c; are the communities of the nodes; and

« d is an indicator function

ldea: We can identify communities by
maximizing modularity

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 54

Louvain Algorithm

Louvain Algorithm

It is NP-hard to find optimal partitioning
Louvain algorithm:

Greedy algorithm for community detection

Heuristic and works very well in practice

Supports weighted graphs

Provides hierarchical communities Networkand communities:

O(n logn) run time

Widely utilized to study
large networks because:

Fast, has rapid convergence

High modularity output
(i.e., “better communities”) b5 434 l l b J’J’

Jure Leskovec & Mina Ghashami, Stanford CS24

Dendrogram:

Louvain Algorithm: At High Level

Louvain algorithm greedily maximizes modularity
Each pass is made of 2 phases:

Phase 1: Modularity is optimized by allowing only
local changes to nhode-communities memberships

Phase 2: The identified communities are aggregated
into super-nodes to build a new network

Goto Phase 1 L

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 63

Louvain: 15t phase (Partitioning)

Put each node in a graph into a distinct
community (one node per community)
For each node i, perform two calculations:

Compute the modularity delta (AQ) when putting
node i into the community of some neighbor j

Move i to a community of node j that yields the
largest gain in AQ

Phase 1 runs until no movement yields a gain

This first phase stops when a local maxima of the modularity is attained, i.e., when no individual node
move can improve the modularity.

Note that the output of the algorithm depends on the order in which the nodes are considered.

Research indicates that the ordering of the nodes does not have a significant influence on the overall

modularity that is obtained.

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 64

Louvain: Modularity Gain

What is AQ if we move node i to community C?

Assume node i is in community D, And we are
moving it to community C

Then: AQ = AQ(i » C) + AQ(D — i)

Putting node | Taking node i out
into community C of community D

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Louvain: Modularity Gain

Let’s look at computation of AQ(i — C)

We only need to consider the modularity
contribution from i and C before and after merging

contribution from the rest of the network stays
constant and can be ignored

AQ(i— C) = Qpartial,after - Qpartial,before

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 66

Louvain: Modularity Gain

Some notation:

Ziyn +l“'i.in o Z{()[+l".1', ?
2m 2m

AQ(i » C) =

where:

Yin-- sum of link weights between nodes in C

Yot SUM of all link weights of nodes in C

ki in... sum of link weights between node i and C

k;... sum of all link weights (i.e., degree) of node i

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

- B () - (2

67

Louvain: Modularity Gain

S0 AQ(i — C) = Qpartial,after - Qpartial,before

First, we compute Qpartial,before:

Qpartial,before — Qpartial,before,i + Qpartial,before,C

_ Ki~2 —
Qpartial,before,i =0- (—) reminder:
2m 0= Tin (ztot)z
_ Zin _ Dtot 2 2Zm__ "2m
Qpartial,before,C ~ om (_Zm)

_ 2 % Ki
=20 — (B2 —(50)°

Qpartial,before om

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 68

Louvain: Modularity Gain

S0 AQ(i — C) = Qpartial,after - Qpartial,before

Second, we compute @, ial after?

Ci is a single supernode

reminder:
Zin + k Lin z:in z:tot
— _ 2
ci ¢ 2m (Zm)

Din +ki,in_(2tot +ki)2
2m 2m

Qpartial,after —

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 69

Louvain: Modularity Gain

2 2 2
. Zin +l\f‘i.,‘i,-n. ZI,()I, +A1 Z'ixn <ZI()I/ >]‘;i
— = — | — — - -
AQ (l C) 2m 2m 2m 2m 2m
Modularity contribution
after merging node j

‘ . Z'ixu +A7'I‘..‘i‘n ZI,()I(+A1 ’ Z'ixn <Zto’/ > | k"' |
AQ(l - C) B 2m < 2m 2m 2m 2m

v) —
Modularity of C Modularity of i

Self-edge weight
Zin
C Kiin/2 i
By applying the Modularity definition:
Ytot — 2in — (kmn/2)\ + /k,- — (kiin/2) 1 A ki kj 5
Edge weight of the resulting super- Q o 2m Z o 2m (Ci’cj)
node from merging C and i rest of the graph tj

(modeled as a single node)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 70

Louvain: Modularity Gain

What is AQ if we move node i to community
C’?
i (e (ki)
a {ﬁ a <2m> B (%)]

AQ(i » C) =
Also need to derive AQ(D — i) of taking
node i out of community D.

Zi;] +l“‘i.in o Z[{)[+AI ?
2m 2m

And then: AQ = AQ(i » C) + AQ(D - i)

Louvain: 2"d phase (Restructuring)

The communities obtained in the first phase
are contracted into super-nodes, and the
network is created accordingly:

Super-nodes are connected if there is at least one

edge between the nodes of the corresponding
communities

The weight of the edge between the two super-
nodes is the sum of the weights from all edges
between their corresponding communities

Phase 1 is then run on the super-node
network

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 72

Louvain Algorithm

Algorithm 1: Sequential Louvain Algorithm

Input: G=(V,E): graph representation.
Output: C: community sets at each level;
Q: modularity at each level.
Var: ¢: vertex u’s best candidate community set.

1 Loop outer 18 // Calculate community set and modularity.
2 C+—{{u}}, Vuev ; 19 Q+0;
3 X «—Ywuy, e(u,v)€EE, u€c and vec ; 20 for ceC do
4 Yo . «—Yw,,, e(uv)€E, u€corvec ; 21 t Q(_Q+%f7_(%f)z .
) 2 | C«{c}VeeC:printC and Q ;
j 0"1!.(’) r”::’:’v AR GERR 23 | [/ Phase 2: Rebuild Graph)
8 // Find the best community for vertex u. “ VI £C 2] Gommunities contracted into super-nodes
o E— argmax AQ“ 7 1] Modularity gain 25 E'—{e(c,c)}, :e(u.}‘)EE. ucc, vec
VE . Se(uv)EE. ved ' 26 W, YXwyy, Ve(u,v)EE, ucc, vec
10 if AQ, ¢ >0 then 27 if No community changes then
11 // Update X,,, and X,,. 28 | exit outer Loop:
12 Z;:U, <—Z;‘(,,+u'(;u) s o X +Wyuae ; 29 VeV E«E ; Halting criterion
13 Yo X —wu) X X —wy . for 24 Phase
14 // Update the community information. 1
15 c—cU{u} ; c—c—{u} ;
16 if No vertex moves to a new community then the weights of the edges
17 | exit inner Loop; between the new super-nodes

are given by the sum of the
weights of the edges between
vertices in the corresponding
two communities

Halting criterion for 1t Phase

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 73

Louvain Algorithm

1O "
3
ZQ % =
><J a7
s 50—
8' ®6
150) '
o9 Y 11
14 & '
- 013
12@ o
Modularity Community
Optimization Aggregation
14 4
/ \‘n 4 (/l
1st pass O ' 2nd pass 26 N 3 -
& ‘
/] 3 i
16 2

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 74

Back to Detecting Cell Types

Input:
Single-cell gene expression data
Steps:
1) Apply SVD to cell gene expression data
(~50 dim)
2) Create K-NN (K=15) graph between the low-
dim cell gene expressions
2) Apply the Louvain algorithm to identify the
clusters

UMAP2

Cell Type Identification Task

Ground truth annotations

duct epithelial

epithelial of ° -°-‘@k. % dl;lpt principal

. oV ‘O‘ ()
proximal tubule . oo ® '."'.*ﬂ" A%
sy ., ’ﬂ.}-.o" i

- ° ' oo
mesangial @° < y

B cell \
0 J
T cell

endothelial
macrophage

UMAP1

UMAP2

Louvain algorithm

° ° "\. <
“i.' . ® ’ ..o' °
"’ ."‘ ... \
v
UMAP1

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Louvain Hierarchical Groups

UMAP2

Super-node

epithelial cells

duct epithelial
o0 <& 'O
&0 .'r."o*":é:"
° 09 © CJ ° °
R
epithelial of ¢ &* ¢ o
proximal tubule -‘;'.'.'f'.'; o« 8
e ., '3\.’?.: g
.’d ° 5' Oo' -]
PPN
UMAP1 UMAP1

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 77

Summary: Modularity

Modularity:

Overall quality of the partitioning of a graph into
communities

Used to determine the number of communities

Louvain modularity maximization:
Greedy strategy
Great performance, scales to large networks

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets 79

