Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://www.mmds.org</u>

Analysis of Large Graphs: Link Analysis, PageRank

CS246: Mining Massive Datasets Jure Leskovec, Stanford University Mina Ghashami, Amazon http://cs246.stanford.edu

New Topic: Graph Data!

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between political blogs Polarization of the network [Adamic-Glance, 2005]

Graph Data: Information Nets

Graph Data: Communication Networks

Graph Data: Technological Networks

Seven Bridges of Königsberg

[Euler, 1735] Return to the starting point by traveling each link of the graph once and only once.

Web as a Graph

Web as a directed graph:

- Nodes: Webpages
- Edges: Hyperlinks

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

Stanford

Web as a Graph

- Web as a directed graph:
 - Nodes: Webpages
 - Edges: Hyperlinks

Web as a Directed Graph

Jure Leskovec & Mina Ghashami, Stanford C246: Mining Massive Datasets

Broad Question

- How to organize the Web?
- First try: Human curated
 Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - <u>But:</u> Web is huge, full of untrusted documents, random things, web spam, etc.

Web Search: 2 Challenges

- 2 challenges of web search:
- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

Ranking Nodes on the Graph

- All web pages are not equally "important" <u>thispersondoesnotexist.com</u> vs. <u>www.stanford.edu</u>
- There is a large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importance of nodes in a graph:
 - PageRank
 - Topic-Specific (Personalized) PageRank
 - Web Spam Detection Algorithms

PageRank: The "Flow" Formulation

Intuition – (1): Links as Votes

Idea: Links as votes

Page is more important if it has more links

In-coming links? Out-going links?

Think of in-links as votes:

- www.stanford.edu has millions in-links
- thispersondoesnotexist.com has a few thousands in-link

Are all in-links equal?

- Links from important pages count more
- Recursive question!

Intuition – (2): Random Surfing

- Web pages are important if people visit them a lot.
- But we can't watch everybody using the Web.
- A good surrogate for visiting pages is to assume people follow links randomly.
- Leads to random surfer model:
 - Start at a random page and follow random outlinks repeatedly, from whatever page you are at.
 - PageRank = limiting probability of being at a page at any point in time.

Intuition – (3):Transition Matrix

- Solve the recursive equation: "importance of a page = its share of the importance of each of its predecessor pages"
 - Equivalent to the random-surfer definition of PageRank
- Technically, *importance* = the principal eigenvector of the transition matrix of the Web
 - A few fix-ups needed

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page j's own importance is the sum of the votes on its in-links

$$r_j = r_i/3 + r_k/4$$

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important

pages

Define a "rank" r_j for page j

 $r_j = \sum_{i \to j} \frac{r_i}{d_i}$

 d_i ... out-degree of node *i*

"Flow" equations: $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

r_j are the solutions to the "flow" equation

Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution

Flow equations: $r_y = r_y/2 + r_a/2$ $r_a = r_y/2 + r_m$ $r_m = r_a/2$

All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

$$\mathbf{r}_y + r_a + r_m = \mathbf{1}$$

• Solution: $r_y = \frac{2}{5}$, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

 Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
 We need a new formulation!

PageRank: Matrix Formulation

Define stochastic adjacency matrix M

- Let page i has d_i out-links
- If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - *M* is a column stochastic matrix
 - Each column sums to 1
- Define rank vector r: a vector with one entry per page; it captures importance of the page
 - *r_i* = importance score of page *i*
- $\sum_i r_i = 1$ • The flow equations can be written

 $r_j = \sum_{i \to i} \frac{r_i}{d_i}$

Example

Remember the flow equation: $r_j = \sum_{i \to j} \frac{r_i}{d_i}$ Flow equation in the matrix form

$$M \cdot r = r$$

Suppose page *i* links to 3 pages, including *j*

Example: Flow Equations & M

			У	a	m
		У	1/2	1/2	0
Μ	=	a	1/2	0	1
		m	0	1/2	0

 $r = M \cdot r$

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

Eigenvector Formulation

• The flow equations can be written $r = M \cdot r$

- So the rank vector r is an eigenvector of the stochastic web matrix M
 - Starting from any stochastic vector u, the limit M(M(...M(M u)))

is the long-term distribution of the surfers.

The math: limiting distribution = principal eigenvector of M = PageRank.

Note: If r is the limit of $MM \dots Mu$, then r satisfies the equation r = Mr, so r is an eigenvector of M with eigenvalue 1

We can now efficiently solve for r! The method is called Power iteration

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

Power Iteration Method

- Given a web graph with N nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N,...,1/N]^{T}$

• Iterate:
$$\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$$

 $d_i \ \ldots \ out-degree \ of \ node \ i$

• Stop when $|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon$

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the L₁ norm So that **r** is a distribution (sums to 1)

About 50 iterations is sufficient to estimate the limiting solution.

PageRank: How to solve?

Power Iteration:

- Set r = [1/N, 1/N, 1/N]
- **1**: *r*′ = *M*.*r*
- **2**: *r* = *r*′
- Goto 1
- Example:

$$r = \begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \begin{array}{c} 1/3 \\ 1/3 \\ 1/3 \end{array}$$

Iteration 0, 1, 2, ...

	У	а	m
у	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

PageRank: How to solve?

Power Iteration:

- Set r = [1/N, 1/N, 1/N]
- 1: r' = M.r
- **2**: *r* = *r*′
- Goto 1

Example:

	$\left(r_{y} \right)$	1/3	1/3	5/12	9/24	6/15
r =	r_a	= 1/3	3/6	1/3	11/24	6/15
	r _m	1/3	1/6	3/12	1/6	3/15

Iteration 0, 1, 2, ...

	у	а	m
У	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2 + r_{m}$ $r_{m} = r_{a}/2$

Why Power Iteration works? (1)

Power iteration:

A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue) • $r^{(1)} = M \cdot r^{(0)}$

•
$$r^{(2)} = M \cdot r^{(1)} = M(Mr^{(0)}) = M^2 \cdot r^{(0)}$$

• $r^{(3)} = M \cdot r^{(2)} = M(M^2r^{(0)}) = M^3 \cdot r^{(0)}$

Claim:

Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$ approaches the dominant eigenvector of M

Why Power Iteration works? (2)

- Claim: Sequence M · r⁽⁰⁾, M² · r⁽⁰⁾, ... M^k · r⁽⁰⁾, ... approaches the dominant eigenvector of M
 Proof:
 - Assume **M** has **n** linearly independent eigenvectors, x_1, x_2, \dots, x_n with corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, where $\lambda_1 > \lambda_2 > \dots > \lambda_n$
 - Vectors $x_1, x_2, ..., x_n$ form a basis and thus we can write: $r^{(0)} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$
 - $Mr^{(0)} = M(c_1 x_1 + c_2 x_2 + \dots + c_n x_n)$ = $c_1(Mx_1) + c_2(Mx_2) + \dots + c_n(Mx_n)$ = $c_1(\lambda_1 x_1) + c_2(\lambda_2 x_2) + \dots + c_n(\lambda_n x_n)$
 - Repeated multiplication on both sides produces $M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \dots + c_n(\lambda_n^k x_n)$

Why Power Iteration works? (3)

- Claim: Sequence M · r⁽⁰⁾, M² · r⁽⁰⁾, ... M^k · r⁽⁰⁾, ... approaches the dominant eigenvector of M
 Proof (continued):
 - Repeated multiplication on both sides produces $M^{k}r^{(0)} = c_{1}(\lambda_{1}^{k}x_{1}) + c_{2}(\lambda_{2}^{k}x_{2}) + \dots + c_{n}(\lambda_{n}^{k}x_{n})$

•
$$M^k r^{(0)} = \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k x_n \right]$$

Since \$\lambda_1\$ > \$\lambda_2\$ then fractions \$\frac{\lambda_2}{\lambda_1\$}\$, \$\frac{\lambda_3}{\lambda_1\$}\$, ... < 1 and so \$\left(\frac{\lambda_i}{\lambda_1}\right)^k\$ = 0 as \$k \to \infty\$ (for all \$i = 2 \ldots n\$).
Thus: \$M^k r^{(0)}\$ \approx \$c_1\$ (\$\lambda_1^k x_1\$)\$)

• Note if $c_1 = 0$ then the method won't converge

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely
- Let:
 - *p*(*t*) ... vector whose *i*th coordinate is the prob. that the surfer is at page *i* at time *t*
 - So, p(t) is a probability distribution over pages

The Stationary Distribution

Where is the surfer at time t+1?

- Follows a link uniformly at random $p(t+1) = M \cdot p(t)$ $p(t+1) = M \cdot p(t)$
- Suppose the random walk reaches a state $p(t + 1) = M \cdot p(t) = p(t)$ then p(t) is stationary distribution of a random walk

3

• Our original rank vector r satisfies $r = M \cdot r$

So, r is a stationary distribution for the random walk

Existence and Uniqueness

A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy **certain conditions**, the **stationary distribution is unique** and eventually will be reached no matter what is the initial probability distribution at time **t** = **0**

nodes, where the nodes are pages and edges are hyperlinks

Claim [Existence]: For node v,

Given an undirected graph with N

- $r_v = d_v/2m$ is a solution.
- Proof:
 - Iteration step: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Substitute $r_i = d_i/2m$:
- Done! Uniqueness: exercise! m = #edges

PageRank for Undirected Graphs

$$r_v^{(t+1)} = \frac{r_x^t}{d_x} + \frac{r_y^t}{d_y} + \frac{r_z^t}{d_z}$$

$$r_v^{(t+1)} = \frac{3}{2m}$$

$$r_v^{(t+1)} = \frac{3}{2m}$$

$$\binom{(t+1)}{v} = \frac{3}{2m}$$

Which node has highest PageRank? Second highest?

Node 1 has the highest PR, followed by Node 3
Degree ≠ PageRank

Add edge 3 -> 2. Now, which node has highest PageRank? Second highest?

- Node 3 has the highest PR, followed by 2.
- Small changes to graph can change PR!

PageRank: The Google Formulation

PageRank: Three Questions

Does this converge?

- Does it converge to what we want?
- Are results reasonable?

Does this converge?

Does it converge to what we want?

PageRank: Problems

Two problems:

- (1) Dead ends: Some pages have no out-links
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"

(2) Spider traps:

- (all out-links are within the group)
- Random walk gets "stuck" in a trap
- And eventually spider traps absorb all importance

Problem: Spider Traps

Power Iteration:

• Set
$$r_j = 1/N$$

• $r_j = \sum_{i \to j} \frac{r_i}{d_i}$

And iterate

m is a spider trap

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2 + r_{m}$

Example:

All the PageRank score gets "trapped" in node m.

Solution: Probabilistically Teleport!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a link at random
 - With prob. **1**- β , jump to some random page
 - β is typically in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

Power Iteration:

• Set
$$r_j = 1/N$$

• $r_j = \sum_{i \to j} \frac{r_i}{d_i}$

And iterate

	У	а	m
У	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

m is a dead end

 $r_{y} = r_{y}/2 + r_{a}/2$ $r_{a} = r_{y}/2$ $r_{m} = r_{a}/2$

Example:

Here the PageRank score "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- Spider-traps are not a problem, but with traps
 PageRank scores are not what we want
 - Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps
- Dead-ends are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 - At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

d_i ... out-degree of node i

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

[1/N]_{NxN}...N by N matrix where all entries are 1/N

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: $r = A \cdot r$ And the Power method still works!
- What is β ?
 - In practice $\beta = 0.8, 0.9$ (jump every 5 steps on avg.)

Random Teleports ($\beta = 0.8$)

How do we actually compute the PageRank?

Computing PageRank

Key step is matrix-vector multiplication

- $\mathbf{r}^{\text{new}} = \mathbf{A} \cdot \mathbf{r}^{\text{old}}$
- Easy if we have enough main memory to hold A, r^{old}, r^{new}

Say N = 1 billion pages

- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix A has N² entries
 - 10¹⁸ is a large number!

 $\mathbf{A} = \boldsymbol{\beta} \cdot \mathbf{M} + (\mathbf{1} - \boldsymbol{\beta}) [\mathbf{1}/\mathbf{N}]_{\mathsf{N}\mathsf{X}\mathsf{N}}$ $\mathbf{A} = \mathbf{0.8} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & 1 \end{bmatrix} + \mathbf{0.2} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$

Rearranging the Equation

•
$$r = A \cdot r$$
, where $A_{ji} = \beta M_{ji} + \frac{1-\beta}{N}$
• $r_j = \sum_{i=1}^N A_{ji} \cdot r_i$
• $r_j = \sum_{i=1}^N \left[\beta M_{ji} + \frac{1-\beta}{N}\right] \cdot r_i$
 $= \sum_{i=1}^N \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^N r_i$
 $= \sum_{i=1}^N \beta M_{ji} \cdot r_i + \frac{1-\beta}{N}$ since $\sum r_i = 1$
• So we get: $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_N$

Note: Here we assume **M** has no dead-ends

$[x]_N \dots$ a vector of length N with all entries x

Sparse Matrix Formulation

• We just rearranged the PageRank equation $r = \beta M \cdot r + \left[\frac{1-\beta}{N}\right]_{N}$

• where $[(1-\beta)/N]_N$ is a vector with all **N** entries $(1-\beta)/N$

- M is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10N entries
- So in each iteration, we need to:
 - Compute $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \cdot \mathbf{r}^{\text{old}}$
 - Add a constant value $(1-\beta)/N$ to each entry in r^{new}
 - Note if M contains dead-ends then $\sum_j r_j^{new} < 1$ and we also have to renormalize r^{new} so that it sums to 1

PageRank: The Complete Algorithm

• Input: Graph G and parameter β

- Directed graph G (can have spider traps and dead ends)
- Parameter $\boldsymbol{\beta}$

Output: PageRank vector r^{new}

• Set:
$$r_j^{old} = \frac{1}{N}$$

• repeat until convergence: $\sum_j |r_j^{new} - r_j^{old}| < \varepsilon$
• $\forall j: r_j^{new} = \sum_{i \to j} \beta \frac{r_i^{old}}{d_i}$
 $r_j^{new} = 0$ if in-degree of j is 0
• Now re-insert the leaked PageRank:
 $\forall j: r_j^{new} = r_j^{new} + \frac{1-S}{N}$ where: $S = \sum_j r_j^{new}$
• $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing **S**.

Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won't fit in memory, but will fit on disk

source node	degree	destination nodes	
0	3	1, 5, 7	
1	5	17, 64, 113, 117, 245	
2	2	13, 23	

Basic Algorithm: Update Step

Assume enough RAM to fit *r^{new}* into memory

- Store *r*^{old} and matrix **M** on disk
- 1 step of power-iteration is:

Initialize all entries of r^{new} = (1-β) / N
For each page i (of out-degree d_i):
 Read into memory: i, d_i, dest₁, ..., dest_{di}, r^{old}(i)
 For j = 1...d_i
 r^{new}(dest_i) += β r^{old}(i) / d_i

Assuming no dead ends

What's next

Some Problems with PageRank:

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - Solution: Topic-Specific PageRank (next)

Uses a single measure of importance

- Other models of importance
- Solution: Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - Solution: TrustRank