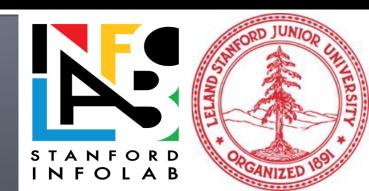
More Stream Mining

Bloom Filters
Sampling Streams
Counting Distinct Items
Computing Moments

Jeffrey D. Ullman
Stanford University/Infolab



Example: Filtering Chunks

- Suppose we have a dataset stored in a distributed file system, spread over many chunks (e.g. blocks of 64MB).
- We want to find a particular value V, looking at as few chunks as possible.
- A Bloom filter on each chunk is a relatively short sequence of bits that provides an answer to the question "is there a value V anywhere in this chunk?"

Filtering Chunks — (2)

- If the Bloom filter says "no," then there definitely is no V there, so we do not have to retrieve this chunk.
- Unfortunately, there can be false positives the Bloom filter says "yes," but there really is no instance of V there.
- We can make the probability of a false positive very low, but at the cost of a larger bit array.

How a Bloom Filter Works

- A Bloom filter is an array of bits, together with a number of hash functions.
- The argument of each hash function is a stream element, and it returns a position in the array.
- Initially, all bits are 0.
- When input x arrives, we set to 1 the bits h(x), for each hash function h.

Example: Bloom Filter

- Use N = 11 bits for our filter.
- Stream elements = integers.
- Use two hash functions:
 - $h_1(x) =$
 - Take odd-numbered bits from the right in the binary representation of x.
 - Treat it as an integer i.
 - Result is i modulo 11.
 - $h_2(x)$ = same, but take even-numbered bits.

Example – Continued

Stream element	h ₁	h ₂	Filter contents oooooooooo
25 = 11001	5	2	00100100000
159 = 1 0 0 1 1 1 1 1	7	0	1 010010 1 000
585 = 1 001001001	9	7	10100101010
			Note: bit 7 was already 1.

Bloom Filter Lookup

- Suppose element y appears in the stream, and we want to know if we have seen y before.
- Compute h(y) for each hash function y.
- If all the resulting bit positions are 1, say we have seen y before.
 - We could be wrong.
 - Different inputs could have set each of these bits.
- If at least one of these positions is 0, say we have not seen y before.
 - We are certainly right.

Example: Lookup

- Suppose we have the same Bloom filter as before, and we have set the filter to 10101101010.
- Lookup element y = 118 = 1110110 (binary).
- $h_1(y) = 14 \text{ modulo } 11 = 3.$
- $h_2(y) = 5 \text{ modulo } 11 = 5.$
- Bit 5 is 1,
- But bit 3 is 0, so we are sure y is not in the set.

Performance of Bloom Filters

- Probability of a false positive depends on the density of 1's in the array and the number of hash functions.
 - = (fraction of 1's)# of hash functions.
- The number of 1's is approximately the number of elements inserted times the number of hash functions.
 - But collisions lower that number slightly.

Throwing Darts

- Turning random bits from 0 to 1 is like throwing d darts at t targets, at random.
- How many targets are hit by at least one dart?
- Probability a given target is hit by a given dart =
 1/t.
- Probability none of d darts hit a given target is (1-1/t)^d.
- Rewrite as $(1-1/t)^{t(d/t)} \sim = e^{-d/t}$.

Example: Throwing Darts

- Suppose we use an array of 1 billion bits, 5 hash functions, and we insert 100 million elements.
- That is, $t = 10^9$, and $d = 5*10^8$.
- The fraction of 0's that remain will be $e^{-1/2} = 0.607$.
- Density of 1's = 0.393.
- Probability of a false positive = $(0.393)^5 = 0.00937$.

Sampling a Stream

What Doesn't Work
Sampling Based on Hash Values
Key- and Value-Components of Data

The Use of Sampling

- Often, we can get a good approximate answer from a sample.
- Example: Frequent itemsets from a sample of baskets.
- If we take a 10% sample of baskets and lower the support threshold by a factor of 10, there is a good chance that an itemset is frequent in the sample iff it is frequent in the whole.

When Sampling Doesn't Work

- Suppose Google would like to examine its stream of search queries for the past month to find out what fraction of them were unique – asked only once.
- But to save time, we are only going to sample 10% of the stream.
- The fraction of unique queries in the sample != the fraction for the stream as a whole.
 - In fact, there is no way to adjust parameters to give the correct answer, as we could for frequent itemsets.

Example: Unique Search Queries

- The length of the sample is 10% of the length of the whole stream.
- Suppose a query is unique.
 - It has a 10% chance of being in the sample.
- Suppose a query occurs exactly twice in the stream.
 - It has an 18% chance of appearing exactly once in the sample.
- And so on ... The fraction of unique queries in the stream is unpredictably large.

Sampling by Value

- My mistake: I sampled based on the position in the stream, rather than the value of the stream element.
- The right way: hash search queries to 10 buckets 0, 1,..., 9.
- Sample = all search queries that hash to bucket 0.
 - All or none of the instances of a query are selected.
 - Therefore the fraction of unique queries in the sample is the same as for the stream as a whole.

Controlling the Sample Size

- Problem: What if the total sample size must be limited?
- Solution: Hash to a large number of buckets.
- Adjust the set of buckets accepted for the sample, so your sample size stays within bounds.

Example: Fixed Sample Size

- Suppose we start our search-query sample at 10%, but we want to limit the size.
- Hash to (say) 100 buckets, 0, 1,..., 99.
 - Take for the sample those elements hashing to buckets 0 through 9.
- If the sample gets too big, get rid of bucket 9.
- Still too big, get rid of 8, and so on.

Sampling Key-Value Pairs

- This technique generalizes to any form of data that we can see as tuples (K, V), where K is the "key" and V is a "value."
- Distinction: We want our sample to be based on picking some set of keys only, not pairs.
 - In the search-query example, the data was "all key."
- Hash keys to some number of buckets.
- Sample consists of all key-value pairs with a key that goes into one of the selected buckets.

Example: Salary Ranges

- Data = tuples of the form (EmpID, Dept, Salary).
- Query: What is the average range of salaries within departments?
- If we sample tuples, we'll get a subset of the salaries for each department.
- We'll likely miss the highest and lowest salaries for a department.
- Thus, the estimate of the range will be biased to the low side.

Salary Ranges – (2)

- The correct way:
- Key = Dept.
- Value = (EmpID, Salary).
- Sample picks some departments, has salaries for all employees of that department, including its min and max salaries.
- Result will be an unbiased estimate of the average salary range.

Counting Distinct Elements

Flajolet-Martin Approximation
Technique
Application to Counting Unions:
Neighborhood Sizes

Counting Distinct Elements

- Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Some Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?).
- How many unique users visited Facebook this month?
- How many different pages link to each of the pages we have crawled.
 - Useful for estimating the PageRank of these pages.
 - Which in turn can tell a crawler which pages are most worth visiting.

Estimating Counts

- Real Problem: what if we do not have space to store the complete set?
 - Or we are trying to count lots of sets at the same time.
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Flajolet-Martin Approach

- Pick a hash function h that maps each of the n elements to at least log₂n bits.
- For each stream element a, let r(a) be the number of trailing 0's in h(a).
 - Called the tail length.
 - Example: 000101 has tail length 0; 101000 has tail length 3.
- Record R = the maximum r(a) seen for any a in the stream.
- Estimate (based on this hash function) = 2^R .

Why It Works

- The probability that a given h(a) ends in at least i 0's is 2^{-i} .
- If there are m different elements, the probability that $R \ge i$ is $1 (1 2^{-i})^m$.

Prob. all h(a)'s end in fewer than *i* o's.

Prob. a given h(a) ends in fewer than *i* o's.

Why It Works — (2)

- Since 2⁻ⁱ is small, 1 $(1-2^{-i})^m \approx 1 e^{-m2^{-i}}$. If 2ⁱ >> m, 1 $e^{-m2^{-i}} \approx 1 (1 m2^{-i}) \approx m/2^i \approx 0$.
- If $2^i << m$, $1 e^{-m2^{-i}} \approx 1$,
- Thus, 2^R will almost always be around m.

First 2 terms of the Taylor expansion of e^{x}

> Same trick as "throwing darts." Multiply and divide m by 2⁻ⁱ.

Why It Doesn't Work

- $E(2^R)$ is, in principle, infinite.
 - Probability of \geq R 0's halves when $R \rightarrow R+1$, but value of 2^R doubles.
- Workaround involves using many hash functions and getting many samples.
- How are samples combined?
 - Average? What if one very large value?
 - Median? All values are a power of 2.

Solution

- Partition your samples into small groups.
 - O(log n), where n = size of universal set, suffices.
- Take the average within each group.
- Then take the median of the averages.

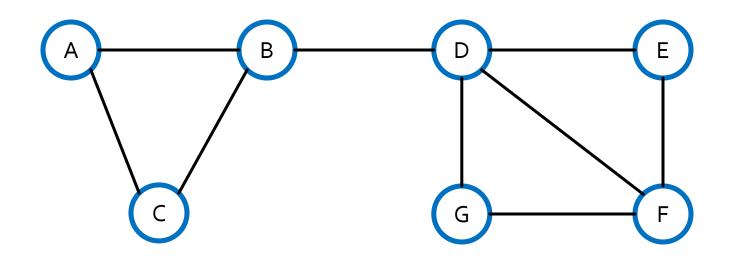
Application: Neighborhoods

Neighborhood of Distance d Recursive Algorithm for Neighborhoods Approximate Neighborhood Count

Neighbors and Neighborhoods

- If there is an edge between nodes u and v, then u is a neighbor of v and vice-versa.
- The neighborhood of node u at distance d is the set of all nodes v such that there is a path of length at most d from u to v.
 - Denoted n(u,d).
- Notice that if there are N nodes in a graph, then n(u,N-1) = n(u,N) = n(u,N+1) = ... = all nodes reachable from u.

Example: Neighborhoods



Why Neighborhoods?

- The sizes of neighborhoods of small distance measure the "influence" a person has in a social network.
 - Note it is the size of the neighborhood, not the exact members of the neighborhood that is important here.

Algorithm for Finding Neighborhoods

- n(u,0) = {u} for every u.
- n(u,d) is the union of n(v, d-1) taken over every neighbor v of u.
- Not really feasible for large graphs, since the neighborhoods get large, and taking the union requires examining the neighborhood of each neighbor.
 - To eliminate duplicates.
- Note: Another approach where we take the union of neighbors of members of n(u, d-1) presents similar problems.

Approximate Algorithm for Neighborhood Sizes

- The idea behind Flajolet-Martin lets you estimate the number of distinct elements in the union of several sets.
- Pick several hash functions; let h be one.
- For each node u and distance d compute the maximum tail length among all nodes in n(u,d), using hash function h.

Approximate Algorithm – (2)

- Remember: if R is the maximum tail length in a set of values, then 2^R is an estimate of the number of distinct elements in the set.
- Since n(u,d) is u plus the union of all neighbors v of u of n(v,d-1), the maximum tail length of members of n(u,d) is the largest of
 - 1. The tail length of h(u), and
 - 2. The maximum tail length for all the members of n(v,d-1) for any neighbor v of u.

Approximate Algorithm – (3)

- Thus, we have a recurrence (on d) for the maximum tail length of any neighbor of any node u, using any given hash function h.
- Repeat for some chosen number of hash functions.
- Combine estimates to get an estimate of neighborhood sizes, as for the Flajolet-Martin algorithm.
- And voila! You have an efficient algorithm for estimating the size of each node's neighborhood.

Moments

Surprise Numbers AMS Algorithm

Generalization: Moments

- Suppose a stream has elements chosen from a set of n values.
- Let m_i be the number of times value i occurs.
- The k^{th} moment of the stream is the sum of $(m_i)^k$ over all i.

Special Cases

- 0th moment = number of different elements in the stream.
 - The problem just considered.
- 1st moment = sum of counts of the numbers of elements = length of the stream.
 - Easy to compute.
- 2nd moment = surprise number = a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100; 11 values appear.
- Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9. Surprise $\# = 10^2 + 10^*9^2 = 910$.
- Surprising: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1. Surprise $\# = 90^2 + 10^*1^2 = 8,110$.

AMS Method

- Works for all moments; gives an unbiased estimate.
- We'll talk about only the 2nd moment.
- Based on calculation of many random variables
 X.
 - Each requires a count in main memory, so number is limited.

One Random Variable

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream.
- X = n * (twice the number of a's in the stream starting at the chosen time) 1).
 - Note: store n once, store count of a's for each X.

Expected Value of X

- 2nd moment is $\Sigma_a(m_a)^2$.
- $E(X) = (1/n)(\Sigma_{\text{all times }t}n * \text{ (twice the number)}$ of times the stream element at time t appears from that time on) -1).

$$= \sum_{\alpha} (1/n)(n)(1+3+5+...+2m_{\alpha}-1).$$

$$= \sum_{\alpha} (m_{\alpha})^{2}.$$
Time 1

Group times by the value seen

Time when Time when Time when the first a penultimate the last a is seen *a* is seen is seen

Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n changes; it is the number of inputs seen so far.

Fixups

- The variables X have n as a factor keep n separately; just hold the count in X.
- 2. Suppose we can only store k counts. We cannot have one random variable X for each start-time, and must throw out some start-times as we read the stream.
 - Objective: each starting time t is selected with probability k/n.

Solution to (2)

- Choose the first k times for k variables.
- When the n^{th} element arrives (n > k), choose it with probability k/n.
- If you choose it, throw one of the previously stored variables out, with equal probability.
- Probability of each of the first n-1 positions being chosen:

Final Remarks

- Thus, each variable has the second moment as its expected value.
- Use many (e.g., 100) such variables.
- Combine them as for Flajolet-Martin: average of groups of size O(log n), and then take the median of the averages.