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Data contains value and knowledge



 But to extract the knowledge data 
needs to be

▪ Stored (systems)

▪Managed (databases)

▪ And ANALYZED this class

Data Mining ≈ Predictive Analytics ≈ 
Data Science  ≈ Machine Learning ≈ 

Data-Centric AI
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 Extraction of actionable information from 
(usually) very large datasets, is the subject of 
extreme hype, fear, and interest

 It’s not all about machine learning
 But most of it is!

 Emphasis in CS246 on algorithms that scale

▪ Parallelization often essential
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“This class is a must if you want to become a 
Data Scientist or an ML Engineer.” 

(anonymous CS246 student)
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 Descriptive methods

▪ Find human-interpretable patterns that 
describe the data

▪ Example: Clustering

 Predictive methods

▪ Use some variables to predict unknown 
or future values of other variables

▪ Example: Recommender systems
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“Definitely take the course if you will be working with massive 
datasets in the future, either in the industry or in academia.” 
(anonymous CS246 student)



 This combines best of machine learning, 
statistics, artificial intelligence, databases but 
more stress on
▪ Scalability (big data)

▪ Algorithms

▪ Computing architectures

▪ Automation for handling 
large data
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“The class has a great focus on real-world 
study cases, so you will learn a lot about 
realistic ML problems and the solutions being 
used in practice at places like Netflix, Amazon, 
Facebook, Pinterest, etc.” (anonymous CS246 student)



 We will learn to mine different types of data:

▪ Data is high dimensional

▪ Data is a graph

▪ Data is infinite/never-ending

▪ Data is labeled

 We will learn to use different models of 
computation:

▪ MapReduce

▪ Streams and online algorithms

▪ Single machine in-memory
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 We will learn to solve real-world problems:

▪ Recommender systems

▪ Market Basket Analysis

▪ Spam detection

▪ Duplicate document detection

 We will learn various “tools”:

▪ Linear algebra (SVD, Rec. Sys., Communities)

▪ Optimization (stochastic gradient descent)

▪ Dynamic programming (frequent itemsets)

▪ Hashing (LSH, Bloom filters)
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Lectures: Tue/Thu 3:00-4:20pm PST
Live in-person (in NVIDIA classroom), 
recording available on Canvas
 ~70 min lecture:

▪ If you have a clarification question, post it in Ed, 
TAs will answer

 ~10 min Q&A:

▪ Ask questions, Jure will answer and discuss
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 Ed:

▪ Use Ed for all questions and public 
communication
▪ Search the feed before asking a duplicate question

▪ Please tag your posts and please no one-liners

 For e-mailing course staff always use:

▪ cs246-spr2223-staff@lists.stanford.edu

 We will post course announcements to 
Ed (hence check it regularly!)
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Auditors are welcome! 
(please send request to <cs246-spr2223-staff@lists.stanford.edu> to add you to Canvas)
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 High-frequency feedback:

▪ Weekly survey about class morale

▪ Randomly select students to give us feedback

▪ Content

▪ Course setup

▪ Anything the teaching team should know/improve

▪ Anything that is confusing to you

▪ … 
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 Course website: http://cs246.stanford.edu

▪ Lecture slides (at least 30min before the lecture)

▪ Homework, solutions, readings posted on Ed/Canvas

 Class textbook: Mining of Massive Datasets by 
A. Rajaraman, J. Ullman, and J. Leskovec

▪ Sold by Cambridge Uni. Press but available for free 
at http://mmds.org

 MOOC: www.youtube.com /channel/UC_Oao2FYkLAUlUVkBfze4jg/videos
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 Office hours:

▪ TA office hours will be updated on the website 
http://cs246.stanford.edu by Friday

▪ We start Office Hours next week!

▪ Office hours will be held on Zoom and use 
QueueStatus

▪ Links will be posted on Canvas and the course calendar

▪ We will be holding (1) in-person office hours, (2) virtual 
group office hours, and (3) virtual one-on-one office 
hours
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 Videos and materials on Canvas
 Spark tutorial:

▪ Video

▪ Follows Colab 0

 Review of basic probability and proof 
techniques:

▪ Video and handout

 Review of linear algebra:

▪ Video and handout
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 4 longer homeworks: 40%
▪ Four major assignments, involving programming, 

proofs, algorithm development.

▪ Assignments take lots of time (+20h). Start early!!
 How to submit?
▪ Homework write-up:
▪ Submit via Gradescope

▪ Enroll to CS246 on Canvas, and you will be automatically 
added to the course Gradescope

▪ Homework code:
▪ If the homework requires a code submission, you will find a 

separate assignment for it on Gradescope, e.g., HW1 (Code)

▪ Forgetting to submit code will result in point deduction.
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 Homework schedule:

▪ Two late periods for HWs for the quarter:

▪ Late period expires on the following Monday 23:59 PST

▪ Can use max 1 late period per HW

Date (23:59 PT) Out In

04/06, Thu HW1

04/20, Thu HW2 HW1

05/04, Thu HW3 HW2

05/18, Thu HW4 HW3

06/01, Thu HW4
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 Short weekly Colab notebooks: 30%

▪ Colab notebooks are posted every Thursday

▪ 10 in total, from 0 to 9, each worth 3%

▪ Due one week later on Thursday 23:59 PST. No late days!

▪ First 2 Colabs will be posted on Thu, including detailed 
submission instructions to Gradescope

▪ Colab 0 (Spark Tutorial) is solved step-by-step in the Spark 
Recitation video.

▪ Colabs require around 1hr of work.

▪ And a few lines of code.

▪ “Colab” is a free cloud service from Google, hosting Jupyter
notebooks with free access to GPU and TPU
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 Final exam: 30%
▪ Exact format will be announced later this week.

▪ Most likely we will do a take-home 3h exam which 
you will be able to take at any time during a 24h 
time window.

 Extra credit: Proportional to your contribution 
(up to 2%)
▪ Course attendance, asking questions, discussion

▪ For participating in Ed discussions
▪ Especially valuable are answers to questions posed by 

other students

▪ Reporting bugs in course materials
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 Programming:  Python or Java
 Basic Algorithms: CS161 is surely sufficient
 Probability: e.g., CS109 or Stats116

▪ There will be a review session and a review doc is 
linked from the class home page

 Linear algebra:

▪ Another review doc + review session is available

 Multivariable calculus
 Database systems (SQL, relational algebra):

▪ CS145 is sufficient but not necessary
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 Each of the topics listed is important for a 
part of the course:

▪ If you are missing an item of background, you 
could consider just-in-time learning of the needed 
material.

 The exception is programming:

▪ To do well in this course, you really need to be 
comfortable with writing code in Python or Java.
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 We’ll follow the standard CS Dept. approach: 
You can get help, but you MUST acknowledge 
the help on the work you hand in

 Failure to acknowledge your sources is a 
violation of the Honor Code

 We use MOSS to check the originality of your 
code
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 You can talk to others about the algorithm(s) to 
be used to solve a homework problem;

▪ As long as you then mention their name(s) on the 
work you submit.

 You should not use code of others or be looking 
at code of others when you write your own:

▪ (don’t search/post code on Github, and similar)

▪ You can talk to people but have to write your own 
solution/code

▪ If you fail to mention your sources, MOSS will catch it, 
which will result in an HC violation.
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 CS246 is fast paced!

▪ Requires programming maturity

▪ Strong math skills

▪ SCPD students tend to be rusty on math/theory

 Course time commitment: “The colabs are easy and 

can be done within an hour but the homework assignments 
take a lot more time so start early!” (CS246 student)

▪ Homeworks take ~20h

▪ Colab notebooks take about 1h

 Form study groups!
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CS246 is one of the most useful classes at 
you’ll take at Stanford if you want to 

become a Data Scientist or an ML Engineer.

CS246 going to be fun and hard work. ☺
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 Large-scale computing for data mining 
problems on commodity hardware

 Challenges:

▪ How do you distribute computation?

▪ How can we make it easy to write distributed 
programs?

▪ Machines fail:

▪ One server may stay up 3 years (1,000 days)

▪ If you have 1,000 servers, expect to lose 1/day

▪ With 1M machines 1,000 machines fail every day!
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 Issue:
Copying data over a network takes time

 Idea:

▪ Bring computation to data

▪ Store files multiple times for reliability

 Spark/Hadoop address these problems

▪ Storage Infrastructure – File system

▪ Google: GFS. Hadoop: HDFS

▪ Programming model

▪ MapReduce

▪ Spark
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 Problem:

▪ If nodes fail, how to store data persistently? 
 Answer:

▪ Distributed File System

▪ Provides global file namespace
 Typical usage pattern:

▪ Huge files (100s of GB to TB)

▪ Data is rarely updated in place

▪ Reads and appends are common
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 Chunk servers
▪ File is split into contiguous chunks
▪ Typically each chunk is 16-64MB
▪ Each chunk replicated (usually 2x or 3x)
▪ Try to keep replicas in different racks

 Master node
▪ a.k.a. Name Node in Hadoop’s HDFS
▪ Stores metadata about where files are stored
▪ Master nodes are typically more robust to hardware 

failure and run critical cluster services.
 Client library for file access
▪ Talks to master to find chunk servers 
▪ Connects directly to chunk servers to access data
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 Reliable distributed file system
 Data kept in “chunks” spread across machines
 Each chunk replicated on different machines 

▪ Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0
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Chunk servers also serve as compute servers

Notation: C2… chunk no. 2 of file C





 MapReduce is a style of programming
designed for:
1. Easy parallel programming

2. Invisible management of hardware and software 
failures

3. Easy management of very-large-scale data

 It has several implementations, including 
Hadoop, Spark (used in this class), Flink, and 
the original Google implementation just called 
“MapReduce”
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3 steps of MapReduce
 Map:
▪ Apply a user-written Map function to each input element
▪ Mapper applies the Map function to a single element
▪ Many mappers grouped in a Map task (the unit of parallelism)

▪ The output of the Map function is a set of 0, 1, or more 
key-value pairs.

 Group by key: Sort and shuffle
▪ System sorts all the key-value pairs by key, and

outputs key-(list of values) pairs
 Reduce:
▪ User-written Reduce function is applied to each 

key-(list of values)

Outline stays the same, Map and Reduce change to fit the problem
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Example MapReduce task:
 We have a huge text document
 Count the number of times each 

distinct word appears in the file

 Many applications of this:

▪ Analyze web server logs to find popular URLs

▪ Statistical machine translation:

▪ Need to count number of times every 5-word sequence 
occurs in a large corpus of documents
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map(key, value):

# key: document name; value: text of the document

for each word w in value:

emit(w, 1)

reduce(key, values):

# key: a word; value: an iterator over counts

result = 0

for each count v in values:

result += v

emit(key, result)
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MAP:
Read input and 

produces a set of 
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Group by key:
Collect all pairs with 

same key
(Hash merge, Shuffle, 

Sort, Partition)

Reduce:
Collect all values 
belonging to the 
key and output
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All phases are distributed with many tasks doing the work



MapReduce environment takes care of:
 Partitioning the input data
 Scheduling the program’s execution across a 

set of machines
 Performing the group by key step

▪ In practice this is is the bottleneck
 Handling machine failures
 Managing required inter-machine communication

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 45



 Map worker failure

▪ Map tasks completed or in-progress at 
worker are reset to idle and rescheduled

▪ Reduce workers are notified when map task is 
rescheduled on another worker

 Reduce worker failure

▪ Only in-progress tasks are reset to idle and the 
reduce task is restarted
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 MapReduce:

▪ Incurs substantial overheads due to data 
replication, disk I/O, and serialization
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 Two major limitations of MapReduce:  
▪ Difficulty of programming directly in MapReduce 
▪ Many problems aren’t easily described as map-reduce

▪ Performance bottlenecks, or batch not fitting the 
use cases 
▪ Persistence to disk typically slower than in-memory work

 In short, MapReduce doesn’t compose well 
for large applications
▪ Many times, one needs to chain multiple map-

reduce steps.
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 MapReduce uses two “ranks” of tasks:
One for Map the second for Reduce

▪ Data flows from the first rank to the second

 Data-Flow Systems generalize this in two ways:

1. Allow any number of tasks/ranks

2. Allow functions other than Map and Reduce

▪ As long as data flow is in one direction only, we can 
have the blocking property and allow recovery of 
tasks rather than whole jobs
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 Expressive computing system, not limited to 
the map-reduce model

 Additions to MapReduce model: 

▪ Fast data sharing 

▪ Avoids saving intermediate results to disk

▪ Caches data for repetitive queries (e.g. for machine learning)

▪ General execution graphs (DAGs)

▪ Richer functions than just map and reduce

 Compatible with Hadoop
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 Key construct/idea: Resilient Distributed Dataset 
(RDD)

 Higher-level APIs: DataFrames & DataSets

▪ Introduced in more recent versions of Spark

▪ Different APIs for aggregate data, which allowed to 
introduce SQL support
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Key concept: Resilient Distributed Dataset 
(RDD)
▪ Partitioned collection of records
▪ Generalizes (key-value) pairs

 Spread across the cluster, Read-only
 Caching dataset in memory
▪ Fallback to disk possible

 RDDs can be created from Hadoop, or by 
transforming other RDDs (you can stack 
RDDs)

 RDDs are best suited for applications 
that apply the same operation to all 
elements of a dataset
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 Transformations build RDDs through 
deterministic operations on other RDDs:

▪ Transformations include map, filter, join, union, 
intersection, distinct

▪ Lazy evaluation: Nothing computed until an action 
requires it

 Actions to return value or export data

▪ Actions include count, collect, reduce, save

▪ Actions can be applied to RDDs; actions force 
calculations and return values
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join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

= cached partition

= RDD

map

 Supports general task graphs
 Pipelines functions where possible
 Cache-aware data reuse & locality
 Partitioning-aware to avoid shuffles
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 DataFrame:
▪ Unlike an RDD, data organized into named 

columns, e.g. a table in a relational database.

▪ Imposes a structure onto a distributed collection 
of data, allowing higher-level abstraction

 Dataset:
▪ Extension of DataFrame API which provides type-

safe, object-oriented programming interface 
(compile-time error detection)

Both built on Spark SQL engine. Both can be 
converted back to an RDD.
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 Spark SQL
 Spark Streaming – stream processing of live 

datastreams
 MLlib – scalable machine learning
 GraphX – graph manipulation

▪ Extends Spark RDD with Graph abstraction: a 
directed multigraph with properties attached to 
each vertex and edge
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 Performance: Spark normally faster but with caveats

▪ Spark can process data in-memory; Hadoop MapReduce 
persists back to the disk after a map or reduce action

▪ Spark generally outperforms MapReduce, but it often 
needs lots of memory to perform well; if there are 
other resource-demanding services or can’t fit in 
memory, Spark degrades

▪ MapReduce easily runs alongside other services with 
minor performance differences, & works well with the 
1-pass jobs it was designed for

 Ease of use: Spark is easier to program (higher-level APIs)

 Data processing: Spark more general
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 Suppose we have a large web corpus
 Look at the metadata file

▪ Lines of the form: (URL, size, date, …)
 For each host, find the total number of bytes

▪ That is, the sum of the page sizes for all URLs from 
that particular host

 Other examples: 

▪ Link analysis and graph processing

▪ Machine Learning algorithms

Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 61



 Statistical machine translation:

▪ Need to count number of times every 5-word 
sequence occurs in a large corpus of documents

 Very easy with MapReduce:

▪ Map:

▪ Extract (5-word sequence, count) from document

▪ Reduce: 

▪ Combine the counts
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 Compute the natural join R(A,B) ⋈ S(B,C)
 R and S are each stored in files
 Tuples are pairs (a,b) or (b,c)
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 Use a hash function h from B-values to 1...k
 A Map process turns:

▪ Each input tuple R(a,b) into key-value pair (b,(a,R))

▪ Each input tuple S(b,c) into (b,(c,S))

 Map processes send each key-value pair with 
key b to Reduce process h(b)

▪ Hadoop does this automatically; just tell it what k is.

 Each Reduce process matches all the pairs 
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).
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 MapReduce is great for: 

▪ Problems that require sequential data access

▪ Large batch jobs (not interactive, real-time)

 MapReduce is inefficient for problems where 
random (or irregular) access to data required:

▪ Graphs

▪ Interdependent data 

▪ Machine learning

▪ Comparisons of many pairs of items
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 In MapReduce we quantify the cost of an 
algorithm using 

1. Communication cost = total I/O of all 
processes

2. Elapsed communication cost = max of I/O 
along any path

3. (Elapsed) computation cost analogous, but 
count only running time of processes

Note that here the big-O notation is not the most useful 

(adding more machines is always an option)
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 For a map-reduce algorithm:

▪ Communication cost = input file size + 2  (sum of 
the sizes of all files passed from Map processes to 
Reduce processes) + the sum of the output sizes of 
the Reduce processes.

▪ Elapsed communication cost is the sum of the 
largest input + output for any map process, plus 
the same for any reduce process
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 Either the I/O (communication) or processing 
(computation) cost dominates

▪ Ignore one or the other

 Total cost tells what you pay in rent from 
your friendly neighborhood cloud

 Elapsed cost is wall-clock time using 
parallelism
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 Total communication cost
= O(|R|+|S|+|R ⋈ S|)

 Elapsed communication cost = O(s)
▪ We’re going to pick k and the number of Map 

processes so that the I/O limit s is respected

▪ We put a limit s on the amount of input or output 
that any one process can have. s could be:
▪ What fits in main memory

▪ What fits on local disk

 With proper indexes, computation cost is 
linear in the input + output size
▪ So, computation cost is like communication cost
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