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Announcements

• Colab 0 & 1 grades released.
• Solutions to be released soon.

• Colab 2 and Homework 1 due this Thursday.
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 Given a set of points, with a notion of distance 
between points, group the points into some 
number of clusters, so that 

▪ Members of the same cluster are close/similar to 
each other

▪ Members of different clusters are dissimilar

 Usually: 

▪ Points are in a high-dimensional space

▪ Similarity is defined using a distance measure

▪ Euclidean, Cosine, Jaccard, edit distance, …
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 A catalog of 2 billion “sky objects” represents 
objects by their radiation in 7 dimensions 
(frequency bands)

 Problem: Cluster similar objects, e.g., 
galaxies, nearby stars, quasars, etc.

 Sloan Digital Sky Survey
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 Intuitively: Music can be divided into 
categories, and customers prefer a few 
genres

▪ But what are categories really?

 Represent a CD by a set of customers who 
bought it

 Similar CDs have similar sets of customers, 
and vice-versa
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Space of all CDs:
 Think of a space with one dim. for each 

customer

▪ Values in a dimension may be 0 or 1 only

▪ A CD is a “point” in this space (x1, x2,…, xd), 
where xi = 1 iff the i th customer bought the CD

 For Amazon, the dimension is tens of millions

 Task: Find clusters of similar CDs
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Finding topics:
 Represent a document by a vector  

(x1, x2,…, xk), where xi = 1 iff the i th word 
(in some order) appears in the document

▪ It actually doesn’t matter if 𝑘 is infinite; i.e., we 
don’t limit the set of words

 Documents with similar sets of words 
may be about the same topic
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 We have a choice when we think of 
documents as sets of words or shingles:

▪ Sets as vectors: Measure similarity by the 
cosine distance

▪ Sets as sets: Measure similarity by the 
Jaccard distance

▪ Sets as points: Measure similarity by 
Euclidean distance
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 Clustering in two dimensions looks easy
 Clustering small amounts of data looks easy
 And in most cases, looks are not deceiving

 Many applications involve not 2, but 10 or 
10,000 dimensions

 High-dimensional spaces look different: 
Almost all pairs of points are very far from each 
other --> The Curse of Dimensionality!
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 Take 10,000 uniform random points on [0,1] 
line. Assume query point is at the origin

 What fraction of “space” do we need to cover to 
get 0.1% of data (10 nearest neighbors)

 In 1-dim to get 10 neighbors we must go to 
distance 10/10,000=0.001 on the average

 In 2-dim we must go 0.001=0.032 to get a 
square that contains 0.001 volume

 In general, in d-dim we must go 
 So, in 10-dim to capture 0.1% of the data we 

need 50% of the range.
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Curse of Dimensionality: All points are very far 
from each other
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Two group of methods:
 Hierarchical:

▪ Agglomerative (bottom up):
▪ Initially, each point is a cluster

▪ Repeatedly combine the two 
“nearest” clusters into one

▪ Divisive (top down):
▪ Start with one cluster and recursively split it

 Point assignment:
▪ Maintain a set of clusters

▪ Points belong to the “nearest” cluster
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 Is the space Euclidean or non-Euclidean?
 In Euclidean:

▪ Points are vectors of real numbers, i.e. coordinates

▪ It is possible to summarize a collection of points as 
their average. We call it centroid. 

▪ Distance measure: L2 norm, L1 norm

 In non-Euclidean:

▪ There is no notion of location, and centroid

▪ We summarize a collection of points differently

▪ Distance measures: Jaccard, Hamming, cosine
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Does the data fit in memory or it resides on 
disk?
 In-memory clustering is more straightforward

▪ Example: K-means

 Large-data clustering requires loading one 
batch of data at a time, cluster them in 
memory and keep summaries of clusters

▪ Example: BFR, CURE
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 Point assignment good 
when clusters are nice, 
convex shapes:

 Hierarchical can win 
when shapes are weird:

▪ Note both clusters have 
essentially the same 
centroid.
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Aside: if you realized you had concentric

clusters, you could map points based on
distance from center, and turn the problem
into a simple, one-dimensional case.
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 Key operation: 
Repeatedly merge two 

   “nearest” clusters

 Three important questions:

▪ 1) How to represent a cluster?

▪ 2) How to determine the nearness of clusters?

▪ 3) When to stop merging clusters?
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In Euclidean case:

 (1) How to represent a cluster of many points?

▪ As we merge clusters, we represent the “location” of 
each cluster by its 

   centroid = average of its (data)points

 (2) How to determine the nearness of clusters?

▪ Measure cluster distances by distances of centroids

▪ Merge two clusters with the shortest distance
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In non-Euclidean case:
 The only “locations” we can talk about are the points 

themselves. There are three main approaches:

(1) How to represent a cluster of many points?
1. pick a clustroid  = point “closest” to other points
2. As the collection of points it is.
3. As the collection of points it is.

  
(2) How to determine the nearness of clusters? 
1. Treat clustroid as if it were centroid
2. Various distance measures between points of two clusters
3. Various cohesion measures of the union of two clusters
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Approach 1: 

(1) How to represent a cluster:
▪ pick a clustroid  = (data)point “closest” to other points
     Possible meanings of “closest”:

▪ Smallest maximum distance to other points

▪ Smallest average distance to other points

▪ Smallest sum of squares of distances to other points
▪ For distance metric d clustroid c of cluster C is 

arg min
c

σ𝑥∈𝐶 𝑑 𝑥, 𝑐 2

(2) How to determine the nearness of clusters?
 Treat clustroid as if it were centroid
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 Centroid is the avg. of all (data)points in the cluster. 

▪ This means centroid is an “artificial” point.

 Clustroid is an existing (data)point that is “closest” to all other 

points in the cluster.
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Approach 2: 

(1) How to represent a cluster? As the collection of 

points

(2) How to determine the nearness of clusters?
Define inter-cluster distance:
▪ Minimum of the distances between any two points, 

one from each cluster
▪ Average distance of all pairs of points, one from each 

cluster
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Approach 3: 
(1) How to represent a cluster? As the collection of points

(2) How to determine the nearness of clusters?
Define a notion of cohesion, and merge clusters 
whose union is most cohesive
Possible notions of cohesion (the smaller, the more 
cohesive):
 diameter of the merged cluster = maximum 

distance between points in the cluster
 average distance between points in the cluster
 Density of the merged cluster = divide by the 

number of points in the cluster by diameter or avg. 
distance
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When do we stop merging clusters?
 When some number 𝑘 of clusters are found 

(assumes we know the number of clusters)
 When stopping criterion is met

▪ Stop if diameter exceeds threshold

▪ Stop if density is below some threshold

▪ Stop if merging clusters yields a bad cluster

▪ E.g., diameter suddenly jumps

 Keep merging until there is only 1 cluster left
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 It really depends on the shape of clusters.

▪ Which you may not know in advance.

 Example: we’ll compare two approaches:

1. Merge clusters with smallest distance between 
centroids (or clustroids for non-Euclidean)

2. Merge clusters with the smallest distance 
between two points, one from each cluster
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 Centroid-based 
merging works well.

 But merger based on 
closest members 
might accidentally 
merge incorrectly.
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 Linking based on 
closest members works 
well

 But Centroid-based 
linking might cause 
errors

311/18/22
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 It is a problem formulation, not an algorithm.

 Problem: Given Euclidean space/distance and 
k = number of clusters, find cluster centers 
that minimizes sum of squared distances from 
each point to its cluster center

 Finding an exact solution is NP-hard.
 The approximate solution is LIoyd’s algorithm 

or the k-means algorithm.

331/18/22 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets



 Initialize clusters by picking k centers

Until convergence:
 1) For each point, assign it to the cluster whose 

current centroid is the closest

 2) After all points are assigned, update the 
centroids of the k clusters as average of 
datapoints within each cluster

Convergence means Points don’t move between clusters 
and centroids stabilize
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Convergence of 𝑘-means heavily depends on the 
initial pick of centroids. It can perform arbitrarily 
badly:

Different strategies for picking 𝑘 centers:

▪ Pick 𝑘 datapoints at random

▪ 𝑘-means ++ 
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 Basic idea: Pick a small sample of points 𝑆, 
cluster them by any algorithm, and use the 
centroids as a seed

 In k-means++, sample size |𝑆| = 𝑘 times a factor 
that is logarithmic in the total number of points

 How to pick sample points: Visit points in 
random order, but the probability of adding a 
point 𝑝 to the sample is proportional to 𝐷 𝑝 2.

▪ 𝐷(𝑝) = distance between 𝑝 and the nearest already 
picked point.
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How to select k?
 Try different k, looking at the change in the 

average distance to centroid as k increases
 Average falls rapidly until right k, then 

changes little

41
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Extension of k-means to large data



 BFR [Bradley-Fayyad-Reina] is a 
variant of k-means designed to 
handle very large (disk-resident) data sets

 Assumes that clusters are normally distributed 
around a centroid in a Euclidean space

▪ Standard deviations in different 
dimensions may vary

▪ Clusters are axis-aligned ellipses

 Goal is to find cluster centroids; point assignment 
can be done in a second pass through the data.
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 Efficient way to summarize clusters: Want memory 
required O(clusters) and not O(data)

 IDEA: Rather than keeping points, BFR keeps summary 
statistics of groups of points
▪ 3 sets: Discard set, Compressed set, Retained set

 Overview of the algorithm: 
▪ 1. Initialize K clusters/centroids
▪ 2. Load in a bag of points from disk
▪ 3. Assign new points to one of the K original clusters, if they 

are within some distance threshold of the cluster
▪ 4. Cluster the remaining points, and create new clusters
▪ 5. Try to merge new clusters from step 4 with any of the 

existing clusters
▪ 6. Repeat steps 2-5 until all points are examined
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 Points are read from disk one main-memory-
full at a time

 Most points from previous memory loads are 
summarized by simple statistics

 Step 1) From the initial load we select the 
initial k centroids by some sensible approach:

▪ Take k random points

▪ Take a small random sample and cluster optimally

▪ Take a sample; pick a random point, and then 
k–1 more points, each as far from the previously 
selected points as possible
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3 sets of points which we keep track of:
 Discard set (DS): 

▪ Points close enough to a centroid to be 
summarized

 Compressed set (CS): 
▪ Groups of points that are close together but 

not close to any existing centroid

▪ These points are summarized, but not 
assigned to a cluster

 Retained set (RS): 
▪ Isolated points waiting to be assigned to a 

compression set
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For each cluster, the discard set (DS) is 
summarized by:
 The number of points, N
 The vector SUM, whose ith component is the 

sum of the coordinates of the points in the 
ith dimension

 The vector SUMSQ: ith component = sum of 
squares of coordinates in ith dimension
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 2d + 1 values represent any size cluster

▪ d  = number of dimensions

 Average in each dimension (the centroid) 
can be calculated as SUMi / N

▪ SUMi = ith component of SUM

 Variance of a cluster’s discard set in 
dimension i is: (SUMSQi / N) – (SUMi / N)2

▪ And standard deviation is the square root of that

 Next step: Actual clustering
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Steps 3-5) Processing “Memory-Load” of points:
 Step 3) Find those points that are “sufficiently 

close” to a cluster centroid and add those points 
to that cluster and the DS

▪ These points are so close to the centroid that 
they can be summarized and then discarded

 Step 4) Use any in-memory clustering algorithm 
to cluster the remaining points and the old RS

▪ Clusters go to the CS; outlying points to the RS
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Retained set (RS): Isolated points



Steps 3-5) Processing “Memory-Load” of points:
 Step 5) DS set: Adjust statistics of the clusters to 

account for the new points

▪ Add Ns, SUMs, SUMSQs

▪ Consider merging compressed sets in the DS

 If this is the last round, merge all compressed 
sets in the CS and all RS points into their nearest 
cluster
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 Q1) How do we decide if a point is “close 
enough” to a cluster that we will add the 
point to that cluster?

 Q2) How do we decide whether two 
compressed sets (CS) deserve to be 
combined into one?
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 Q1) We need a way to decide whether to put 
a new point into a cluster (and discard)

 BFR suggests two ways:

▪ The Mahalanobis distance is less than a threshold

▪ High likelihood of the point belonging to 
currently nearest centroid
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 Normalized Euclidean distance from centroid

 For a given point (x1, …, xd) and a given centroid (c1, …, cd)

1. Normalize in each dimension: yi = (xi - ci) / i

2. Take sum of the squares of the yi

3. Take the square root
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the cluster in the ith dimension



 If clusters are normally distributed in d  
dimensions, then after transformation, one 

standard deviation = 𝒅

▪ i.e., 68% of the points of the cluster will 

have a Mahalanobis distance  < 𝒅

 Accept a point for a cluster if 
its M.D. is < some threshold, 
e.g. 2 standard deviations
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 Euclidean vs. Mahalanobis distance
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Q2) Should 2 CS clusters be combined?
 Compute the variance of the combined 

subcluster

▪ N, SUM, and SUMSQ allow us to make that 
calculation quickly

 Combine if the combined variance is 
below some threshold

 Many alternatives: Treat dimensions 
differently, consider density
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Extension of k-means to clusters
of arbitrary shapes



 CURE (Clustering Using REpresentatives):
▪ Assumes a Euclidean distance

▪ No assumption about shape of clusters
▪ No need to be normally distributed in each dim

▪ No need to have fixed axis

▪ Instead of centroid, uses a collection of representative 
points to represent clusters

▪ Assumes k=number of clusters is given

 In contrast, BFR and k-means assume:

▪ clusters are normally distributed in each dimension

▪ Axes are fixed – ellipses at an angle are not OK
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2 Pass algorithm. Pass 1:
 Pick a random sample of data and cluster them in 

main memory using hierarchical clustering  

▪ merge two clusters when they have close pair of points

 Pick representative points from each cluster

▪ For each cluster, pick a sample of points, as dispersed as 
possible

▪ move representatives a fraction of distance e.g. 20% 
toward the centroid of the cluster

▪ Merge clusters with the closest pair of representatives
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Pass 2:
 Now, rescan the whole dataset and 

visit each point p in the data set

 Place it in the “closest cluster”

▪ Normal definition of “closest”: 
Find the closest representative point to p and 
assign it to representative’s cluster
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Intuition:
 If initial sample is large enough, some of the 

representatives will be on the boundary of clusters

▪ Moving them towards centroid, move them inside

 A large, dispersed cluster will have larger moves as 
opposed to a small, dense cluster

▪ Favors a small, dense cluster that is near a larger dispersed 
cluster
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 Clustering: Given a set of points, with a notion 
of distance between points, group the points 
into some number of clusters

 Algorithms:

▪ Agglomerative hierarchical clustering: 

▪ Centroid and clustroid

▪ k-means: 

▪ Initialization, picking k

▪ BFR

▪ CURE
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