CS246: Mining Massive Data Sets Winter 2019

Problem Set 2

Please read the homework submission policies at http://cs246.stanford.edu.

1 Singular Value Decomposition and Principal Com-
ponent Analysis (20 points)

In this problem we will explore the relationship between two of the most popular dimensionality-
reduction techniques, SVD and PCA at a basic conceptual level. Before we proceed with
the question itself, let us briefly recap the SVD and PCA techniques and a few important
observations:

e First, recall that the eigenvalue decomposition of a real, symmetric, and square matrix
B (of size d x d) can be written as the following product:

B =QAQ"

where A = diag(Aq, ..., \q) contains the eigenvalues of B (which are always real) along
its main diagonal and () is an orthogonal matrix containing the eigenvectors of B as
its columns.

e Principal Component Analysis (PCA): Given a data matrix M (of size p x q), PCA
involves the computation of the eigenvectors of M M7 or MTM. The matrix of these
eigenvectors can be thought of as a rigid rotation in a high dimensional space. When
you apply this transformation to the original data, the axis corresponding to the prin-
cipal eigenvector is the one along which the points are most spread out, More precisely,
this axis is the one along which the variance of the data is maximized. Put another
way, the points can best be viewed as lying along this axis, with small deviations from
this axis. Likewise, the axis corresponding to the second eigenvector (the eigenvector
corresponding to the second-largest eigenvalue) is the axis along which the variance of
distances from the first axis is greatest, and so on.

e Singular Value Decomposition (SVD): SVD involves the decomposition of a data matrix
M (of size p X q) into a product: ULVT where U (of size p x k) and V' (of size ¢ X k)
are column-orthonormal matrices' and ¥ (of size k x k) is a diagonal matrix. The
entries along the diagonal of ¥ are referred to as singular values of M. The key
to understanding what SVD offers is in viewing the r columns of U, ¥, and V as
representing concepts that are hidden in the original matrix M.

For answering the questions below, let us define a real matrix M (of size p x ¢) and let us
assume this matrix corresponds to a dataset with p data points and ¢ dimensions.

LA matrix U € RP*? is column-orthonormal if and only if U7U = I where I denotes the identity matrix
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(a) [3 points]

Are the matrices MMT and MT M symmetric, square and real? Explain.

(b) [5 points]

Prove that the nonzero cigenvalues of MM’ are the same as the nonzero eigenvalues of
MTM. You may ignore multiplicity of eigenvalues. Are their eigenvectors the same?

(c) [2 points]

Given that we now understand certain properties of M* M, write an expression for M7 M in
terms of @, QT and A where A = diag(\1,...,\y) contains the eigenvalues of MM along
its main diagonal and @ is an orthogonal matrix containing the eigenvectors of M7 M as its
columns?

Hint: Check the definition of eigenvalue decomposition provided in the beginning of the ques-
tion to see if it is applicable.

(d) [5 points]

SVD decomposes the matrix M into the product UXV? where U and V are column-
orthonormal and ¥ is a diagonal matrix. Given that M = UXVT, write a simplified ex-
pression for M7 M in terms of V, VT and X7

(e) [5 points]

In this question, let us experimentally test if SVD decomposition of M actually provides
us the eigenvectors (PCA dimensions) of MTM. We strongly recommend students to use
Python and suggested functions for this exercise.? Initialize matrix M as follows:

=W N
W = = N

e Compute the SVD of M (Use scipy.linalg.svd function in Python and set the argument
full_matrices to False). The function returns values corresponding to U, 3 and V7.
What are the values returned for U, ¥ and VI? Note: Make sure that the first element
of the returned array ¥ has a greater value than the second element.

20ther implementations of SVD and PCA might give slightly different results. Besides, you will just need
fewer than five python commands to answer this entire question
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e Compute the eigenvalue decomposition of MTM (Use scipy.linalg.eigh function in
Python). The function returns two parameters: a list of eigenvalues (let us call this list
FEvals) and a matrix whose columns correspond to the eigenvectors of the respective
eigenvalues (let us call this matrix Evecs). Sort the list Fvals in descending order
such that the largest eigenvalue appears first in the list. Also, re-arrange the columns
in Fvecs such that the eigenvector corresponding to the largest eigenvalue appears in
the first column of Fvecs. What are the values of Evals and Evecs (after the sorting
and re-arranging process)?

e Based on the experiment and your derivations in part (c¢) and (d), do you see any
correspondence between V' produced by SVD and the matrix of eigenvectors Fvecs
(after the sorting and re-arranging process) produced by eigenvalue decomposition? If
so, what is it?

Note: The function scipy.linalg.svd returns VI (not V).

e Based on the experiment and the expressions obtained in part (c) and part (d) for
MTM, what is the relationship (if any) between the eigenvalues of MTM and the
singular values of M7 Explain.

Note: The entries along the diagonal of 3 (part (e)) are referred to as singular values
of M. The eigenvalues of MT M are captured by the diagonal elements in A (part (d))

What to submit:

(i) Written solutions to questions 1(a) to 1(e) with explanations wherever required

(ii) Upload the code via Snap submission site

2 k-means on Spark (20 points)

Note: This problem requires substantial computing time. Don’t start it at the last minute.
Also, you should not use the Spark MLIlib clustering library for this problem.

This problem will help you understand the nitty gritty details of implementing clustering
algorithms on Spark. In addition, this problem will also help you understand the impact of
using various distance metrics and initialization strategies in practice. Let us say we have
a set X of n data points in the d-dimensional space R%. Given the number of clusters k
and the set of k centroids C, we now proceed to define various distance metrics and the
corresponding cost functions that they minimize.

Euclidean distance Given two points A and B in d dimensional space such that A =
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la1,as---aq) and B = [by, by - - - by, the Euclidean distance between A and B is defined as:

lla =0l =

The corresponding cost function ¢ that is minimized when we assign points to clusters using
the Euclidean distance metric is given by:

6= min x| )

reX

Manhattan distance Given two random points A and B in d dimensional space such that
A =laj,as---aq) and B = [by, by - - - by], the Manhattan distance between A and B is defined
as:

d
ja—bl=7lai— b (3)
i=1

The corresponding cost function ¢ that is minimized when we assign points to clusters using
the Manhattan distance metric is given by:

=) minfz - (4)

reX

Iterative k-Means Algorithm: We learned the basic k-Means algorithm in class which
is as follows: k centroids are initialized, each point is assigned to the nearest centroid and
the centroids are recomputed based on the assignments of points to clusters. In practice,
the above steps are run for several iterations. We present the resulting iterative version of
k-Means in Algorithm 1.

Algorithm 1 Iterative k-Means Algorithm

1: procedure ITERATIVE k-MEANS

2 Select k points as initial centroids of the k clusters.

3 for iterations := 1 to MAX_ITER do

4: for each point p in the dataset do

5: Assign point p to the cluster with the closest centroid

6 end for

7 Calculate the cost for this iteration.

8 for each cluster ¢ do

9 Recompute the centroid of ¢ as the mean of all the data points assigned to ¢

10: end for
11: end for
12: end procedure

Iterative k-Means clustering on Spark: Implement iterative k-means using Spark.
Please use the dataset from gq2/data within the bundle for this problem.

The folder has 3 files:
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1. data.txt contains the dataset which has 4601 rows and 58 columns. Each row is a
document represented as a 58 dimensional vector of features. Each component in the
vector represents the importance of a word in the document.

2. cl.txt contains k initial cluster centroids. These centroids were chosen by selecting
k = 10 random points from the input data.

3. c2.txt contains initial cluster centroids which are as far apart as possible. (You can
do this by choosing 1%% centroid ¢l randomly, and then finding the point ¢2 that is
farthest from c1, then selecting ¢3 which is farthest from cl and ¢2, and so on).

Set number of iterations (MAX_ITER) to 20 and number of clusters k£ to 10 for all the ex-
periments carried out in this question. Your driver program should ensure that the correct
amount of iterations are run.

(a) Exploring initialization strategies with Euclidean distance [10 pts]

1. [5 pts] Using the Euclidean distance (refer to Equation 1) as the distance measure,
compute the cost function ¢(i) (refer to Equation 2) for every iteration i. This means
that, for your first iteration, you’ll be computing the cost function using the initial
centroids located in one of the two text files. Run the k-means on data.txt using
cl.txt and c2.txt. Generate a graph where you plot the cost function ¢(i) as a
function of the number of iterations ¢=1..20 for c1.txt and also for c2.txt.

(Hint: Note that you do not need to write a separate Spark job to compute ¢(i). You
should be able to calculate costs while partitioning points into clusters.)

2. [5 pts] What is the percentage change in cost after 10 iterations of the K-Means
algorithm when the cluster centroids are initialized using c1.txt vs. c2.txt and the
distance metric being used is Euclidean distance? Is random initialization of k-means
using c1.txt better than initialization using c2.txt in terms of cost ¢(:)? Explain
your reasoning.

(b) Exploring initialization strategies with Manhattan distance [10 pts]

1. [5 pts] Using the Manhattan distance metric (refer to Equation 3) as the distance
measure, compute the cost function (i) (refer to Equation 4) for every iteration i.
This means that, for your first iteration, you’ll be computing the cost function using
the initial centroids located in one of the two text files. Run the k-means on data.txt
using cl.txt and c2.txt. Generate a graph where you plot the cost function (i) as
a function of the number of iterations i=1..20 for c1.txt and also for c2.txt.

(Hint: This problem can be solved in a similar manner to that of part (a))

2. [5 pts] What is the percentage change in cost after 10 iterations of the K-Means
algorithm when the cluster centroids are initialized using c1.txt vs. c2.txt and the
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distance metric being used is Manhattan distance? Is random initialization of k-means
using c1.txt better than initialization using c2.txt in terms of cost ¢(i)? Explain
your reasoning.

What to submit:

(i) Upload the code for 2(a) and 2(b) to Snap submission site

(ii) A plot of cost vs. iteration for two initialization strategies for 2(a)

)

)
(iii) Percentage improvement values and your explanation for 2(a)
(iv) A plot of cost vs. iteration for two initialization strategies for 2(b)
)

(v) Percentage improvement values and your explanation for 2(b)

3 Latent Features for Recommendations (35 points)

Warning: This problem requires substantial computing time (it can be a few hours on some
systems). Don’t start it at the last minute.

I

The goal of this problem is to implement the Stochastic Gradient Descent algorithm to build
a Latent Factor Recommendation system. We can use it to recommend movies to users.
We encourage you to read the slides of the lecture “Recommender Systems 2”7 again before
attempting the problem.

Suppose we are given a matrix R of recommendations. The element R;, of this matrix
corresponds to the rating given by user u to item ¢. The size of R is m x n, where m is the
number of movies, and n the number of users.

Most of the elements of the matrix are unknown because each user can only rate a few
movies.

Our goal is to find two matrices P and Q, such that R ~ QP?. The dimensions of ) are
m X k, and the dimensions of P are n X k. k is a parameter of the algorithm.

We define the error as

E-( X Ru-aesl?) 4

(4,u)€Eratings

S lpali3+ ||qi||%] . )

The Z(i w)eratings Means that we sum only on the pairs (user, item) for which the user has
rated the item, i.e. the (i,u) entry of the matrix R is known. ¢; denotes the i*" row of the
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matrix Q (corresponding to an item), and p, the u'" row of the matrix P (corresponding to
a user u). A is the regularization parameter. || - |5 is the Ly norm and ||p,||3 is square of the
Ly norm, i.e., it is the sum of squares of elements of p,.

(a) [10 points]

Let g;, denote the derivative of the error E with respect to R;,. What is the expression
for €;,7 What are the update equations for ¢; and p, in the Stochastic Gradient Descent
algorithm?

(b) [25 points]

Implement the algorithm. Read each entry of the matrix R from disk and update €;,, ¢; and
py for each entry.

To emphasize, you are not allowed to store the matrix R in memory. You have to read each
element R;, one at a time from disk and apply your update equations (to each element).
Then, iterate until both ¢; and p, stop changing. Each iteration of the algorithm will read
the whole file.

Choose k = 20, A = 0.1 and number of iterations = 40. Find a good value for the learning
rate . Start with 7 = 0.1. The error E on the training set ratings.train.txt discussed below
should be less than 65000 after 40 iterations.

Based on values of 7, you may encounter the following cases:

e [f nis too big, the error function can converge to a high value or may not monotonically
decrease. It can even diverge and make the components of vectors p and ¢ equal to cc.

e If n is too small, the error function doesn’t have time to significantly decrease and
reach convergence. So, it can monotonically decrease but not converge i.e. it could
have a high value after 40 iterations because it has not converged yet.

Use the dataset at q3/data within the bundle for this problem. It contains the following
files:

e ratings.train.txt: This is the matrix R. Each entry is made of a user id, a movie
id, and a rating.

Plot the value of the objective function £ (defined in equation 5) on the training
set as a function of the number of iterations. What value of 7 did you find?

You can use any programming language to implement this part, but Java, C/C++, and
Python are recommended for speed. (In particular, Matlab can be rather slow reading from
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disk.) It should be possible to get a solution that takes on the order of minutes to run with
these languages.

Hint: These hints will help you if you are not sure about how to proceed for certain steps of
the algorithm, although you don’t have to follow them if you have another method.

o [nitialization of P and QQ: We would like q; and p, for all users u and items i such
that q; - pL € [0,5]. A good way to achieve that is to initialize all elements of P and Q
to random values in [0, /5/k].

e Update the equations: In each update, we update q; using p, and p, using q;. Compute
the new values for q; and p, using the old values, and then update the vectors q; and

Pu-

o You should compute E at the end of a full iteration of training. Computing E in pieces
during the iteration is incorrect since P and @) are still being updated.

What to submit

(i) Equation for &;,. Update equations in the Stochastic Gradient Descent algorithm.

3(a)]

(ii) Value of 1. Plot of E vs. number of iterations. Make sure your graph has a y-axis so
that we can read the value of E. [3(b)]

(iii) Please upload all the code to snap submission site. [3(b)]

4 Recommendation Systems (25 points)

Consider a user-item bipartite graph where each edge in the graph between user U to item I,
indicates that user U likes item I. We also represent the ratings matrix for this set of users
and items as R, where each row in R corresponds to a user and each column corresponds to
an item. If user ¢ likes item j, then R, ; = 1, otherwise R;; = 0. Also assume we have m
users and n items, so matrix R is m X n.

Let’s define a matrix P, m x m, as a diagonal matrix whose i-th diagonal element is the
degree of user node 7, i.e. the number of items that user ¢ likes. Similarly, a matrix @), n X n,
is a diagonal matrix whose ¢-th diagonal element is the degree of item node i or the number
of users that liked item 7. See figure below for an example.

(a) [4 points]

Define the non-normalized user similarity matrix 7 = R * R?. Explain the meaning of Tj;
and T;; (¢ # j), in terms of bipartite graph structures (See Figure 1) (e.g. node degrees,
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path between nodes, etc.).

Users Items

O = a
o -0 0O
_ a0 -

2 0 0 0 3 0 0

p=|0 1 0 0 Q=|l0 1 0
0 0 3 0 0 0 3
0 0 0 1

Figure 1: User-Item bipartite graph.

Cosine Similarity: Recall that the cosine similarity of two vectors u and v is defined as:

. u-v
cos-sim(u,v) = —||U||||U||

(b) [6 points]

Let’s define the item similarity matrixz, Sy, n x n, such that the element in row ¢ and column
j is the cosine similarity of item i and item j which correspond to column ¢ and column j of
the matrix R. Show that S; = Q~'2RTRQ~'/2, where Q~'/? is defined by QZCI/Q =1/vVQre

for all nonzero entries of the matrix, and 0 at all other positions.

Repeat the same question for wuser similarity matriz, Sy where the element in row i and
column j is the cosine similarity of user i and user j which correspond to row ¢ and row j of
the matrix R. That is, your expression for Sy should also be in terms of some combination
of R, P, and (). Your answer should be an operation on the matrices, in particular you
should not define each coefficient of Sy individually.

Your answer should show how you derived the expressions.

(Note: To make the element-wise square root of a matriz, you may write it as matriz to the
power of % )



CS 246: Mining Massive Data Sets - Problem Set 2 10

(c) [5 points]

The recommendation method using user-user collaborative filtering for user u, can be de-
scribed as follows: for all items s, compute r,, s = X,ecusers Cos-sim(z, u) * R,s and recommend
the k items for which r, , is the largest.

Similarly, the recommendation method using item-item collaborative filtering for user u can
be described as follows: for all items s, compute 7,5 = icitemsuz * cos-sim(x, s) and
recommend the £ items for which r, s is the largest.

Let’s define the recommendation matrix, I', m x n, such that I'(¢, j) = r; ;. Find I" for both
item-item and user-user collaborative filtering approaches, in terms of R, P and Q.

Hint: For the item-item case, I = RQ™Y?RTRQ~'/2.

Your answer should show how you derived the expressions (even for the item-
item case, where we give you the final expression).

(d) [10 points]

In this question you will apply these methods to a real dataset. The data contains information
about TV shows. More precisely, for 9985 users and 563 popular TV shows, we know if a
given user watched a given show over a 3 month period.

Use the dataset from g4/data within the bundle for this problem.

The folder contains:

e user-shows.txt This is the ratings matrix R, where each row corresponds to a user
and each column corresponds to a TV show. R;; = 1 if user 7 watched the show j over
a period of three months. The columns are separated by a space.

e shows.txt This is a file containing the titles of the TV shows, in the same order as
the columns of R.

We will compare the user-user and item-item collaborative filtering recommendations for the
500" user of the dataset. Let’s call him Alex.

In order to do so, we have erased the first 100 entries of Alex’s row in the matrix, and
replaced them by 0s. This means that we don’t know which of the first 100 shows Alex has
watched. Based on Alex’s behaviour on the other shows, we will give Alex recommendations
on the first 100 shows. We will then see if our recommendations match what Alex had in
fact watched.

e Compute the matrices P and Q).

e Using the formulas found in part (c), compute I for the user-user collaborative filtering.
Let S denote the set of the first 100 shows (the first 100 columns of the matrix). From
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all the TV shows in S, which are the five that have the highest similarity scores for
Alex? What are their similarity scores? In case of ties between two shows, choose the
one with smaller index. Do not write the index of the TV shows, write their names
using the file shows.txt.

e Compute the matrix I' for the movie-movie collaborative filtering. From all the TV
shows in S, which are the five that have the highest similarity scores for Alex? In
case of ties between two shows, choose the one with smaller index. Again, hand in the
names of the shows and their similarity score.

What to submit:

(i) Interpretation of T}; and T;; [for 4(a)]

(ii) Expression of S; and Sy in terms of R, P and () and accompanying explanation [for
4(b)]

(iii) Expression of I' in terms of R, P and ) and accompanying explanation [for 4(c)]
(iv) The answer to this question should include the followings: [for 4(d)]

e The five TV shows that have the highest similarity scores for Alex for the user-user
collaborative filtering

e The five TV shows that have the highest similarity scores for Alex for the item-
item collaborative filtering item-item collaborative filtering

e Upload the source code via the SNAP electronic submission website
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