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Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
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Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
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Citation networks and Maps of science
[Börner et al., 2012]
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Seven Bridges of Königsberg
[Euler, 1735]

Return to the starting point by traveling each 
link of the graph once and only once.



¡ Web as a directed graph:
§ Nodes: Webpages
§ Edges: Hyperlinks
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¡ Web as a directed graph:
§ Nodes: Webpages
§ Edges: Hyperlinks
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¡ How to organize the Web?
¡ First try: Human curated

Web directories
§ Yahoo, DMOZ, LookSmart

¡ Second try: Web Search
§ Information Retrieval investigates:

Find relevant docs in a small 
and trusted set
§ Newspaper articles, Patents, etc.

§ But: Web is huge, full of untrusted documents, 
random things, web spam, etc.
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2 challenges of web search:
¡ (1) Web contains many sources of information

Who to “trust”?
§ Trick: Trustworthy pages may point to each other!

¡ (2) What is the “best” answer to query 
“newspaper”?
§ No single right answer
§ Trick: Pages that actually know about newspapers 

might all be pointing to many newspapers
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¡ All web pages are not equally “important”
thispersondoesnotexist.com vs. www.stanford.edu

¡ There is a large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!
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https://thispersondoesnotexist.com/
http://www.stanford.edu/


¡ We will cover the following Link Analysis 
approaches for computing importance
of nodes in a graph:
§ PageRank
§ Topic-Specific (Personalized) PageRank
§ Web Spam Detection Algorithms
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¡ Idea: Links as votes
§ Page is more important if it has more links

§ In-coming links? Out-going links?
¡ Think of in-links as votes:

§ www.stanford.edu has millions in-links
§ thispersondoesnotexist.com has a few thousands in-link

¡ Are all in-links equal?
§ Links from important pages count more
§ Recursive question! 
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¡ Web pages are important if people visit them 
a lot.

¡ But we can’t watch everybody using the Web.
¡ A good surrogate for visiting pages is to 

assume people follow links randomly.
¡ Leads to random surfer model:
§ Start at a random page and follow random out-

links repeatedly, from whatever page you are at.
§ PageRank = limiting probability of being at a page 

at any point in time.
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¡ Solve the recursive equation: “importance of a 
page = its share of the importance of each of its 
predecessor pages”
§ Equivalent to the random-surfer definition of 

PageRank

¡ Technically, importance = the principal 
eigenvector of the transition matrix of the Web
§ A few fix-ups needed
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¡ Each link’s vote is proportional to the 
importance of its source page

¡ If page j with importance rj has n out-links, 
each link gets rj / n votes

¡ Page j’s own importance is the sum of the 
votes on its in-links
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¡ A “vote” from an important 
page is worth more

¡ A page is important if it is 
pointed to by other important 
pages

¡ Define a “rank” rj for page j
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The web in 1839

“Flow” equations:
ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2𝒅𝒊 … out-degree of node 𝒊

𝒓𝒋 are the solutions to the “flow” equation



¡ 3 equations, 3 unknowns, 
no constants
§ No unique solution
§ All solutions equivalent modulo the scale factor

¡ Additional constraint forces uniqueness:
§ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

§ Solution: 𝒓𝒚 = 𝟐
𝟓
, 𝒓𝒂 = 𝟐

𝟓
, 𝒓𝒎 = 𝟏

𝟓
¡ Gaussian elimination method works for 

small examples, but we need a better 
method for large web-size graphs

¡ We need a new formulation!
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ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2

Flow equations:



¡ Define stochastic adjacency matrix 𝑴
§ Let page 𝑖 has 𝑑𝑖 out-links

§ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
!
"!

else   𝑀𝑗𝑖 = 0
§ 𝑴 is a column stochastic matrix

§ Each column sums to 1
¡ Define rank vector 𝒓: a vector with one entry 

per page; it captures importance of the page
§ 𝑟𝑖 = importance score of page 𝑖
§ ∑' 𝑟𝑖 = 1

¡ The flow equations can be written 
𝒓 = 𝑴 ⋅ 𝒓
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¡ Remember the flow equation:
¡ Flow equation in the matrix form

𝑴 ⋅ 𝒓 = 𝒓
§ Suppose page i links to 3 pages, including j
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r    =     M           ·  r

ry ½    ½    0     ry
ra =  ½     0    1     ra
rm 0    ½    0    rm
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y ½ ½ 0
a ½ 0 1

m 0 ½ 0

ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2

M   =



¡ The flow equations can be written
𝒓 = 𝑴 $ 𝒓

¡ So the rank vector r is an eigenvector of the 
stochastic web matrix M
§ Starting from any stochastic vector 𝒖, the limit 
𝑴(𝑴(…𝑴(𝑴 𝒖)))
is the long-term distribution of the surfers.
§ The math: limiting distribution = principal 

eigenvector of 𝑀 = PageRank.
§ Note: If 𝒓 is the limit of 𝑴𝑴…𝑴𝒖, then 𝒓 satisfies 

the equation 𝒓 = 𝑴𝒓, so r is an eigenvector of 𝑴 with eigenvalue 1
¡ We can now efficiently solve for r!

The method is called Power iteration
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NOTE: x is an 
eigenvector with 

the corresponding 
eigenvalue λ if:
𝑨𝒙 = 𝝀𝒙



¡ Given a web graph with N nodes, where the 
nodes are pages and edges are hyperlinks

¡ Power iteration: a simple iterative scheme
§ Suppose there are N web pages
§ Initialize: r(0) = [1/N,….,1/N]T

§ Iterate: r(t+1) = M · r(t)

§ Stop when |r(t+1) – r(t)|1 < e
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|x|1 = å1≤i≤N|xi| is the L1 norm 
So that r is a distribution (sums to 1)

About 50 iterations is sufficient to estimate the limiting solution. 



¡ Power Iteration:
§ Set 𝑟 = [1/N, 1/N, 1/N]
§ 1: 𝑟( = 𝑀. 𝑟
§ 2: 𝑟 = 𝑟′
§ Goto 1

¡ Example:
ry 1/3 1/3 5/12 9/24 6/15

r  = ra      = 1/3 3/6 1/3 11/24 … 6/15
rm 1/3 1/6 3/12 1/6 3/15
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2



¡ Power Iteration:
§ Set 𝑟 = [1/N, 1/N, 1/N]
§ 1: 𝑟( = 𝑀. 𝑟
§ 2: 𝑟 = 𝑟′
§ Goto 1

¡ Example:
ry 1/3 1/3 5/12 9/24 6/15
ra  = 1/3 3/6 1/3 11/24 … 6/15
rm 1/3 1/6 3/12 1/6 3/15
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m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2
ra = ry /2 + rm

rm = ra /2

r = 



¡ Power iteration: 
A method for finding dominant eigenvector (the 
vector corresponding to the largest eigenvalue)
§ 𝒓(𝟏) = 𝑴 ⋅ 𝒓(𝟎)

§ 𝒓(𝟐) = 𝑴 ⋅ 𝒓 𝟏 = 𝑴 𝑴𝒓 𝟎 = 𝑴𝟐 ⋅ 𝒓 𝟎

§ 𝒓(𝟑) = 𝑴 ⋅ 𝒓 𝟐 = 𝑴 𝑴𝟐𝒓 𝟎 = 𝑴𝟑 ⋅ 𝒓 𝟎

¡ Claim:
Sequence 𝑴 ⋅ 𝒓 𝟎 , 𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴
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¡ Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

¡ Proof:
§ Assume M has n linearly independent eigenvectors, 
𝑥', 𝑥(, … , 𝑥) with corresponding eigenvalues 
𝜆', 𝜆(, … , 𝜆), where 𝜆' > 𝜆( > ⋯ > 𝜆)

§ Vectors 𝑥', 𝑥(, … , 𝑥) form a basis and thus we can write: 
𝑟(+) = 𝑐' 𝑥' + 𝑐( 𝑥( +⋯+ 𝑐) 𝑥)

§ 𝑴𝒓(𝟎) = 𝑴 𝒄𝟏 𝒙𝟏 + 𝒄𝟐 𝒙𝟐 +⋯+ 𝒄𝒏 𝒙𝒏
= 𝑐'(𝑀𝑥') + 𝑐((𝑀𝑥() + ⋯+ 𝑐)(𝑀𝑥))
= 𝑐'(𝜆'𝑥') + 𝑐((𝜆(𝑥() + ⋯+ 𝑐)(𝜆)𝑥))

§ Repeated multiplication on both sides produces
𝑀1𝑟(+) = 𝑐'(𝜆'1𝑥') + 𝑐((𝜆(1𝑥() + ⋯+ 𝑐)(𝜆)1𝑥))
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¡ Claim: Sequence 𝑴 ⋅ 𝒓 𝟎 ,𝑴𝟐 ⋅ 𝒓 𝟎 , …𝑴𝒌 ⋅ 𝒓 𝟎 , …
approaches the dominant eigenvector of 𝑴

¡ Proof (continued):
§ Repeated multiplication on both sides produces
𝑀(𝑟(*) = 𝑐,(𝜆,(𝑥,) + 𝑐-(𝜆-(𝑥-) + ⋯+ 𝑐.(𝜆.(𝑥.)

§ 𝑀(𝑟(*) = 𝜆,( 𝑐,𝑥, + 𝑐-
/!
/"

(
𝑥- +⋯+ 𝑐.

/#
/"

(
𝑥.

§ Since 𝜆, > 𝜆- then fractions /!
/"
, /$
/"
… < 1

and so /%
/"

(
= 0 as 𝑘 → ∞ (for all 𝑖 = 2…𝑛).

§ Thus: 𝑴𝒌𝒓(𝟎) ≈ 𝒄𝟏 𝝀𝟏𝒌𝒙𝟏
§ Note if 𝑐" = 0 then the method won’t converge
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¡ Imagine a random web surfer:
§ At any time 𝒕, surfer is on some page 𝒊
§ At time 𝒕 + 𝟏, the surfer follows an 

out-link from 𝒊 uniformly at random
§ Ends up on some page 𝒋 linked from 𝒊
§ Process repeats indefinitely

¡ Let:
¡ 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕
§ So, 𝒑(𝒕) is a probability distribution over pages
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¡ Where is the surfer at time t+1?
§ Follows a link uniformly at random
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

¡ Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)
then 𝒑(𝒕) is stationary distribution of a random walk

¡ Our original rank vector 𝒓 satisfies  𝒓 = 𝑴 ⋅ 𝒓
§ So, 𝒓 is a stationary distribution for the random 

walk

)(M)1( tptp ×=+
j

i1 i2 i3
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¡ A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what is 
the initial probability distribution at time t = 0
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¡ Given an undirected graph with N
nodes, where the nodes are pages and 
edges are hyperlinks

¡ Claim [Existence]: For node v,
rv = dv/2m is a solution.

¡ Proof:
§ Iteration step: r(t+1) = M · r(t)

§ Substitute ri = di/2m:

¡ Done! Uniqueness: exercise! m = #edges
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¡ Which node has highest PageRank? Second highest?
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¡ Node 1 has the highest PR, followed by Node 3
¡ Degree ≠ PageRank

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

6

2

1

3

4

5



¡ Add edge 3 -> 2. Now, which node has highest 
PageRank? Second highest?

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

6

2

1

3

4

5



¡ Node 3 has the highest PR, followed by 2.
¡ Small changes to graph can change PR!
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¡ Does this converge?

¡ Does it converge to what we want?

¡ Are results reasonable?
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M=

¡ Example:
ra 1 0 1 0
rb 0 1 0 1
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M=

¡ Example:
ra 1 0 0 0
rb 0 1 0 0
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Two problems:
¡ (1) Dead ends: Some pages 

have no out-links
§ Random walk has “nowhere” to go to
§ Such pages cause importance to “leak out”

¡ (2) Spider traps:
(all out-links are within the group)
§ Random walk gets “stuck” in a trap
§ And eventually spider traps absorb all importance
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Dead end

Spider trap



¡ Power Iteration:
§ Set 𝑟1 = 1/𝑁

§ 𝑟1 = ∑'→1
3!
4!

§ And iterate

¡ Example:
ry 1/3 2/6 3/12 5/24 0
ra = 1/3 1/6 2/12 3/24 … 0
rm 1/3 3/6 7/12 16/24 1
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Iteration 0, 1, 2, …

y

a m

y a m
y ½ ½ 0
a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2
ra = ry /2
rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.



¡ The Google solution for spider traps: At each 
time step, the random surfer has two options
§ With prob. b, follow a link at random
§ With prob. 1-b, jump to some random page
§ b is typically in the range 0.8 to 0.9

¡ Surfer will teleport out of spider trap 
within a few time steps
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¡ Power Iteration:
§ Set 𝑟1 = 1/𝑁

§ 𝑟1 = ∑'→1
3!
4!

§ And iterate

¡ Example:
ry 1/3 2/6 3/12 5/24 0
ra = 1/3 1/6 2/12 3/24 … 0
rm 1/3 1/6 1/12 2/24 0
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Iteration 0, 1, 2, …

y

a m

y a m
y ½ ½ 0
a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2
ra = ry /2
rm = ra /2

Here the PageRank score “leaks” out since the matrix is not stochastic.

m is a dead end



¡ Teleports: Follow random teleport links with 
probability 1.0 from dead-ends
§ Adjust matrix accordingly
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y ½ ½ ⅓
a ½ 0 ⅓

m 0 ½ ⅓

y a m
y ½ ½ 0
a ½ 0 0

m 0 ½ 0
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Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?
¡ Spider-traps are not a problem, but with traps 

PageRank scores are not what we want
§ Solution: Never get stuck in a spider trap by 

teleporting out of it in a finite number of steps
¡ Dead-ends are a problem
§ The matrix is not column stochastic so our initial 

assumptions are not met
§ Solution: Make matrix column stochastic by always 

teleporting when there is nowhere else to go
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¡ Google’s solution that does it all:
At each step, random surfer has two options:
§ With probability b,  follow a link at random
§ With probability 1-b, jump to some random page

¡ PageRank equation [Brin-Page, 98]

𝑟! =&
"→!

𝛽
𝑟"
𝑑"
+ (1 − 𝛽)

1
𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 
preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.



¡ PageRank equation [Brin-Page, ‘98]

𝑟& =0
'→&

𝛽
𝑟'
𝑑'
+ (1 − 𝛽)

1
𝑁

¡ The Google Matrix A:

𝐴 = 𝛽 𝑀 + 1 − 𝛽
1
𝑁 )×)

¡ We have a recursive problem: 𝒓 = 𝑨 ⋅ 𝒓
And the Power method still works!

¡ What is b ?
§ In practice b =0.8,0.9 (jump every 5 steps on avg.)
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[1/N]NxN…N by N matrix
where all entries are 1/N



y
a    =
m

1/3
1/3
1/3

0.33
0.20
0.46

0.24
0.20
0.52

0.26
0.18
0.56

7/33
5/33

21/33
. . .
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y

a m

7/
15

7/15

1/15

13/15

1/151/15

1/15

7/15
7/

15
1/2 1/2   0
1/2   0    0
0   1/2   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

y   7/15  7/15   1/15
a   7/15  1/15   1/15
m  1/15  7/15  13/15

0.8 + 0.2

M [1/N]NxN

A





¡ Key step is matrix-vector multiplication
§ rnew = A · rold

¡ Easy if we have enough main memory to 
hold A, rold, rnew

¡ Say N = 1 billion pages
§ We need 4 bytes for 

each entry (say)
§ 2 billion entries for 

vectors, approx 8GB
§ Matrix A has N2 entries

§ 1018 is a large number!
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½   ½   0
½   0   0
0    ½   1

1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

7/15  7/15   1/15
7/15  1/15   1/15
1/15  7/15  13/15

0.8 +0.2

A = b·M + (1-b) [1/N]NxN

=

A =



¡ 𝒓 = 𝑨 ⋅ 𝒓,   where 𝑨𝒋𝒊 = 𝜷𝑴𝒋𝒊 +
𝟏.𝜷
𝑵

¡ 𝑟& = ∑12!) 𝐴&' ⋅ 𝑟'
¡ 𝑟& = ∑'2!) 𝛽 𝑀&' +

!.3
)

⋅ 𝑟'
= ∑12!) 𝛽 𝑀&' ⋅ 𝑟' +

!.3
)
∑12!) 𝑟'

= ∑12!) 𝛽 𝑀&' ⋅ 𝑟' +
!.3
)

since ∑𝑟' = 1

¡ So we get: 𝒓 = 𝜷𝑴 ⋅ 𝒓 + 𝟏.𝜷
𝑵 𝑵
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[x]N … a vector  of length N with all entries xNote: Here we assume M
has no dead-ends



¡ We just rearranged the PageRank equation

𝒓 = 𝜷𝑴 ⋅ 𝒓 +
𝟏 − 𝜷
𝑵 𝑵

§ where [(1-b)/N]N is a vector with all N entries (1-b)/N

¡ M is a sparse matrix! (with no dead-ends)

§ 10 links per node, approx 10𝑁 entries
¡ So in each iteration, we need to:
§ Compute rnew = b M · rold

§ Add a constant value (1-b)/N to each entry in rnew

§ Note if M contains dead-ends then ∑𝒋 𝒓𝒋𝒏𝒆𝒘 < 𝟏 and 
we also have to renormalize rnew so that it sums to 1
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¡ Input: Graph 𝑮 and parameter 𝜷
§ Directed graph 𝑮 (can have spider traps and dead ends)
§ Parameter 𝜷

¡ Output: PageRank vector 𝒓𝒏𝒆𝒘

§ Set: 𝑟2345 = '
6

§ repeat until convergence: ∑2 𝑟2)78 − 𝑟2345 < 𝜀
§ ∀𝑗: 𝒓′𝒋𝒏𝒆𝒘 = ∑𝒊→𝒋𝜷

𝒓𝒊
𝒐𝒍𝒅

𝒅𝒊
𝒓′𝒋𝒏𝒆𝒘 = 𝟎 if in-degree of 𝒋 is 0

§ Now re-insert the leaked PageRank:
∀𝒋: 𝒓𝒋𝒏𝒆𝒘 = 𝒓*𝒋

𝒏𝒆𝒘 + 𝟏,𝑺
𝑵

§ 𝒓𝒐𝒍𝒅 = 𝒓𝒏𝒆𝒘
where: 𝑆 = ∑# 𝑟′#$%&

If the graph has no dead-ends then the amount of leaked PageRank is 1-β. But since we have dead-ends 
the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
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¡ Encode sparse matrix using only nonzero 
entries
§ Space proportional roughly to number of links
§ Say 10N, or 4*10*1 billion = 40GB
§ Still won’t fit in memory, but will fit on disk
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0 3 1, 5, 7
1 5 17, 64, 113, 117, 245
2 2 13, 23

source
node degree destination nodes



¡ Assume enough RAM to fit rnew into memory
§ Store rold and matrix M on disk

¡ 1 step of power-iteration is:
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0 3 1, 5, 6
1 4 17, 64, 113, 117
2 2 13, 23

source degree destination0
1
2
3
4
5
6

0
1
2
3
4
5
6

rnew rold

Initialize all entries of rnew = (1-b) / N
For each page i (of out-degree di):
Read into memory: i, di, dest1, …, destdi, rold(i)
For j = 1…di

rnew(destj) += b rold(i) / di

Assuming no 
dead ends



Some Problems with PageRank:
¡ Measures generic popularity of a page
§ Biased against topic-specific authorities
§ Solution: Topic-Specific PageRank (next)

¡ Uses a single measure of importance
§ Other models of importance
§ Solution: Hubs-and-Authorities

¡ Susceptible to Link spam
§ Artificial link topographies created in order to 

boost page rank
§ Solution: TrustRank
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