
Jeffrey D. Ullman
Stanford University

Application: Similar Documents
Shingling
Minhashing
Locality-Sensitive Hashing

¡ It has been said that the mark of a computer
scientist is that they believe hashing is real.
§ I.e., it is possible to insert, delete, and lookup items

in a large set in O(1) time per operation.
¡ Locality-Sensitive Hashing (LSH) is another type

of magic that, like Bigfoot, is hard to believe is
real, until you’ve seen it.

¡ It lets you find pairs of similar items in a large
set, without the quadratic cost of examining
each pair.

2

¡ LSH is really a family of related techniques.
¡ In general, one throws items into buckets using

several different “hash functions.”
¡ You examine only those pairs of items that

share a bucket for at least one of these
hashings.

¡ Upside: designed correctly, only a small fraction
of pairs are ever examined.

¡ Downside: there are false negatives – pairs of
similar items that never even get considered.

3

¡ We shall first study in detail the problem of
finding (lexically) similar documents.

¡ Later, two other problems:
§ Entity resolution (records that refer to the same

person or other entity).
§ News-article similarity.

4

5

¡ Given a body of documents, e.g., the Web,
find pairs of documents with a lot of text in
common, such as:
§ Mirror sites, or approximate mirrors.

§ Application: Don’t want to show both in a search.

§ Plagiarism, including large quotations.
§ Similar news articles at many news sites.

§ Application: Cluster articles by “same story.”
¡ Warning: LSH not designed for “same topic.”

6

1. Shingling: convert documents, emails, etc., to
sets.

2. Minhashing: convert large sets to short
signatures (lists of integers), while preserving
similarity.

3. Locality-sensitive hashing: focus on pairs of
signatures likely to be similar.

7

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Minhash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity.

Note: Similarity of sets =
“Jaccard similarity” (defined
later) = a measure of how
many elements are shared.

8

¡ A k-shingle (or k-gram) for a document is a
sequence of k characters that appears in the
document.

¡ Example: k = 2; doc = abcab. Set of 2-shingles =
{ab, bc, ca}.

¡ Represent a doc by its set of k-shingles.

¡ Documents that are textually similar will have
many shingles in common.

¡ Changing a word only affects k-shingles within
distance k-1 from the word.

¡ Reordering paragraphs only affects the 2k
shingles that cross paragraph boundaries.

¡ Example: k=3, “The dog which chased the cat”
versus “The dog that chased the cat”.
§ Only 3-shingles replaced are g_w, _wh, whi, hic, ich,

ch_, and h_c.

9

10

¡ Intuition: want enough possible shingles that
most docs do not contain most shingles.
§ k = 8-, 9-, or 10-character shingles is often used in

practice.
¡ Character strings are not “random” bit strings,

so they take more space than needed.

11

¡ To save space but still make each shingle rare,
we can hash them to (say) 4 bytes.
§ Called tokens.

¡ Represent a doc by its tokens, that is, the set
of hash values of its k-shingles.

¡ Two documents could (rarely) appear to have
shingles in common, when in fact only the
hash-values were shared.

13

¡ The Jaccard similarity of two sets is the size of
their intersection divided by the size of their
union.

¡ Sim(C1, C2) = |C1ÇC2|/|C1ÈC2|.

14

3 in intersection.
8 in union.
Jaccard similarity

= 3/8

15

¡ Rows = elements of the universal set.
§ Examples: the set of all k-shingles or all tokens.

¡ Columns = sets.
¡ 1 in row e and column S if and only if e is a

member of S; else 0.
¡ Column similarity is the Jaccard similarity of

the sets of their rows with 1.
¡ Typical matrix is sparse.
¡ Warning: We don’t really construct the matrix;

just imagine it exists.

16

C1 C2
0 1
1 0
1 1 Sim(C1, C2) =
0 0 2/5 = 0.4
1 1
0 1

*

*
*
*

*
*
*

17

¡ Given columns C1 and C2, rows may be classified as:
C1 C2

a 1 1
b 1 0
c 0 1
d 0 0

¡ Also, a = # rows of type a , etc.
¡ Note Sim(C1, C2) = a/(a +b +c).

18

¡ Permute the rows.
§ Thought experiment – not real.

¡ Define minhash function for this permutation,
h(C) = the number of the first (in the permuted
order) row in which column C has 1.

¡ Apply, to all columns, several (e.g., 100)
randomly chosen permutations to create a
signature for each column.

¡ Result is a signature matrix: columns = sets,
rows = minhash values, in order for that column.

19

0
0

00
00

00

0
00 0
0

000
0
1
11

1
11

11

1
11

1
2
3
4
5
6
7

11 23

Input Matrix

Signature Matrix

20

0
0

00
00

00

0
00 0
0

000
0
1
11

1
11

11

1
11

1
2
3
4
5
6
7 1

2
3
4
5
6
7

122 3

11 23

Input Matrix

Signature Matrix

21

0
0

00
00

00

0
00 0
0

000
0
1
11

1
11

11

1
11

1

2

3

4
5

6

7

1
2
3
4
5
6
7 1

2
3
4
5
6
7

122 3

11 23

351 2

Input Matrix

Signature Matrix

¡ People sometimes ask whether the minhash
value should be the original number of the row,
or the number in the permuted order (as we
did in our example).

¡ Answer: it doesn’t matter.
¡ You only need to be consistent, and assure that

two columns get the same value if and only if
their first 1’s in the permuted order are in the
same row.

22

23

¡ The probability (over all permutations of the
rows) that h(C1) = h(C2) is the same as
Sim(C1, C2).

¡ Both are a/(a+b+c)!
¡ Why?
§ Already know Sim(C1, C2) = a/(a+b+c).
§ Look down the permuted columns C1 and C2 until

we see a 1.
§ If it’s a type-a row, then h(C1) = h(C2). If a type-b or

type-c row, then not.

24

¡ The similarity of signatures is the fraction of the
minhash functions (rows) in which they agree.

¡ Thus, the expected similarity of two signatures
equals the Jaccard similarity of the columns or
sets that the signatures represent.
§ And the longer the signatures, the smaller will be the

expected error.

25

0
0

00
00

00

0
00 0
0

000
0
1
11

1
11

11

1
11

122 3

11 23

351 2

Input Matrix

Signature Matrix

Columns 1 & 2:
Jaccard similarity 1/4.
Signature similarity 1/3

Columns 2 & 3:
Jaccard similarity 1/5.
Signature similarity 1/3

Columns 3 & 4:
Jaccard similarity 1/5.
Signature similarity 0

26

¡ Suppose 1 billion rows.
¡ Hard to pick a random permutation of

1…billion.
¡ Representing a random permutation requires

1 billion entries.
¡ Accessing rows in permuted order leads to

thrashing.

27

¡ A good approximation to permuting rows:
pick, say, 100 hash functions.

¡ Intuition: the resulting permutation is what
you get by sorting rows in order of their hash
values.

¡ For each column c and each hash function hi,
keep a “slot” M(i, c).

¡ Intent: M(i, c) will become the smallest value
of hi (r) for which column c has 1 in row r.

28

for (all i and c) M(i, c) := ∞;
for (each row r) begin
for (each hash function hi)

compute hi (r);
for (each column c)

if (c has 1 in row r)
for (each hash function hi)

if (hi (r) is smaller than M(i, c)) then
M(i, c) := hi (r);

end;

Important: so you hash r only
once per hash function, not
once per 1 in row r.

29

Row C1 C2
1 1 0
2 0 1
3 1 1
4 1 0
5 0 1

h(x) = x mod 5
g(x) = (2x+1) mod 5

h(1) = 1 1 ∞
g(1) = 3 3 ∞

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2

30

¡ Often, data is given by column, not row.
§ Example: columns = documents, rows = shingles.

¡ If so, sort matrix once so it is by row.
§ I.e., generate shingle-docID pairs from the

documents and then sort by shingle.

¡ From Li-Owen-Zhang, Stanford Statistics Dept.
¡ Cost of minhashing is proportional to the

number of rows.
¡ Suppose we only went a small way down the list

of rows, e.g., hashed only the first 1000 rows.
¡ Advantage: Saves a lot of time.
¡ Disadvantage: if all 1000 rows have 0 in a

column, you get no minhash value.
§ It is a mistake to assume two columns hashing to no

value are likely to be similar.

31

¡ Divide the rows into k bands.
¡ As you go down the rows, start a new minhash

competition for each band.
¡ Thus, to get a desired number of minhash

values, you need to compute only (1/k)th of the
number of hash values per row that you would
using the original scheme.
§ But don’t make k so large that you often get “no

value” for a minhash.

32

¡ Remember: we want to hash objects such as
signatures many times, so that “similar” objects
wind up in the same bucket at least once, while
other pairs rarely do.
§ Candidate pairs are those that share a bucket.

¡ Define “similar” by a similarity threshold t =
fraction of rows in which signatures must agree.

¡ Trick: divide signature rows into bands.
§ Each hash function based on one band.

34

35

Matrix M

r rows
per band

b bands

One
signature

36

¡ Divide matrix M into b bands of r rows.
¡ For each band, hash its portion of each column

to a hash table with k buckets.
§ Make k as large as possible.
§ Use a different hash table for each band.

¡ Candidate column pairs are those that hash to
the same bucket for ≥ 1 band.

¡ Tune b and r to catch most similar pairs, but few
nonsimilar pairs.

37
Matrix M

Buckets

Columns 6 and 7 are
surely different.

Columns 2 and 6
are probably identical
in this band.

r rows b bands

38

¡ Suppose 100,000 columns.
¡ Signatures of 100 integers.
¡ Therefore, signatures take 40Mb.
¡ Want all 80%-similar pairs.
¡ 5,000,000,000 pairs of signatures can take a

while to compare.
¡ Choose 20 bands of 5 integers/band.

39

¡ Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328.

¡ Probability C1, C2 are not similar in any of the 20
bands: (1-0.328)20 = .00035 .
§ i.e., about 1/3000th of the 80%-similar underlying

sets are false negatives.

40

¡ Probability C1, C2 identical in any one particular
band: (0.4)5 = 0.01 .

¡ Probability C1, C2 identical in ≥ 1 of 20 bands:
1 – (0.99)20 < 0.2 .

¡ But false positives much lower for similarities
<< 40%.

41

Similarity s of two sets

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t

42

Similarity s of two sets

Probability
of sharing
a bucket

Remember:
probability of equal
minhash values
= Jaccard similarity

t

False
positives

False
negatives

Say “yes” if you
are below the line.

43

Similarity s of two sets

Probability
of sharing
a bucket

t

s r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r

44

s 1-(1-s5)20
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996

Slope here
about 2.3

45

¡ Tune b and r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures.

¡ Check that candidate pairs really do have
similar signatures.

¡ Optional: In another pass through data, check
that the remaining candidate pairs really
represent similar sets.

¡ A student posed the following question,
apparently based on a real problem he was
having at work.

¡ He had about a million sets of which he wanted
to find the most similar pairs.

¡ But the universal set had only 52 elements.
¡ He asked whether he could use the method just

outlined to find the similar sets.
¡ Do you see any problems?

46

