Mining Data Streams

The Stream Model
Sliding Windows
Counting 1's
Exponentially Decaying Windows

Jeffrey D. Ullman
Stanford University/Infolab

Data Management Vs. Stream Management

- In a DBMS, input is under the control of the owner.
 - SQL INSERT commands or bulk loaders.
- Stream management is important when the input rate is controlled externally.
 - Example: Google search queries.
 - Example: Amazon loves to get orders for products, but does not control when they come in.
 - Example: Satellites send down images, often petabytes/day.
 - More predictable, but too much to deal with efficiently.

The Stream Model

- Input tuples enter at a rapid rate, at one or more input ports.
- The system cannot store the entire stream accessibly.
- How do you make critical calculations about the stream using a limited amount of (primary or even secondary) memory?

Two Forms of Query

- 1. Ad-hoc queries: Normal queries asked one time about streams.
 - Example: What is the maximum value seen so far in stream S?
- Standing queries: Queries that are, in principle, asked about the stream at all times.
 - Example: Report each new maximum value ever seen in stream S.

Applications

- Mining query streams.
 - Google wants to know what queries are more frequent today than yesterday.
- Mining click streams.
 - Yahoo! wants to know which of its pages are getting an unusual number of hits in the past hour.
 - Often caused by annoyed users clicking on a broken page.
- IP packets can be monitored at a switch.
 - Gather information for optimal routing.
 - Detect denial-of-service attacks.

Sliding Windows

- A useful model of stream processing is that queries are about a window of length N – the N most recent elements received.
- Interesting case: N is so large it cannot be stored in main memory.
 - Or, there are so many streams that windows for all do not fit in main memory.

qwertyuiopa<mark>sdfghj</mark>klzxcvbnm qwertyuiopas dfghjk lzxcvbnm q w e r t y u i o p a s d f g h j k l z x c v b n m qwertyuiopasdfghjklzxcvbnm Past **Future**

Example: Averages

- Stream of integers, window of size N.
- Standing query: what is the average of the integers in the window?
- For the first N inputs, sum and count to get the average.
- Afterward, when a new input i arrives, change the average by adding (i - j)/N, where j is the oldest integer in the window before i arrived.
- Good: O(1) time per input.
- Bad: Requires the entire window in main memory.

Counting 1's

Approximating Counts
Exponentially Growing Blocks
DGIM Algorithm

Approximate Counting

- You can show that if you insist on an exact sum or count of the elements in a window, you cannot use less space than the window itself.
- But if you are willing to accept an approximation, you can use much less space.
- We'll consider first the simple case of counting bits.

Counting Bits

- Problem: given a stream of 0's and 1's, be prepared to answer queries of the form "how many 1's in the most recent k bits?" where k ≤ N.
- Obvious solution: store the most recent N bits.
- But answering the query will take O(k) time.
 - Very possibly too much time.
- And the space requirements can be too great.
 - Especially if there are many streams to be managed in main memory at once, or N is huge.

Example: Bit Counting

- Count recent hits on URL's belonging to a site.
- Stream is a sequence of URL's.
- Window size N = 1 billion.
- Think of the data as many streams one for each URL.
- Bit on the stream for URL x is 0 unless the actual stream has x.

DGIM Method

- Name refers to the inventors:
 - Datar, Gionis, Indyk, and Motwani.
- Store only O(log²N) bits per stream.
 - N = window size.
- Gives approximate answer, never off by more than 50%.
 - Error factor can be reduced to any $\varepsilon > 0$, with more complicated algorithm and proportionally more stored bits, but the same $O(\log^2 N)$ space regirement.

Timestamps

- Each bit in the stream has a timestamp, starting
 0, 1, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in O(log₂N) bits.

Buckets

- A bucket is a segment of the window ending with a 1; it is represented by a record consisting of:
 - 1. The timestamp of its end [O(log N) bits].
 - 2. The number of 1's between its beginning and end.
 - Number of 1's = size of the bucket.
- Constraint on bucket sizes: number of 1's must be a power of 2.
 - Thus, only O(log log N) bits are required for this count.

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1's.
- Buckets do not overlap.
- Every 1 is in one bucket; 0's may or may not be in a bucket.
- Buckets are sorted by size.
 - Older buckets are not smaller than newer buckets.
- Buckets disappear when their end-time is > N
 time units in the past.

Example: Bucketized Stream

Updating the Set of Buckets

- When a new bit comes in, drop the last (oldest) bucket if its end-time is prior to N time units before the current time.
- If the current bit is 0, no other changes are needed.

Updating Buckets: Input = 1

- If the current bit is 1:
 - 1. Create a new bucket of size 1, for just this bit.
 - End timestamp = current time.
 - 2. If there are now three buckets of size 1, combine the oldest two into a bucket of size 2.
 - 3. If there are now three buckets of size 2, combine the oldest two into a bucket of size 4.
 - 4. And so on ...

Example: Managing Buckets

Querying

- To estimate the number of 1's in the most recent k ≤ N bits:
 - Restrict your attention to only those buckets whose end time stamp is at most k bits in the past.
 - 2. Sum the sizes of all these buckets but the oldest.
 - 3. Add half the size of the oldest bucket.
- Remember: we don't know how many 1's of the last bucket are still within the window.

Error Bound

- Suppose the oldest bucket within range has size
 2ⁱ.
- Then by assuming 2^{i-1} of its 1's are still within the window, we make an error of at most 2^{i-1} .
- Since there is at least one bucket of each of the sizes less than 2ⁱ, and at least 1 from the oldest bucket, the true sum is no less than 2ⁱ.
- Thus, error at most 50%.
- Question for thought: Is the assumption 2^{i-1} 1's are still within the window the way to minimize maximum error?

Space Requirements

- We can represent one bucket in O(log N) bits.
 - It's just a timestamp needing log N bits and a size, needing log log N bits.
- No bucket can be of size greater than N.
- There are at most two buckets of each size 1, 2, 4, 8,...
- That's at most log N different sizes, and at most
 2 of each size, so at most 2log N buckets.

Question for Thought

- Suppose the input stream is integers in the range 0 to M, and our goal is to estimate the sum of the last k elements in the window of size N.
- How would you take advantage of the DGIM idea to save space?

Exponentially Decaying Windows

Efficient Maintenance of E.D.W.'s Application to Frequent Itemsets

Exponenially Decaying Windows

- Viewpoint: what is important in a stream is not just a finite window of most recent elements.
 - But all elements are not equally important; "old" elements less important than recent ones.
- Pick a constant c << 1 and let the "weight" of the i-th most recent element to arrive be proportional to (1-c)ⁱ.

Numerical Streams

- Common case: elements are numerical, with a arriving at time i.
- The stream has a value at time t: $\Sigma_{i < t} a_i (1-c)^{t-i}$.
- Example: are we in a rainy period?
 - $a_i = 1$ if it rained on day i; 0 if not.
 - c = 0.1.
- If it rains every day, the value of the sum is $1+.9+(.9)^2+... = 1/c = 10$.
- Value will be higher if the recent days have been rainy than if it rained long ago.

Maintaining the Stream Value

- Exponentially decaying windows make it easy to maintain this sum.
- When a new element x arrives:
 - 1. Multiply the previous value by 1-c.
 - Has the effect of devaluing every previous element by factor (1-c).
 - 2. Add x.

Maintaining Frequent Itemsets

- Imagine many streams, each Boolean, each representing the occurrence of one element.
- Example: sales of items.
 - One stream for each item.
 - Stream has a 1 when an instance of that item is sold.
- Special assumption: streams arrive synchronously, so at any time instance, we can view the set of items whose streams have 1 as a "basket."

Maintaining Frequent Itemsets

- Frequency of an item can be represented by the "value" of its stream in the decaying-window sense.
- Frequency of an itemset can be measured similarly by imagining there is a stream that has 1 if and only if all its items appear at a given time.
- But there are too many itemsets to maintain a value for every possible itemset.

A-Priori-Like Approach

- Take the support threshold s to be 1/2.
 - I.e., count a set only when the value of its stream is at least 1/2.
- Start by counting only the singleton items that are above threshold.
- Then, start counting a set when it occurs at time t, provided all of its immediate subsets were already being counted (before time t).
- Question for thought: Why not choose s = 1?
 Or s = 2?

Processing at Time t

- 1. Suppose set of items S are all the items sold at time t.
- 2. Multiply the value for each itemset being counted by (1-c).
- 3. Add 1 to the values for every set $T \subseteq S$, such that either:
 - T is a singleton, or
 - Every immediate subset of T was being counted at time t-1.
- 4. Drop any values < 1/2.