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Random surfer 
browsing the web

Random walker 
walking the graph

What is the stationary 
distribution of the random 
walker? 

Transition matrix M



5/4/23 Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets 3

Random surfer 
browsing the web

Random walker 
walking the graph

Principal Eigenvector 
of the transition Matrix

𝑀𝑣 = 𝑣
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¡ Input: Graph 𝑮 and parameter 𝜷
§ Directed graph 𝑮 (can have spider traps and dead ends)
§ Parameter 𝜷

¡ Output: PageRank vector 𝒓
§ Set: 𝑟!

(#) = %
&
, 𝑡 = 1

§ Do: ∀𝑗: 𝒓′𝒋 = ∑𝒊→𝒋𝜷
𝒓𝒊
(𝒕$𝟏)

𝒅𝒊
𝒓′𝒋 = 𝟎 if in-degree of 𝒋 is 0

§ Now re-insert the leaked PageRank:
∀𝒋: 𝒓𝒋

(𝒕) = 𝒓(𝒋 +
𝟏)𝑺
𝑵

§ 𝒕 = 𝒕 + 𝟏

§ while ∑! 𝑟!
(,) − 𝑟!

(,-%) < 𝜀
7

where: 𝑆 = ∑! 𝑟′!

If the graph has no dead-
ends then the amount of 
leaked PageRank is 1-β. But 
since we have dead-ends the 
amount of leaked PageRank 
may be larger. We have to 
explicitly account for it by 
computing S.
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¡ Measures generic importance of a page
§ Will ignore/miss topic-specific authorities
§ Solution: Topic-Specific PageRank (next)

¡ Uses a single measure of importance
§ Other models of importance
§ Solution: Hubs-and-Authorities

¡ Susceptible to Link spam
§ Artificial link topographies created in order to 

boost page rank
§ Solution: TrustRank
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¡ Instead of generic importance, can we measure 
importance within a topic?

¡ Goal: Evaluate Web pages not just according to 
their importance, but also by how close they are 
to a particular topic, e.g. “sports” or “history”

¡ Allows search queries to be answered based on 
the interests of a user
§ Example: Query “Trojan” wants different pages 

depending on whether you are interested in sports, 
history, or computer security
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¡ Random walker has a small probability of 
teleporting at any step

¡ Teleport can go to:
§ Standard PageRank: Any page with equal probability

§ To avoid dead-end and spider-trap problems
§ Topic Specific PageRank: A topic-specific set of 

“relevant” pages (teleport set)
¡ Idea: Bias the random walk

§ When the walker teleports, she picks a page randomly 
from the teleport set S

§ S contains only pages that are relevant to the topic
§ E.g., Open Directory (DMOZ) pages for a given topic/query

§ For each teleport set S, we get a different vector rS
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¡ To make this work all we need is to update the 
teleportation part of the PageRank formulation: 
𝑨𝒊𝒋 = 𝜷𝑴𝒊𝒋 + (𝟏 − 𝜷)/|𝑺| if 𝒊 ∈ 𝑺

𝜷𝑴𝒊𝒋 + 𝟎 otherwise
§ A is a stochastic matrix!

¡ We weighted all pages in the teleport set S equally
§ Could also assign different weights to pages!

¡ Compute as for regular PageRank:
§ Multiply by M, then add a vector of (𝟏 − 𝜷)/|𝑺|
§ Maintains sparseness
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Suppose S = {1}, b = 0.8
Node Iteration

0 1 2     … stable
1 0.25 0.4 0.28 0.294
2 0.25 0.1 0.16 0.118
3 0.25 0.3 0.32 0.327
4 0.25 0.2 0.24 0.261
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S={1,2,3,4},  β=0.8:
r=[0.13, 0.10, 0.39, 0.36]
S={1,2,3} ,  β=0.8:
r=[0.17, 0.13, 0.38, 0.30]
S={1,2} ,  β=0.8:
r=[0.26, 0.20, 0.29, 0.23]
S={1} ,  β=0.8:
r=[0.29, 0.11, 0.32, 0.26]

S={1},  β=0.9:
r=[0.17, 0.07, 0.40, 0.36]
S={1} ,  β=0.8:
r=[0.29, 0.11, 0.32, 0.26]
S={1},  β=0.7:
r=[0.39, 0.14, 0.27, 0.19]



¡ Create different PageRanks for different topics
§ The 16 DMOZ top-level categories:

§ Arts, Business, Sports,…
¡ Which topic ranking to use?
§ User can pick from a menu
§ Classify query into a topic
§ Can use the context of the query

§ E.g., query is launched from a web page talking about a 
known topic

§ History of queries e.g., “basketball” followed by “Jordan”

§ User context, e.g., user’s bookmarks, …
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Random Walk with Restarts: Set S is a single node
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a.k.a.: Relevance, Closeness, ‘Similarity’…

[Tong-Faloutsos, ‘06]
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¡ Shortest path is not good:

¡ No effect of degree-1 nodes (E, F, G)!
¡ Multi-faceted relationships
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¡ Network flow is not good:

¡ Does not punish long paths
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¡ Need a method that 
considers:
§ Multiple connections
§ Multiple paths
§ Direct and indirect 

connections
§ Degree of the node
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¡ Recommendations can be radically 
personalized.

¡ Relevant recommendations
¡ Adapting in real-time(~50ms)
¡ Cheap to serve
¡ Easy to explain
¡ Highly scalable
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How to provide relevant and responsive 
recommendations 
¡ From 100B Pins to 1K Pins in real-time (50ms, 

200,000x/s)
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Input:
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¡ Pins to Pins
Input: Output:

5/4/23 Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets 25



Input:
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Input: Output:
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Pin

Board Board Board
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¡ Idea:
§ Every node has some importance
§ Importance gets evenly split among all edges and 

pushed to the neighbors
¡ Given a set of QUERY NODES Q, simulate a 

random walk:
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Bipartite Pin and Board graph

Q



¡ Proximity to query node(s) Q:

Bipartite Pin and Board graph
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¡ Proximity to query node(s) Q:Pixie Random Walk

5 5 5 5 5 5 14 9 16 7 8 8 8 8 1 1 1

Strawberries SmoothiesYummm Smoothie Madness!•!•!•!

Q

5/4/23 Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets 33



¡ Pixie:
§ Outputs top 1k pins with highest visit count

Extensions:
¡ 1. Weighted edges: The walk prefers to traverse 

certain edges:
§ Edges to pins in your local language
§ Personalized edge weights:
§ Pixie for different users and query pins can choose 

to bias edge selection dynamically based on user 
and edge features.
§ Weight = PersonalizedNeighbor(E,U), 

where E is edge and U is the user.
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Extensions:
¡ 2. Multiple query pins:
§ Each query pin 𝑞 gets a different importance 𝑤(
§ Run PixieRandomWalk for each 𝑞 in parallel.
§ Combine visit counts.
§ Important insight: The number of steps required 

to obtain meaningful visit counts depends on the 
query pin’s degree
§ Scale the number of steps allocated to each query pin to 

be proportional to its degree
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Extensions:
¡ 3. Multi-hit Booster:
§ For multi-pin queries we prefer recommendations 

related to multiple query pins 𝑞.
§ Candidates with high visit counts from multiple query 

pins are more relevant to the query than candidates 
having equally high total visit count but all coming from a 
single query pin.

§ Solution: When combining visit counts use:
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Note that when a candidate pin 𝑝 is visited by walks from only a single query pin 𝑞 then the count is 
unchanged. However, if the candidate pin is visited from multiple query pins, then the count is boosted.



Extensions:
¡ 4. Early Stopping:
§ Insight: We only care about top-1k most visited 

pins.
§ So, we don’t need to walk a fixed big number of 

steps
§ We just walk until 1k-th most visited pin has at 

least 20 visits.
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¡ Pinterest graph has 200B edges
¡ We don’t need all of them!

§ Super popular pins are pinned to millions of boards
§ Not useful: When the random walk hits the pin, the signal just 

disperses. Such pins appear randomly in our recommendations.
¡ What we did: Keep only good boards for pins

§ Compute the similarity between pin’s topic vector and 
each of its boards. Only take boards with high similarity.
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Data Type Number Size Memory

Pin Nodes 3 Billion
8 Bytes

24 GiB

Board Nodes 2 Billion
8 Bytes

16 GiB

Undirected Edges 20 Billion
8 Bytes

160 GiB

208 GiB



¡ Benefits:
§ Blazingly fast: Given Q, we can output top 1k in 50ms 

(after doing ~100k steps of the random walk)
§ Single machine can run 1,500 walks in parallel (1500 

recommendation requests per second).
§ Fit entire graph in RAM of a single machine (17B 

edges, 3B nodes)
§ Can scale it by just adding more machines

To learn more read: https://cs.stanford.edu/people/jure/pubs/pixie-www18.pdf
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Joint work with many Twitter folks over several years:
http://www2013.w3c.br/proceedings/p505.pdf
https://www.vldb.org/pvldb/vol9/p1281-sharma.pdf

http://www2013.w3c.br/proceedings/p505.pdf
https://www.vldb.org/pvldb/vol9/p1281-sharma.pdf
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User Recs Content Recs

Users
Tweets
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¡ How early search engines answer queries:
§ Crawl the Web to collect pages
§ Build inverted index (word -> list of pages)
§ Given a search query, get intersection of pages 

containing those words 
§ Rank pages and respond to user

¡ Early page ranking:
§ Based on a notion of “importance”
§ First search engines considered:

§ (1) Number of times query words appeared
§ (2) Prominence of word position, e.g. title, header
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¡ People abused it in two ways:
§ Term Spam
§ Link Spam

¡ What is spamming?
§ Any deliberate action to boost a web page’s position in 

search engine results, incommensurate with the page’s real 
value

¡ What is a spam?
§ Web pages that are the result of spamming

¡ This is a very broad definition
§ SEO (search engine optimization) industry might disagree!

¡ Approximately 10-15% of web pages are spam
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¡ As people began to use search engines to find 
things on the Web, those with commercial 
interests tried to exploit search engines to 
bring people to their own site – whether they 
wanted to be there or not

¡ Example:
§ Shirt-seller might pretend to be about “movies”

¡ Techniques for achieving high 
relevance/importance for a web page
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¡ How do you make your page appear to be 
about movies?
§ (1) Add the word movie 1,000 times to your page

§ Set text color to the background color, so only search 
engines would see it

§ (2) Or, run the query “movie” on your 
target search engine
§ See what page came on top of result ranking
§ Copy it into your page, make it “invisible”

¡ These and similar techniques are “term spam”
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¡ Google’s solution:
§ Believe what people say about you, rather than 

what you say about yourself
§ Use words in the anchor text and its surrounding text

¡ Measure “importance” of those Web pages 
via PageRank
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¡ Our hypothetical shirt-seller loses
§ Saying he is about movies doesn’t help, because 

others don’t say he is about movies
§ His page isn’t very important, so it won’t be ranked 

high for shirts or movies
¡ Example:

§ Shirt-seller creates 1,000 pages, each links to his with 
“movie” in the anchor text

§ These pages have no links in, so they get little PageRank
§ So the shirt-seller can’t beat truly important movie

pages, like IMDB
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SPAM FARMING



¡ Once Google became the dominant search 
engine, spammers began to work out ways to 
fool Google

¡ Spam farm: A collection of pages whose 
purpose is to increase the page rank of a 
certain page(s)

¡ Link spam:
§ Create link structures that  

boost PageRank of a particular 
page
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¡ Three kinds of web pages from a 
spammer’s point of view
§ Owned pages

§ Completely controlled by spammer
§ May span multiple domain names

§ Accessible pages
§ e.g., blog comments pages, newspapers, wikipedia
§ spammer can post links to his pages

§ Inaccessible pages
§ Majority of the web
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¡ Spammer’s goal:
§ Maximize the PageRank of target page t

¡ Technique:
§ Get as many links from accessible pages as 

possible to target page t
§ Construct “link farm” to get PageRank 

multiplier effect
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Inaccessible

t

Accessible Owned

1

2

M

One of the most common and effective 
organizations for a link farm
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Millions of 
farm pages

Spammers don’t own Accessible. 
But they can still insert links
(by posting content, comments, 
etc.)



¡ x: PageRank contributed by accessible pages
¡ y: PageRank of target page t
¡ Rank of each “owned” page = ,𝒚

.
+ /0,

1

¡ 𝒚 = 𝑥 + 𝛽𝑀 ,2
.
+ /0,

1
+ /0,

1
= 𝑥 + 𝛽3𝑦 + , /0, .

1
+ /0,

1
¡ 𝒚 = 𝒙

𝟏0𝜷𝟐
+ 𝒄𝑴

𝑵
where 𝑐 = ,

/8,

Very small; ignore
Now we solve for y
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N…# pages on the web
M…# of pages spammer 
owns

Inaccessible

t

Accessible Owned

1
2

M



¡ 𝒚 = 𝒙
𝟏#𝜷𝟐

+ 𝒄𝑴
𝑵

where 𝑐 = '
()'

¡ For b = 0.85:

§ 𝒚 = 𝟑. 𝟔 𝒙 + 𝟎. 𝟒𝟔𝑴
𝑵

¡ Multiplier effect for acquired PageRank
¡ By making M large, we can make y as 

large as we want
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M…# of pages spammer 
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¡ There are two approaches to detect and 
remove link spam:
1. Detection and blacklisting of structures that 

look like spam farms
§ One page links to a very large number of pages, each of 

which links back to it.
§ Leads to another war – hiding and detecting spam farms

2. TrustRank = topic-specific PageRank with a 
teleport set of trusted pages

§ Example: .edu domains, .gov domains 
§ similar domains for non-US websites
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¡ TrustRank is topic-sensitive PageRank
§ Topic = a set of pages believed to be trustworthy 
§ The idea is that it is rare for a “good” page to point 

to a “bad” (spam) page

¡ To develop a suitable teleport set:
1. Sample a set of seed pages from the web
2. Have an oracle (human) to identify the good 

pages and the spam pages in the seed set
§ Expensive task, so we must make seed set as 

small as possible

5/4/23 Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets 60



¡ Call the subset of seed pages that are 
identified as good the trusted pages

¡ Perform a topic-sensitive PageRank with 
teleport set = trusted pages
§ Propagate trust through links:

§ Each page gets a trust value between 0 and 1

¡ Solution 1: Use a threshold value and mark 
all pages below the trust threshold as spam
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¡ Set trust of each trusted page to 1
¡ Suppose trust of page p is tp
§ Page p has a set of out-links op

¡ For each qÎop, p confers the trust to q
§ b tp /|op| for  0 <b < 1

¡ Trust is additive 
§ Trust of p is the sum of the trust conferred 

on p by all its in-linked pages
¡ Note similarity to Topic-Specific PageRank
§ Within a scaling factor, TrustRank = PageRank with 

trusted pages as teleport set
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¡ Trust attenuation:
§ The degree of trust conferred by a trusted page 

decreases with the distance in the graph
§ Every time it is multiplied by b

¡ Trust splitting:
§ The larger the number of out-links from a page, 

the less scrutiny the page’s author gives to each 
out-link

§ Trust is split across out-links
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¡ Two conflicting considerations:
§ Human has to inspect each seed page, so 

seed set must be as small as possible

§ Must ensure every good page gets adequate 
trust rank, so need to make all good pages 
reachable from trusted set by short paths
§ So the trusted set must be large
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Suppose we want to pick a seed set of k pages
How to do that?
¡ (1) PageRank:
§ Pick the top k pages by PageRank
§ Theory is that bad pages can’t get really high ranks

¡ (2) Use trusted domains whose membership 
is controlled, like .edu, .mil, .gov
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¡ The TrustRank model, propagates trust

¡ SpamMass provides a complementary view: 
What fraction of a page’s PageRank comes 
from spam pages?

¡ In practice, we don’t know all 
the spam pages, so we need 
to estimate

Web

Trusted 
set
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Solution 2:
¡ 𝒓𝒑 = PageRank of page p
¡ 𝒓𝒑8 = PageRank of p with teleport into 

trusted pages only

¡ Then: What fraction of a page’s PageRank comes 
from spam pages?
𝒓𝒑" = 𝒓𝒑 − 𝒓𝒑#

¡ Spam mass of p = 
𝒓𝒑,

𝒓𝒑
§ Pages with high spam mass

are spam and thus removed 
from search engine index

Trusted 
set

Web
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¡ Topic specific PageRank
§ Custom teleportation vector

¡ Random Walk with Restarts
§ Recommendations

¡ Spam farming

¡ TrustRank and Spam Mass estimation
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