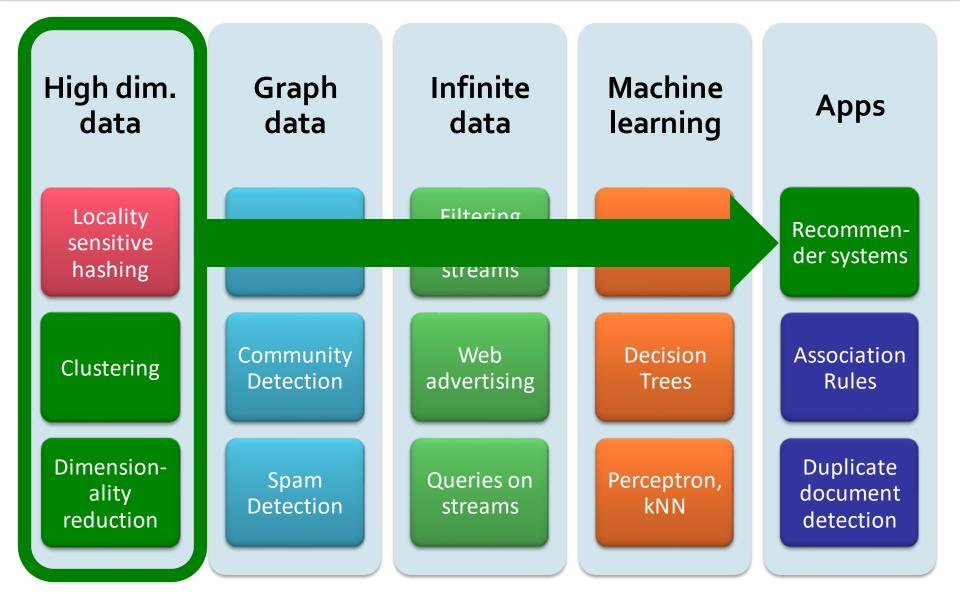
Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: <u>http://www.mmds.org</u>

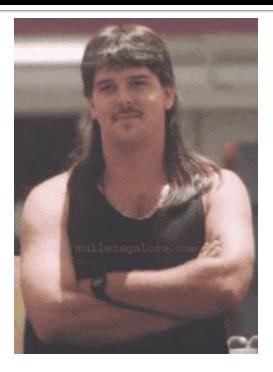
Recommender Systems: Content-based Systems & Collaborative Filtering

CS246: Mining Massive Datasets Jure Leskovec, Stanford University Mina Ghashami, Amazon http://cs246.stanford.edu

High Dimensional Data

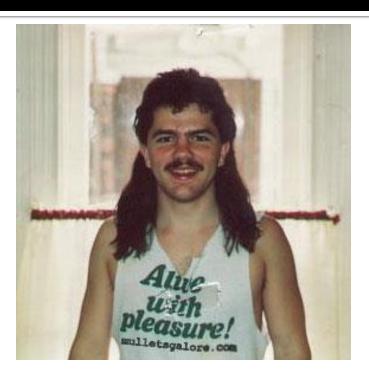


Example: Recommender Systems



Customer X

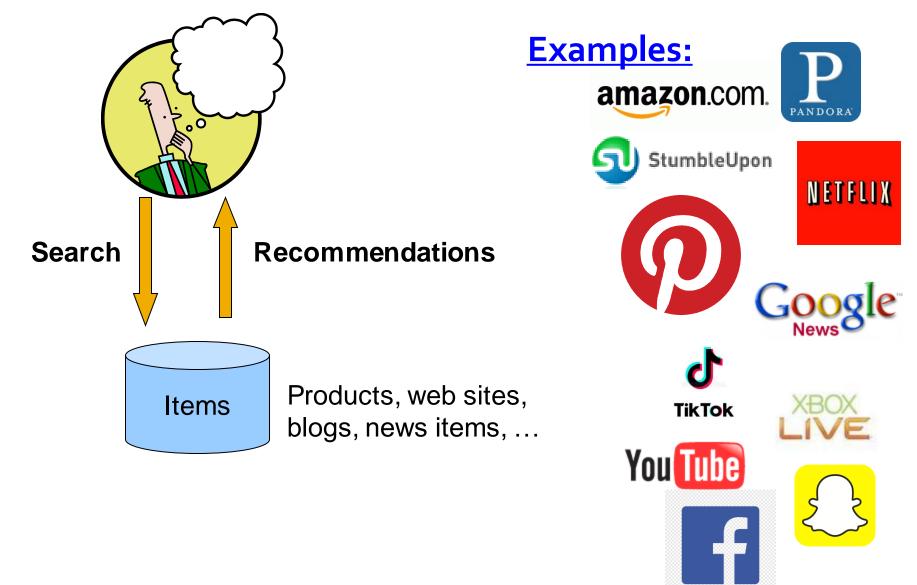
- Buys Metallica CD
- Buys Megadeth CD



Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendations

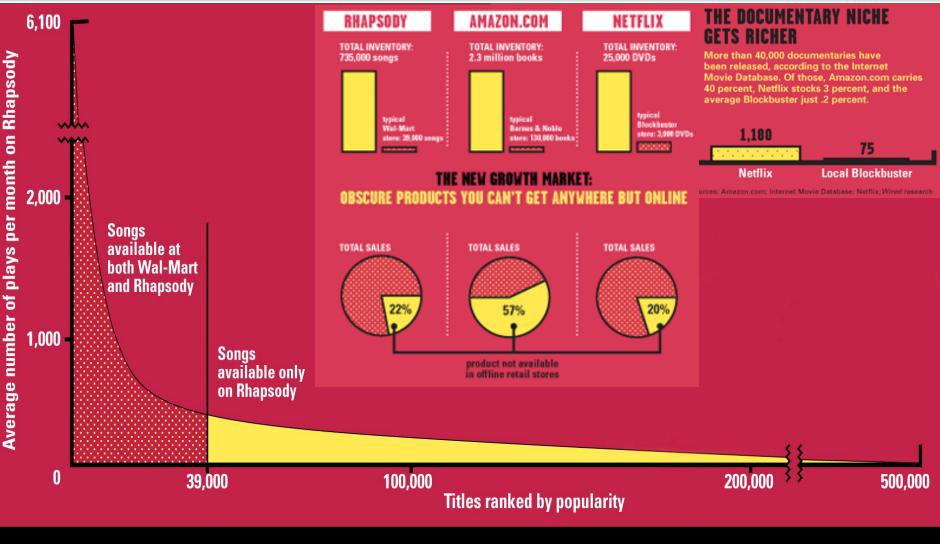


From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters:
 - Recommendation engines
 - Association rules: How Into Thin Air made Touching the Void a bestseller:

http://www.wired.com/wired/archive/12.10/tail.html

Sidenote: The Long Tail



Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks Source: Chris Anderson (2004)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Types of Recommendations

Non-personalized recommendations:

Editorial and hand curated

- List of favorites
- List of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads

Personalized recommendations:

Tailored to individual users

Examples: Amazon, Netflix, Youtube,...

Formal Model

- X = set of Customers
- S = set of Items
- Utility function $u: X \times S \rightarrow R$
 - **R** = set of ratings
 - **R** is a totally ordered set
 - e.g., **1-5** stars, real number in **[0,1]**

Utility Matrix

Key Problems

• (1) Gathering "known" ratings for matrix

- How to collect the data in the utility matrix
- (2) Extrapolating unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like

(3) Evaluating extrapolation methods

 How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people don't like being bothered
- Crowdsourcing: Pay people to label items

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

Key problem: Utility matrix U is sparse

- Most people have not rated most items
- Cold start:
 - New items have no ratings
 - New users have no history

Three approaches to recommender systems:

Today!

- 1) Content-based
- 2) Collaborative filtering
- 3) Latent factor based

Content-based Recommender Systems

Content-based Recommendations

Main idea:

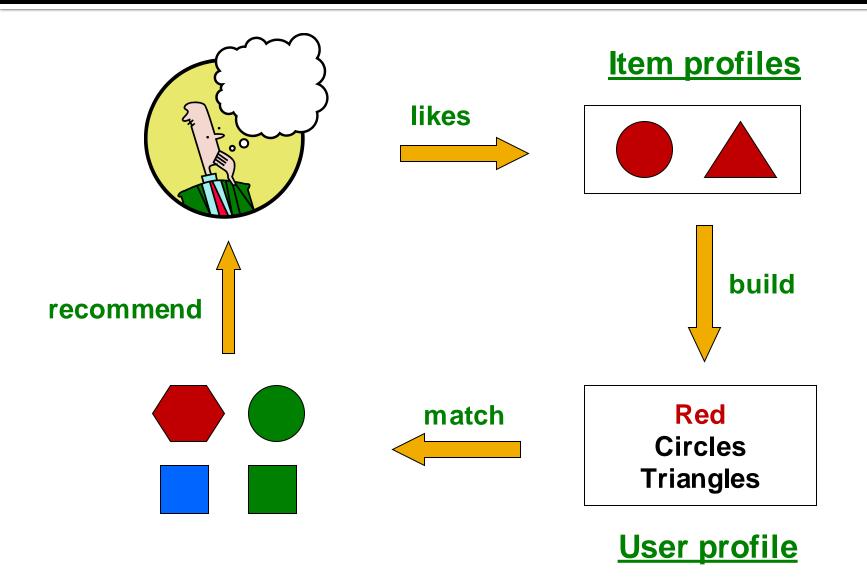
- Items have profiles:
 - Video -> [genre, director, actors, plot, release year]
 - News -> [set of keywords]
- Recommend items to customer x similar to previous items rated highly by x

Example:

Movie recommendations

- Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action



Item Profiles

For each item, create an item profile

Profile is a set (vector) of features

- Movies: author, title, actor, director,...
- Text: Set of "important" words in document

How to pick important features?

- Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Sidenote: TF-IDF

 $f_{ij} = \text{frequency of term (feature) } i \text{ in doc (item) } j$ $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$ Note: we normalize TF to discount for "longer" documents

- **n**_i = number of docs that mention term **i**
- **N** = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest **TF-IDF** scores, together with their scores

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item

Prediction heuristic: Cosine similarity of user and item profiles

• Given user profile **x** and item profile **i**, estimate $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$

How do you quickly find items closest to x? Job for LSH!

Pros: Content-based Approach

+: No need for data on other users

- No item cold-start problem, no sparsity problem
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

Finding the appropriate features is hard

- E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

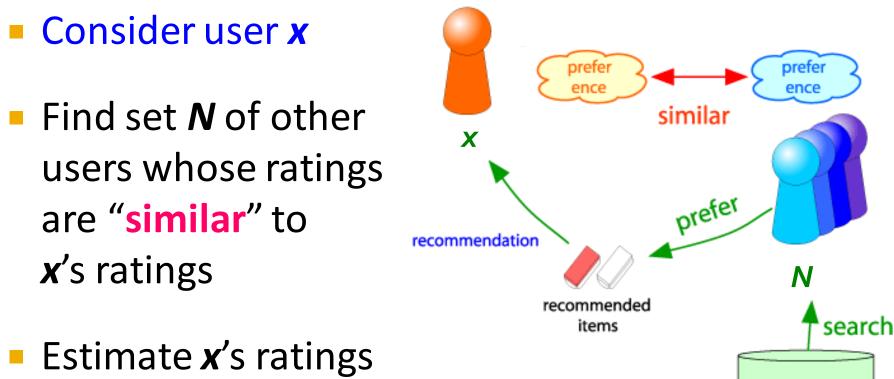
Collaborative Filtering

Harnessing quality judgments of other users

Collaborative Filtering

- Does not build item profile or user profile
- In place of item-profile (user-profile) we use its row (column) in the utility matrix.
- Comes in two flavors:
 - User-user collaborative filtering
 - Item-Item collaborative filtering

User-User Collaborative Filtering



based on ratings of users in **N**

database

Finding "Similar" Users

Let r, be the vector of user x's ratings Jaccard similarity measure

Problem: Ignores the value of the rating Cosine similarity measure

$$sim(x, y) = cos(r_x, r_y) = \frac{r_x \cdot r_y}{||r_x|| \cdot ||r_y||} \qquad r_x, r_y \text{ as points:} \\ r_x = \{1, 0, 0, 1, 3\} \\ r_y = \{1, 0, 2, 2, 0\}$$

 $r_x = [1, _, _, 1, 3]$

 $r_v = [1, _, 2, 2, _]$

 r_x , r_y as sets: $r_x = \{1, 4, 5\}$

 $r_v = \{1, 3, 4\}$

Problem: Treats some missing ratings as "negative" Pearson correlation coefficient

•
$$S_{xy}$$
 = items rated by both users **x** and **y**
 $sim(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}} \overline{r_x}, \overline{r_y} \dots \text{ avg.}$
(25/22)

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Similarity Metric

Cosine sim: sim(x, y) =

	HP1	HP2	HP3	TW	SW1	SW2	SW3	
A	4			5	1			
В	5	5	4					
C				2	4	5		
D		3					3	

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4</p>
- Cosine similarity: 0.380 > 0.322
 - Considers missing ratings as "negative"

Solution: subtract the (row) mean							
			HP3	TW	SW1	SW2	SW3
Α	2/3		-2/3	5/3	-7/3		
B	1/3	1/3	-2/3				
C				-5/3	1/3	4/3	
D		0					0

sim A,B vs. A,C: 0.092 > -0.559

 $\sum_{i} r_{xi} \cdot r_{yi}$

Notice cosine sim. is correlation when data is centered at 0

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:

•
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

• Or even better:
$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

Shorthand: $s_{xy} = sim(x, y)$

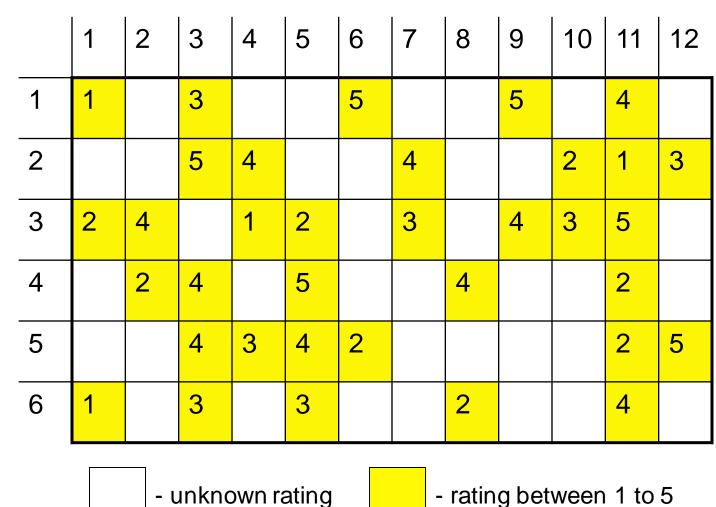
Many other tricks possible...

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item *i*, find other similar items
 - Estimate rating for item *i* based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

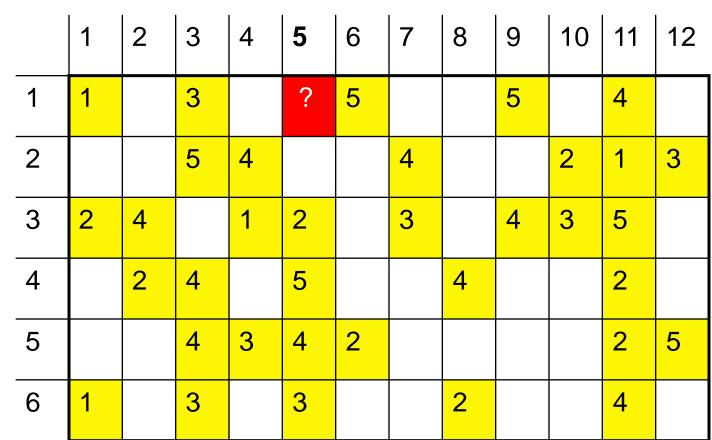
 $\frac{\int j \in N(i;x) \int ij \int xj}{\sum_{i \in N(i;x)} S_{ij}}$ xi

s_{ij}... similarity of items *i* and *j* r_{xj}...rating of user *x* on item *j* N(*i*;*x*)... set of items which were rated by *x* and similar to *i*



users

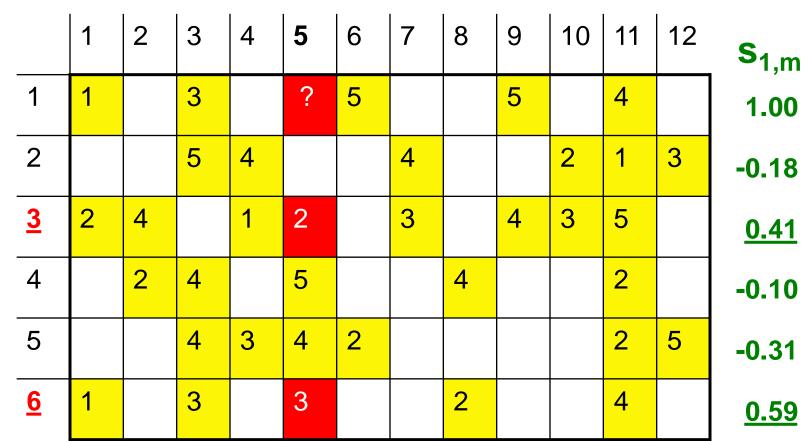
movies



users

- estimate rating of movie 1 by user 5

movies



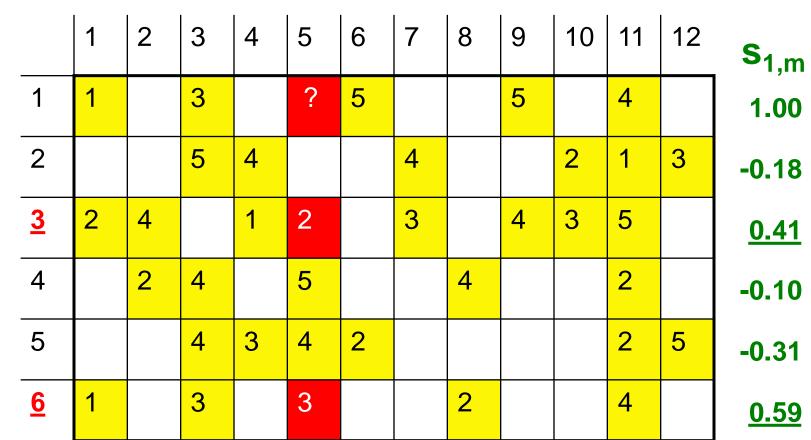
users

Neighbor selection: Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity: 1) Subtract mean rating m_i from each movie *i* $m_1 = (1+3+5+5+4)/5 = 3.6$ *row 1:* [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute dot products between rows Jure Les kovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets

movies

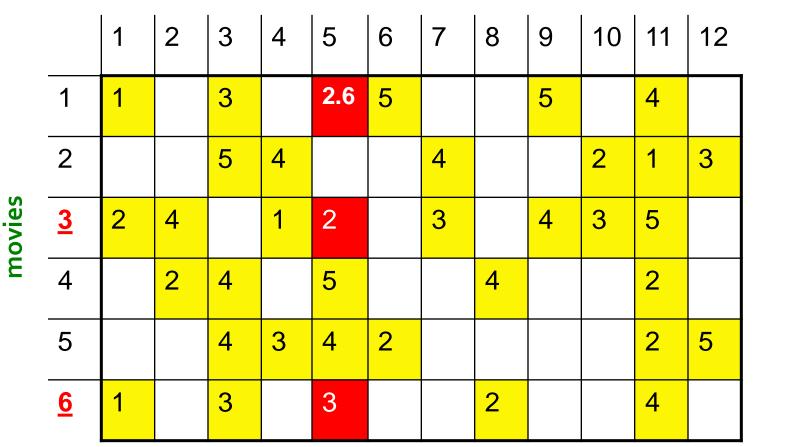


users

movies

Compute similarity weights:

s_{1,3}=0.41, s_{1,6}=0.59



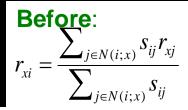
users

Predict by taking weighted average:

 $r_{1.5} = (0.41^{*}2 + 0.59^{*}3) / (0.41 + 0.59) = 2.6$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: Common Practice



- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to *i*, that were rated by *x*
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

 $b_{xi} = \mu + b_x + b_i$

μ = overall mean movie rating
 b_x = rating deviation of user x
 = (avg. rating of user x) - μ
 b_i = rating deviation of movie i

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

No feature selection needed

- Cold Start:

Need enough users in the system to find a match

- Sparsity:

- The user/ratings matrix is sparse
- Hard to find users that have rated the same items

First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

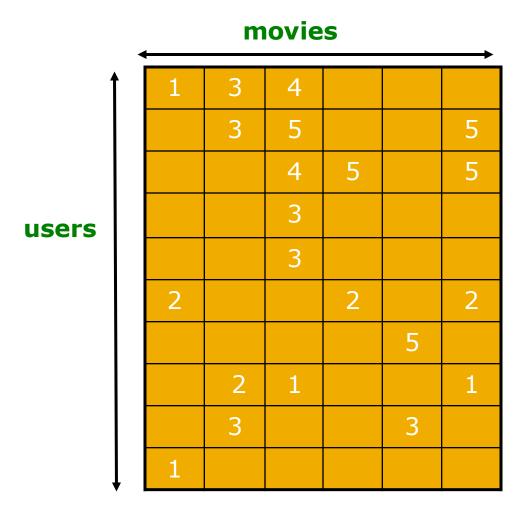
Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

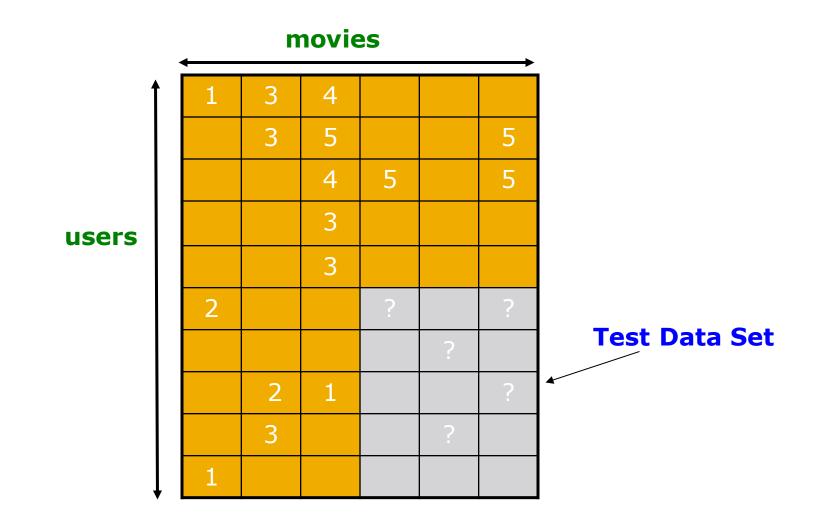
Remarks & Practical Tips

- Evaluation
- Error metrics
- Complexity / Speed

Evaluation



Evaluation



Evaluating Predictions

Compare predictions with known ratings

- Root-mean-square error (RMSE)
 - $\sqrt{\frac{1}{N}\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is predicted, r_{xi}^* is the true rating of **x** on **i**

N is the number of points we are making comparisons on

- Precision at top 10:
 - % of relevant items in top 10
- Rank Correlation:
 - Spearman's correlation between system's and user's complete rankings

Another approach: 0/1 model

Coverage:

- Number of items/users for which the system can make predictions
- Precision:
 - Accuracy of predictions
- Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Error Measures

Narrow focus on accuracy sometimes misses the point

- Prediction Diversity
- Prediction Context
- Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(k · |X|)
 - X ... set of customers
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction

Tip: Add Data

Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best

Add more data

e.g., add IMDB data on genres

More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

On Thursday: The Netflix prize and the Latent Factor Models

On Thursday: The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: root mean squared error (RMSE)
- Netflix Cinematch RMSE: 0.9514
- Competition
 - 2,700+ teams
 - \$1 million prize for 10% improvement on Cinematch

On Thursday: Latent Factor Models

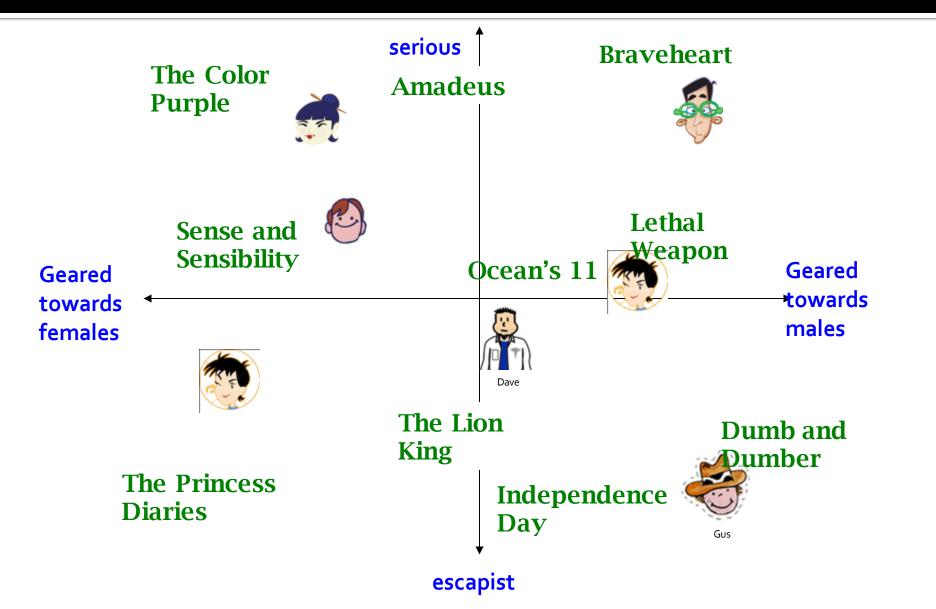
Next topic: Recommendations via Latent Factor models

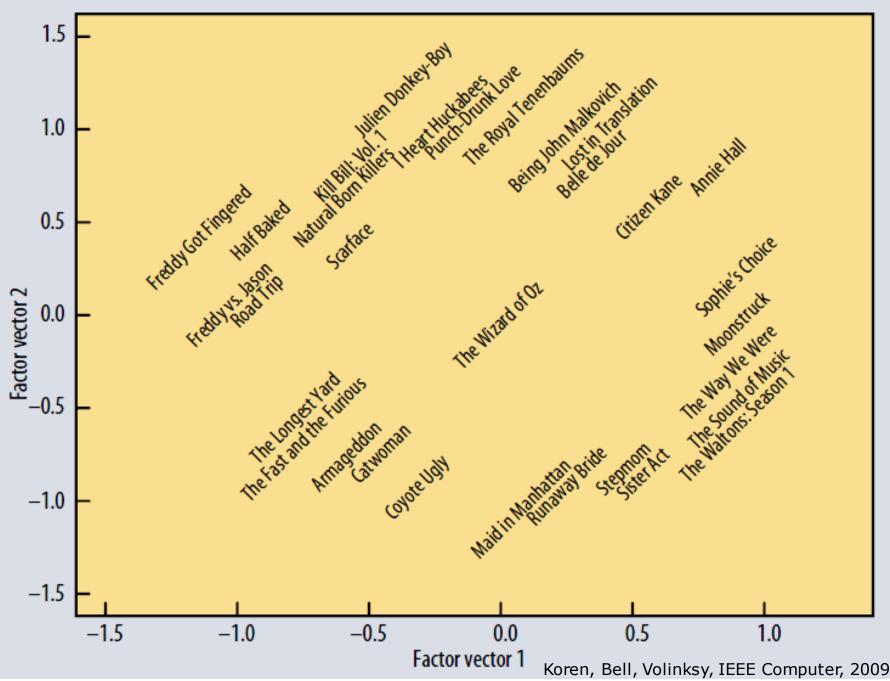
Overview of Coffee Varieties

Complexity of Flavor

The bubbles above represent products sized by sales volume. Products close to each other are recommended to each other.

[BellkorTeam] Latent Factor Models (i.e., SVD++)





Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets