The Stream Model

Sliding Windows

Counting 1's

Exponentially Decaying Windows

Data Management Vs. Stream Management

In a DBMS, input is under the control of the
ownetr.

= SQL INSERT commands or bulk loaders.

Stream management is important when the
input rate is controlled externally.

- : Google search queries.

= Example: Amazon loves to get orders for products,
but does not control when they come in.

= Example: Satellites send down images, often
petabytes/day.

More predictable, but too much to deal with efficiently.

The Stream Model

Input tuples enter at a rapid rate, at one or

more input ports.
The system cannot store the entire stream

accessibly.

How do you make critical calculations about the
stream using a limited amount of (primary or
even secondary) memory?

Two Forms of Query

Ad-hoc queries: Normal queries asked one
time about streams.

o : What is the maximum value seen so
far in stream S?

Standing queries: Queries that are, in
principle, asked about the stream at all
times.

- : Report each new maximum value ever
seen in stream S.

...1,5,2,7,0,9,3
. alrIVItIYIth

...0,0,1,0,1,1,0

time
_—

Streams Entering

Ad-Hoc

Queries
Standing
Queries Output
N >
Processor
-
N
Limited ~
Working
Storage Archival
_/ Storage

~

Applications

Mining query streams.

= Google wants to know what queries are more
frequent today than yesterday.
Mining click streams.

= Yahoo! wants to know which of its pages are getting
an unusual number of hits in the past hour.

Often caused by annoyed users clicking on a broken page.
IP packets can be monitored at a switch.

= Gather information for optimal routing.
= Detect denial-of-service attacks.

Sliding Windows

A useful model of stream processing is that
gueries are about a window of length N—the N
most recent elements received.

Interesting case: N is so large it cannot be
stored in main memory.

" Or, there are so many streams that windows for all
do not fit in main memory.

qwertyuiopalsdfghjklzxcvbnm

qwertyuiopasldfghjklzxcvbnm

gqwertyuiopasdfghjklizxcvbnm

gwertyuiopasdfijghjklzxcvbnm

«—— Past Future

Example: Averages

Stream of integers, window of size N.

Standing query: what is the average of the
integers in the window?

For the first N inputs, sum and count to get the
average.

Afterward, when a new input j arrives, change the
average by adding (i - j)/N, where j is the oldest
integer in the window before i arrived.

Good: O(1) time per input.

Bad: Requires the entire window in main memory.

Counting 1's

Approximating Counts
Exponentially Growing Blocks
DGIM Algorithm

Approximate Counting

You can show that if you insist on an exact sum
or count of the elements in a window, you
cannot use less space than the window itself.
But if you are willing to accept an
approximation, you can use much less space.

We'll consider first the simple case of counting
bits.

Counting Bits

: given a stream of O’s and 1’s, be
prepared to answer queries of the form “how
many 1’s in the most recent k bits?” where
k < N.

. store the most recent N bits.
But answering the query will take O(k) time.

= Very possibly too much time.
And the space requirements can be too great.

= Especially if there are many streams to be managed
in main memory at once, or N is huge.

Example: Bit Counting

Count recent hits on URL’s belonging to a site.
Stream is a sequence of URL's.

Window size N = 1 billion.

Think of the data as many streams — one for
each URL.

Bit on the stream for URL x is O unless the
actual stream has x.

DGIM Method

Name refers to the inventors:

= Datar, Gionis, Indyk, and Motwani.

Store only O(log?N) bits per stream.

= N = window size.

Gives approximate answer, never off by more

than 50%.

= Error factor can be reduced to any € > 0, with more
complicated algorithm and proportionally more
stored bits, but the same O(log?N) space regirement.

Each bit in the stream has a timestamp, starting
0,1,..

Record timestamps modulo N (the window
Ssize), SO we can represent any

timestamp in O(log,N) bits.

A bucket is a segment of the window ending
with a 1, it is represented by a record
consisting of:

1. The timestamp of its end [O(log N) bits].

2. The number of 1’s between its beginning and end.
Number of 1's = size of the bucket.
: hnumber of 1’s must

be a power of 2.

= Thus, only O(log log N) bits are required for this
count.

Representing a Stream by Buckets

Either one or two buckets with the same
power-of-2 number of 1’s.

Buckets do not overlap.

Every 1 is in one bucket; 0’s may or may not be
in a bucket.

Buckets are sorted by size.

= Older buckets are not smaller than newer buckets.
Buckets disappear when their end-time is > N
time units in the past.

Example: Bucketized Stream

At least 1 of 2 of 2 of 1of 20f
size 16. Partially size 8 size 4 size2 size1

beyond window. /\ /\ \

100101011000101101010101010101310101010101011301010103110103000103110010

A

v

N

18

Updating the Set of Buckets

When a new bit comes in, drop the last (oldest)
oucket if its end-time is prior to N time units
oefore the current time.

f the current bit is 0, no other changes are
needed.

Updating Buckets: Input = 1

If the current bit is 1:
1. Create a new bucket of size 1, for just this bit.

End timestamp = current time.

2. If there are now three buckets of size 1, combine
the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2, combine
the oldest two into a bucket of size 4.

4. Andsoon..

Example: Managing Buckets

Initial

‘1001010110001011010101010101011010101010101110101010111010100blOBlO&LO

1 arrives; makes third block of size 1.

‘001010110001011010101010101011010101010101110101010kllOlOlOOOlOl O&i&l

Combine the oldest two 1's into a 2.

‘00101011000101101010101010101101010101010111010101011101010001011001£1

Later, 1, 0, 1 arrive. Now we have 3 1's again.

010110001011010101010101011010101010101110101010111010100 10‘100'$[h&£
Combine the oldest two 1's into a 2.

‘O10110001011010101010101011010101010101110101010%1101010001011001011$L

The effect ripples all the way to a 16.

‘010110001011C1010101010101101010101010111010101011101010001011001011£h

21

To estimate the number of 1’s in the most
recent k < N bits:

1. Restrict your attention to only those buckets
whose end time stamp is at most k bits in the past.

2. Sum the sizes of all these buckets but the oldest.

3. Add half the size of the oldest bucket.
Remember: we don’t know how many 1’s of
the last bucket are still within the window.

Suppose the oldest bucket within range has size
2.

Then by assuming 2/-1 of its 1’s are still within the
window, we make an error of at most 2/-1.

Since there is at least one bucket of each of the
sizes less than 2/, and at least 1 from the oldest
bucket, the true sum is no less than 2'.

Thus, error at most 50%.

Question for thought: Is the assumption 2/ 1’s
are still within the window the way to minimize
maximum error?

Space Requirements

We can represent one bucket in O(log N) bits.

= |t's just a timestamp needing log N bits and a size,
needing log log N bits.

No bucket can be of size greater than N.

There are at most two buckets of each size 1, 2,
4,8,...

That’s at most log N different sizes, and at most
2 of each size, so at most 2log N buckets.

Question for Thought

Suppose the input stream is integers in the range
0 to M, and our goal is to estimate the sum of
the last k elements in the window of size N.

How would you take advantage of the DGIM idea
to save space?

Exponentially Decaying
Windows

Efficient Maintenance of E.D.W.’s
Application to Frequent Itemsets

Exponenially Decaying Windows

Viewpoint: what is important in a stream is not
just a finite window of most recent elements.

= But all elements are not equally important; “old”
elements less important than recent ones.

Pick a constant c << 1 and let the “weight” of
the i-th most recent element to arrive be
proportional to (1-c)'.

Weight decays
exponentially

I —— S

Now
Time =2

Numerical Streams

Common case: elements are numerical, with a.
arriving at time 1.

The stream has a value at time t: X._, a.,(1-c)*".
Example: are we in a rainy period?

= a.=1ifit rained on day i; O if not.

= c=0.1.

If it rains every day, the value of the sum is
1+.94(.9)%+... = 1/c = 10.

Value will be higher if the recent days have
been rainy than if it rained long ago.

Maintaining the Stream Value

Exponentially decaying windows make it easy to
maintain this sum.

When a new element x arrives:

1. Multiply the previous value by 1-c.

Has the effect of devaluing every previous element by
factor (1-c).

2. Add x.

Maintaining Frequent Itemsets

Imagine many streams, each Boolean, each
representing the occurrence of one element.
Example: sales of items.

= One stream for each item.
Stream has a 1 when an instance of that item is sold.

Special assumption: streams arrive
synchronously, so at any time instance, we can
view the set of items whose streams have 1 as a
“basket.”

30

Maintaining Frequent Itemsets

Frequency of an item can be represented by the
“value” of its stream in the decaying-window
sense.

Frequency of an itemset can be measured
similarly by imagining there is a stream that has
1 if and only if all its items appear at a given
time.

But there are too many itemsets to maintain a
value for every possible itemset.

A-Priori-Like Approach

Take the support threshold s to be 1/2.

" |.e., count a set only when the value of its streamis
at least 1/2.

Start by counting only the singleton items that
are above threshold.

Then, start counting a set when it occurs at
time t, provided all of its immediate subsets
were already being counted (before time t).
Question for thought: Why not choose s =17
Ors=27?

Processing at Time t

Suppose set of items S are all the items sold at
time t.

Multiply the value for each itemset being
counted by (1-c).

Add 1 to the values for every set T — S, such
that either:

T is a singleton, or

Every immediate subset of T was being counted at
time t-1.
Drop any values < 1/2.

