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 In a DBMS, input is under the control of the 
owner. 

 SQL INSERT commands or bulk loaders. 

 Stream management is important when the 
input rate is controlled externally. 

 Example: Google search queries. 

 Example: Amazon loves to get orders for products, 
but does not control when they come in. 

 Example: Satellites send down images, often 
petabytes/day. 

 More predictable, but too much to deal with efficiently. 
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 Input tuples enter at a rapid rate, at one or 
more input ports. 

 The system cannot store the entire stream 
accessibly. 

 How do you make critical calculations about the 
stream using a limited amount of (primary or 
even secondary) memory? 
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1. Ad-hoc queries: Normal queries asked one 
time about streams. 

 Example: What is the maximum value seen so 
far in stream S? 

2. Standing queries: Queries that are, in 
principle, asked about the stream at all 
times. 

 Example: Report each new maximum value ever 
seen in stream S. 
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 Mining query streams. 

 Google wants to know what queries are more 
frequent today than yesterday. 

 Mining click streams. 

 Yahoo! wants to know which of its pages are getting 
an unusual number of hits in the past hour. 

 Often caused by annoyed users clicking on a broken page. 

 IP packets can be monitored at a switch. 

 Gather information for optimal routing. 

 Detect denial-of-service attacks. 
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 A useful model of stream processing is that 
queries are about a window of length N – the N 
most recent elements received. 

 Interesting case: N is so large it cannot be 
stored in main memory. 

 Or, there are so many streams that windows for all 
do not fit in main memory. 
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 Stream of integers, window of size N. 
 Standing query: what is the average of the 

integers in the window? 
 For the first N inputs, sum and count to get the 

average. 
 Afterward, when a new input i arrives, change the 

average by adding (i - j)/N, where j is the oldest 
integer in the window before i arrived. 

 Good: O(1) time per input. 
 Bad: Requires the entire window in main memory. 
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 You can show that if you insist on an exact sum 
or count of the elements in a window, you 
cannot use less space than the window itself. 

 But if you are willing to accept an 
approximation, you can use much less space. 

 We’ll consider first the simple case of counting 
bits. 
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 Problem: given a stream of 0’s and 1’s, be 
prepared to answer queries of the form “how 
many 1’s in the most recent k bits?” where        
k ≤ N. 

 Obvious solution: store the most recent N bits. 
 But answering the query will take O(k) time. 

 Very possibly too much time. 

 And the space requirements can be too great. 

 Especially if there are many streams to be managed 
in main memory at once, or N is huge. 



 Count recent hits on URL’s belonging to a site. 
 Stream is a sequence of URL’s. 
 Window size N = 1 billion. 
 Think of the data as many streams – one for 

each URL. 
 Bit on the stream for URL x is 0 unless the 

actual stream has x. 
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 Name refers to the inventors: 

 Datar, Gionis, Indyk, and Motwani. 

 Store only O(log2N) bits per stream. 

 N = window size. 

 Gives approximate answer, never off by more 
than 50%. 

 Error factor can be reduced to any ε > 0, with more 
complicated algorithm and proportionally more 
stored bits, but the same O(log2N) space reqirement. 
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 Each bit in the stream has a timestamp, starting 
0, 1, … 

 Record timestamps modulo N (the window 
size), so we can represent any relevant 
timestamp in O(log2N) bits. 
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 A bucket is a segment of the window ending 
with a 1; it is represented by a record 
consisting of:  

1. The timestamp of its end [O(log N) bits]. 

2. The number of 1’s between its beginning and end. 

 Number of 1’s = size of the bucket. 

 Constraint on bucket sizes: number of 1’s must 
be a power of 2. 

 Thus, only O(log log N) bits are required for this 
count. 
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 Either one or two buckets with the same 
power-of-2 number of 1’s. 

 Buckets do not overlap. 
 Every 1 is in one bucket; 0’s may or may not be 

in a bucket. 
 Buckets are sorted by size. 

 Older buckets are not smaller than newer buckets. 

 Buckets disappear when their end-time is > N 
time units in the past. 
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 When a new bit comes in, drop the last (oldest) 
bucket if its end-time is prior to N time units 
before the current time. 

 If the current bit is 0, no other changes are 
needed. 
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 If the current bit is 1: 

1. Create a new bucket of size 1, for just this bit. 

 End timestamp = current time. 

2. If there are now three buckets of size 1, combine 
the oldest two into a bucket of size 2. 

3. If there are now three buckets of size 2, combine 
the oldest two into a bucket of size 4. 

4. And so on … 
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 To estimate the number of 1’s in the most 
recent k < N bits: 

1. Restrict your attention to only those buckets 
whose end time stamp is at most k bits in the past. 

2. Sum the sizes of all these buckets but the oldest. 

3. Add half the size of the oldest bucket. 

 Remember: we don’t know how many 1’s of 
the last bucket are still within the window. 
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 Suppose the oldest bucket within range has size 
2i. 

 Then by assuming 2i -1 of its 1’s are still within the 
window, we make an error of at most 2i -1. 

 Since there is at least one bucket of each of the 
sizes less than 2i, and at least 1 from the oldest 
bucket, the true sum is no less than 2i. 

 Thus, error at most 50%. 
 Question for thought: Is the assumption 2i -1 1’s 

are still within the window the way to minimize 
maximum error? 



 We can represent one bucket in O(log N) bits. 

 It’s just a timestamp needing log N bits and a size, 
needing log log N bits. 

 No bucket can be of size greater than N. 
 There are at most two buckets of each size 1, 2, 

4, 8,… 
 That’s at most log N different sizes, and at most 

2 of each size, so at most 2log N buckets. 
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 Suppose the input stream is integers in the range 
0 to M, and our goal is to estimate the sum of 
the last k elements in the window of size N. 

 How would you take advantage of the DGIM idea 
to save space? 
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 Viewpoint: what is important in a stream is not 
just a finite window of most recent elements. 

 But all elements are not equally important; “old” 
elements less important than recent ones. 

 Pick a constant c << 1 and let the “weight” of 
the i-th most recent element to arrive be 
proportional to (1-c)i. 
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 Common case: elements are numerical, with ai 
arriving at time i. 

 The stream has a value at time t: i<t ai(1-c)t-i. 
 Example: are we in a rainy period? 

 ai = 1 if it rained on day i; 0 if not. 

 c = 0.1. 

 If it rains every day, the value of the sum is 
1+.9+(.9)2+… = 1/c = 10. 

 Value will be higher if the recent days have 
been rainy than if it rained long ago. 
 

28 



 Exponentially decaying windows make it easy to 
maintain this sum. 

 When a new element x arrives: 

1. Multiply the previous value by 1-c. 

 Has the effect of devaluing every previous element by 
factor (1-c). 

2. Add x. 
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 Imagine many streams, each Boolean, each 
representing the occurrence of one element. 

 Example: sales of items. 

 One stream for each item. 

 Stream has a 1 when an instance of that item is sold. 

 Special assumption: streams arrive 
synchronously, so at any time instance, we can 
view the set of items whose streams have 1 as a 
“basket.” 
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 Frequency of an item can be represented by the 
“value” of its stream in the decaying-window 
sense. 

 Frequency of an itemset can be measured 
similarly by imagining there is a stream that has 
1 if and only if all its items appear at a given 
time. 

 But there are too many itemsets to maintain a 
value for every possible itemset. 
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 Take the support threshold s to be 1/2. 

 I.e., count a set only when the value of its stream is 
at least 1/2. 

 Start by counting only the singleton items that 
are above threshold. 

 Then, start counting a set when it occurs at 
time t, provided all of its immediate subsets 
were already being counted (before time t). 

 Question for thought: Why not choose s = 1?  
Or s = 2? 
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1. Suppose set of items S are all the items sold at 
time t. 

2. Multiply the value for each itemset being 
counted by (1-c). 

3. Add 1 to the values for every set T  S, such 
that either: 

 T is a singleton, or 

 Every immediate subset of T was being counted at 
time t-1. 

4. Drop any values < 1/2. 
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