Bloom Filters

Sampling Streams
Counting Distinct Items
Computing Moments

Example: Filtering Chunks

Suppose we have a dataset stored in a
distributed file system, spread over many
chunks (e.g. blocks of 64MB).

We want to find a particular value V, looking at
as few chunks as possible.

A Bloom filter on each chunk is a relatively
short sequence of bits that provides an answer
to the question “is there a value V anywhere in
this chunk?”

Filtering Chunks — (2)

If the Bloom filter says “no,” then there
definitely is no V there, so we do not have to
retrieve this chunk.

Unfortunately, there can be false positives — the
Bloom filter says “yes,” but there really is no
instance of V there.

We can make the probability of a false positive
very low, but at the cost of a larger bit array.

How a Bloom Filter Works

A Bloom filter is an array of bits, together with a
number of hash functions.

The argument of each hash function is a stream
element, and it returns a position in the array.
Initially, all bits are O.

When input x arrives, we set to 1 the bits h(x),
for each hash function h.

Example: Bloom Filter

Use N = 11 bits for our filter.

Stream elements = integers.

Use two hash functions:

. h1(X) =
Take odd-numbered bits from the right in the binary
representation of x.
Treat it as an integer .

Result is i modulo 11.

= h,(x) = same, but take even-numbered bits.

Example — Continued

Stream .
h, h, Filter contents
element
00000000000
25 =11001 5 2 00100100000
159 = 10011111 7 o) 10100101000
585 =1001001001 g 7 10100101010

/

Note: bit 7 was already 1.

Bloom Filter Lookup

Suppose element y appears in the stream, and
we want to know if we have seen y before.
Compute h(y) for each hash function .

If all the resulting bit positions are 1, say we
have seen y before.

= We could be wrong.

Different inputs could have set each of these bits.
If at least one of these positions is 0, say we
have not seen y before.

= We are certainly right.

Example: Lookup

Suppose we have the same Bloom filter as
before, and we have set the filter to
10101(201010.

Llookup element y =118 =1110110 (binary).
n,(y) = 14 modulo 11 = 3.

n,(y) =5 modulo 11 = 5.

Bit5is 1,

But bit 3 is 0, so we are sure y is not in the set.

Performance of Bloom Filters

Probability of a false positive depends on the
density of 1's in the array and the number of

hash functions.

- (fraction of 1'5)# of hash functions.
The number of 1’s is approximately the number
of elements inserted times the number of hash

functions.
= But collisions lower that number slightly.

Throwing Darts

Turning random bits from 0 to 1 is like throwing
d darts at t targets, at random.

How many targets are hit by at least one dart?
Probability a given target is hit by a given dart =
1/t.

Probability none of d darts hit a given target is
(1-1/t)C.

Rewrite as ([1-1/t)t{d/t) ~= g-d/t,

/

~=1fe

Example: Throwing Darts

Suppose we use an array of 1 billion bits, 5 hash
functions, and we insert 100 million elements.
Thatis, t = 10°, and d = 5*103.

The fraction of 0’s that remain will be e'1/2=
0.607.

Density of 1’s = 0.393.

Probability of a false positive = (0.393)° =
0.00937.

Sampling a Stream

What Doesn’t Work
Sampling Based on Hash Values
Key- and Value-Components of Data

The Use of Sampling

Often, we can get a good approximate answer
from a sample.

Example: Frequent itemsets from a sample of
baskets.

If we take a 10% sample of baskets and lower
the support threshold by a factor of 10, there is
a good chance that an itemset is frequent in the
sample iff it is frequent in the whole.

When Sampling Doesn’t Work

Suppose Google would like to examine its stream
of search queries for the past month to find out
what fraction of them were unique — asked only
once.

But to save time, we are only going to sample
10% of the stream.

The fraction of unique queries in the sample I=
the fraction for the stream as a whole.

" |n fact, there is no way to adjust parameters to give the
correct answer, as we could for frequent itemsets.

Example: Unique Search Queries

The length of the sample is 10% of the length of
the whole stream.
Suppose a query is unique.

" |t has a 10% chance of being in the sample.

Suppose a query occurs exactly twice in the

stream.

= |t has an 18% chance of appearing exactly once in
the sample.

And so on ... The fraction of unique queries in

the stream is unpredictably large.

Sampling by Value

My mistake: | sampled based on the position
in the stream, rather than the value of the
stream element.

The right way: hash search queries to 10
buckets O, 1,..., 9.

Sample = all search queries that hash to
bucket O.
= All or none of the instances of a query are selected.

= Therefore the fraction of unique queries in the
sample is the same as for the stream as a whole.

Controlling the Sample Size

Problem: What if the total sample size must be
limited?

Solution: Hash to a large number of buckets.
Adjust the set of buckets accepted for the
sample, so your sample size stays within
bounds.

Example: Fixed Sample Size

Suppose we start our search-query sample at
10%, but we want to limit the size.
Hash to (say) 100 buckets, 0O, 1,..., 99.

= Take for the sample those elements hashing to
buckets 0 through 9.

If the sample gets too big, get rid of bucket 9.
Still too big, get rid of 8, and so on.

Sampling Key-Value Pairs

This technique generalizes to any form of data
that we can see as tuples (K, V), where K is the
“key” and V is a “value.”

Distinction: We want our sample to be based on
picking some set of keys only, not pairs.

" |n the search-query example, the data was “all key.”
Hash keys to some number of buckets.

Sample consists of all key-value pairs with a key
that goes into one of the selected buckets.

Example: Salary Ranges

Data = tuples of the form (EmplID, Dept, Salary).
Query: What is the average range of salaries
within departments?

If we sample tuples, we’ll get a subset of the
salaries for each department.

We'll likely miss the highest and lowest salaries
for a department.

Thus, the estimate of the range will be biased to

the low side.

Salary Ranges — (2)

The correct way:

Key = Dept.

Value = (EmplD, Salary).

Sample picks some departments, has salaries
for all employees of that department, including
its min and max salaries.

Result will be an unbiased estimate of the
average salary range.

Counting Distinct Elements

Flajolet-Martin Approximation
Technique

Application to Counting Unions:
Neighborhood Sizes

Counting Distinct Elements

Problem: a data stream consists of elements
chosen from a set of size n. Maintain a count
of the number of distinct elements seen so far.
Obvious approach: maintain the set of
elements seen.

Some Applications

How many different words are found among
the Web pages being crawled at a site?

= Unusually low or high numbers could indicate
artificial pages (spam?).

How many unique users visited Facebook this

month?

How many different pages link to each of the

pages we have crawled.
= Useful for estimating the PageRank of these pages.

Which in turn can tell a crawler which pages are most
worth visiting.

Estimating Counts

Real Problem: what if we do not have space to

store the complete set?
= Or we are trying to count lots of sets at the same

time.
Estimate the count in an unbiased way.

Accept that the count may be in error, but limit
the probability that the error is large.

Flajolet-Martin Approach

Pick a hash function h that maps each of the n
elements to at least log,n bits.

For each stream element q, let r(a) be the
number of trailing O’s in h(a).

= Called the tail length.

= Example: 000101 has tail length 0; 101000 has tail
length 3.

Record R = the maximum r(a) seen for any a in
the stream.
Estimate (based on this hash function) = 2-.

The probability that a given h(a) ends in at
least i O’s is 2.

If there are m different elements, the
probability that R > iis 1 — (1 - 2)™.

/

Prob. all h(a)’s Prob. a given h(a)

end in fewerthan endsin fewer than
| O's. | O's.

Why It Works — (2)

Since 27is small, 1 - (1-27)™ = 1 - em2

f2i>>m,1-em ~ 1-(1-m27) ~m/2=0.
f2i<<m,1-em' ~1
Thus, 2% will almast always be around m.

First 2 terms of the
Taylor expansion of e

Same trick as “throwing darts.”
Multiply and divide m by 2.

28

Why It Doesn’t Work

E(2F) is, in principle, infinite.

= Probability of > R 0’s halves when R -> R+1, but value
of 2R doubles.

Workaround involves using many hash functions
and getting many samples.

How are samples combined?

= Average? What if one very large value?

= \Median? All values are a power of 2.

Partition your samples into small groups.

* O(log n), where n = size of universal set, suffices.
Take the average within each group.
Then take the median of the averages.

Application:Neighborhoods

Neighborhood of Distance d
Recursive Algorithm for Neighborhoods
Approximate Neighborhood Count

Neighbors and Neighborhoods

If there is an edge between nodes u and v, then
uis a neighbor of v and vice-versa.

The neighborhood of node u at distance d is the
set of all nodes v such that there is a path of
length at most d from u to v.

= Denoted n(u,d).

Notice that if there are N nodes in a graph, then
n(u,N-1) = n(u,N) = n(u,N+1) = ... = all nodes
reachable from u.

Example: Neighborhoods

n(E,o0) = {E}
n(E,1) = {D,E,F}

n(E,2) = {B,D,E,F,G}
n(E,3) = {A,B,C,D,E,F,G}

Why Neighborhoods?

The sizes of neighborhoods of small distance

measure the “influence” a person has in a social
network.

= Note it is the size of the neighborhood, not the exact

members of the neighborhood that is important
here.

Algorithm for Finding Neighborhoods

n(u,0) = {u} for every u.

n(u,d) is the union of n(v, d-1) taken over every
neighbor v of u.

Not really feasible for large graphs, since the
neighborhoods get large, and taking the union
requires examining the neighborhood of each
neighbor.

= To eliminate duplicates.

Note: Another approach where we take the
union of neighbors of members of n(u, d-1)
presents similar problemes.

Approximate Algorithm
Neighborhood Sizes

The idea behind Flajolet-Martin lets you
estimate the number of distinct elements in the
union of several sets.

Pick several hash functions; let h be one.

For each node u and distance d compute the

maximum tail length among all nodes in n(u,d),
using hash function h.

Approximate Algorithm — (2)

. if R is the maximum tail length in a
set of values, then 2R is an estimate of the
number of distinct elements in the set.

Since n(u,d) is u plus the union of all neighbors
v of u of n(v,d-1), the maximum tail length of
members of n(u,d) is the largest of

1. The tail length of h(u), and

2. The maximum tail length for all the members of
n(v,d-1) for any neighbor v of u.

Approximate Algorithm — (3)

Thus, we have a recurrence (on d) for the
maximum tail length of any neighbor of any node
u, using any given hash function h.

Repeat for some chosen number of hash
functions.

Combine estimates to get an estimate of
neighborhood sizes, as for the Flajolet-Martin
algorithm.

And voila! You have an efficient algorithm for
estimating the size of each node’s neighborhood.

Moments

Surprise Numbers
AMS Algorithm

Generalization: Moments

Suppose a stream has elements chosen from a
set of n values.

Let m; be the number of times value i occurs.
The k' moment of the stream is the sum of
(m.)* over all J.

Special Cases

0" moment = number of different elements in
the stream.

"= The problem just considered.

1 moment = sum of counts of the numbers of
elements = length of the stream.

= Easy to compute.

2"d moment = surprise number = a measure of
how uneven the distribution is.

Example: Surprise Number

Stream of length 100; 11 values appear.
Unsurprising: 10,9,9,9,9,9,9,9,9, 9, 9.
Surprise # = 10% + 10*92 = 910.
Surprising:90,1,1,1,1,1,1,1,1, 1, 1.
Surprise # =902 + 10*12 = 8,110.

AMS Method

Works for all moments; gives an unbiased
estimate.

We’ll talk about only the 2" moment.
Based on calculation of many random variables
X.

= Each requires a count in main memory, so number is
limited.

One Random Variable

Assume stream has length n.

Pick a random time to start, so that any time is
equally likely.

Let the chosen time have element a in the
stream.

X =n* ((twice the number of d’s in the stream
starting at the chosen time) — 1).

= Note: store n once, store count of a’s for each X.

Expected Value of X

2"d momentis 2 _(m)2.

E(X) = (1/n)(Z, imee . 1 * (twice the number
of times:the stream element at time t

appears from-that time on) — 1).
=2 (1/n)(n)(1+345+...+2m -1).

72 (m2 T

Time when Time when Time when

the last penultimate the first

Group times i< seen IS seen
by the value

seen

IS seen

Problem: Streams Never End

We assumed there was a number n, the
number of positions in the stream.

But real streams go on forever, so n changes; it
is the number of inputs seen so far.

The variables X have n as a factor — keep n
separately; just hold the countin X.
Suppose we can only store k counts. We
cannot have one random variable X for each
start-time, and must throw out some start-
times as we read the stream.

Objective: each starting time t is selected with
probability k/n.

Solution to (2)

Choose the first k times for k variables.

When the nth element arrives (n > k), choose it
with probability k/n.

If you choose it, throw one of the previously
stored variables out, with equal probability.
Probability of each of the first n-1 positions
being chosen:

(n-k)/n * k/(n-1) + k/n * k/(n-1) * (k-1)/k = k/n

/ T T T \

n-th position Previously n-th position Previously Survives
not chosen chosen chosen chosen

Final Remarks

Thus, each variable has the second moment as
its expected value.

Use many (e.g., 100) such variables.

Combine them as for Flajolet-Martin: average of

groups of size O(log n), and then take the
median of the averages.

