
Jeffrey D. Ullman
Stanford University/Infolab

2

 In a DBMS, input is under the control of the
owner.

 SQL INSERT commands or bulk loaders.

 Stream management is important when the
input rate is controlled externally.

 Example: Google search queries.

 Example: Amazon loves to get orders for products,
but does not control when they come in.

 Example: Satellites send down images, often
petabytes/day.

 More predictable, but too much to deal with efficiently.

3

 Input tuples enter at a rapid rate, at one or
more input ports.

 The system cannot store the entire stream
accessibly.

 How do you make critical calculations about the
stream using a limited amount of (primary or
even secondary) memory?

4

1. Ad-hoc queries: Normal queries asked one
time about streams.

 Example: What is the maximum value seen so
far in stream S?

2. Standing queries: Queries that are, in
principle, asked about the stream at all
times.

 Example: Report each new maximum value ever
seen in stream S.

5

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
 time

Streams Entering

Output

Archival
Storage

Processor

Ad-Hoc
Queries

Standing
Queries

6

 Mining query streams.

 Google wants to know what queries are more
frequent today than yesterday.

 Mining click streams.

 Yahoo! wants to know which of its pages are getting
an unusual number of hits in the past hour.

 Often caused by annoyed users clicking on a broken page.

 IP packets can be monitored at a switch.

 Gather information for optimal routing.

 Detect denial-of-service attacks.

7

 A useful model of stream processing is that
queries are about a window of length N – the N
most recent elements received.

 Interesting case: N is so large it cannot be
stored in main memory.

 Or, there are so many streams that windows for all
do not fit in main memory.

8

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

q w e r t y u i o p a s d f g h j k l z x c v b n m

Past Future

 Stream of integers, window of size N.
 Standing query: what is the average of the

integers in the window?
 For the first N inputs, sum and count to get the

average.
 Afterward, when a new input i arrives, change the

average by adding (i - j)/N, where j is the oldest
integer in the window before i arrived.

 Good: O(1) time per input.
 Bad: Requires the entire window in main memory.

9

11

 You can show that if you insist on an exact sum
or count of the elements in a window, you
cannot use less space than the window itself.

 But if you are willing to accept an
approximation, you can use much less space.

 We’ll consider first the simple case of counting
bits.

12

 Problem: given a stream of 0’s and 1’s, be
prepared to answer queries of the form “how
many 1’s in the most recent k bits?” where
k ≤ N.

 Obvious solution: store the most recent N bits.
 But answering the query will take O(k) time.

 Very possibly too much time.

 And the space requirements can be too great.

 Especially if there are many streams to be managed
in main memory at once, or N is huge.

 Count recent hits on URL’s belonging to a site.
 Stream is a sequence of URL’s.
 Window size N = 1 billion.
 Think of the data as many streams – one for

each URL.
 Bit on the stream for URL x is 0 unless the

actual stream has x.

13

14

 Name refers to the inventors:

 Datar, Gionis, Indyk, and Motwani.

 Store only O(log2N) bits per stream.

 N = window size.

 Gives approximate answer, never off by more
than 50%.

 Error factor can be reduced to any ε > 0, with more
complicated algorithm and proportionally more
stored bits, but the same O(log2N) space reqirement.

15

 Each bit in the stream has a timestamp, starting
0, 1, …

 Record timestamps modulo N (the window
size), so we can represent any relevant
timestamp in O(log2N) bits.

16

 A bucket is a segment of the window ending
with a 1; it is represented by a record
consisting of:

1. The timestamp of its end [O(log N) bits].

2. The number of 1’s between its beginning and end.

 Number of 1’s = size of the bucket.

 Constraint on bucket sizes: number of 1’s must
be a power of 2.

 Thus, only O(log log N) bits are required for this
count.

17

 Either one or two buckets with the same
power-of-2 number of 1’s.

 Buckets do not overlap.
 Every 1 is in one bucket; 0’s may or may not be

in a bucket.
 Buckets are sorted by size.

 Older buckets are not smaller than newer buckets.

 Buckets disappear when their end-time is > N
time units in the past.

18

1001010110001011010101010101011010101010101110101010111010100010110010

N

1 of
size 2

2 of
size 4

2 of
size 8

At least 1 of
size 16. Partially
beyond window.

2 of
size 1

19

 When a new bit comes in, drop the last (oldest)
bucket if its end-time is prior to N time units
before the current time.

 If the current bit is 0, no other changes are
needed.

20

 If the current bit is 1:

1. Create a new bucket of size 1, for just this bit.

 End timestamp = current time.

2. If there are now three buckets of size 1, combine
the oldest two into a bucket of size 2.

3. If there are now three buckets of size 2, combine
the oldest two into a bucket of size 4.

4. And so on …

21

1001010110001011010101010101011010101010101110101010111010100010110010

0010101100010110101010101010110101010101011101010101110101000101100101

0010101100010110101010101010110101010101011101010101110101000101100101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

0101100010110101010101010110101010101011101010101110101000101100101101

Initial

1 arrives; makes third block of size 1.

Combine the oldest two 1’s into a 2.

Later, 1, 0, 1 arrive. Now we have 3 1’s again.

Combine the oldest two 1’s into a 2.

The effect ripples all the way to a 16.

22

 To estimate the number of 1’s in the most
recent k < N bits:

1. Restrict your attention to only those buckets
whose end time stamp is at most k bits in the past.

2. Sum the sizes of all these buckets but the oldest.

3. Add half the size of the oldest bucket.

 Remember: we don’t know how many 1’s of
the last bucket are still within the window.

23

 Suppose the oldest bucket within range has size
2i.

 Then by assuming 2i -1 of its 1’s are still within the
window, we make an error of at most 2i -1.

 Since there is at least one bucket of each of the
sizes less than 2i, and at least 1 from the oldest
bucket, the true sum is no less than 2i.

 Thus, error at most 50%.
 Question for thought: Is the assumption 2i -1 1’s

are still within the window the way to minimize
maximum error?

 We can represent one bucket in O(log N) bits.

 It’s just a timestamp needing log N bits and a size,
needing log log N bits.

 No bucket can be of size greater than N.
 There are at most two buckets of each size 1, 2,

4, 8,…
 That’s at most log N different sizes, and at most

2 of each size, so at most 2log N buckets.

24

 Suppose the input stream is integers in the range
0 to M, and our goal is to estimate the sum of
the last k elements in the window of size N.

 How would you take advantage of the DGIM idea
to save space?

25

 Viewpoint: what is important in a stream is not
just a finite window of most recent elements.

 But all elements are not equally important; “old”
elements less important than recent ones.

 Pick a constant c << 1 and let the “weight” of
the i-th most recent element to arrive be
proportional to (1-c)i.

27

Time 
Now

Weight decays
exponentially

 Common case: elements are numerical, with ai
arriving at time i.

 The stream has a value at time t: i<t ai(1-c)t-i.
 Example: are we in a rainy period?

 ai = 1 if it rained on day i; 0 if not.

 c = 0.1.

 If it rains every day, the value of the sum is
1+.9+(.9)2+… = 1/c = 10.

 Value will be higher if the recent days have
been rainy than if it rained long ago.

28

 Exponentially decaying windows make it easy to
maintain this sum.

 When a new element x arrives:

1. Multiply the previous value by 1-c.

 Has the effect of devaluing every previous element by
factor (1-c).

2. Add x.

29

 Imagine many streams, each Boolean, each
representing the occurrence of one element.

 Example: sales of items.

 One stream for each item.

 Stream has a 1 when an instance of that item is sold.

 Special assumption: streams arrive
synchronously, so at any time instance, we can
view the set of items whose streams have 1 as a
“basket.”

30

 Frequency of an item can be represented by the
“value” of its stream in the decaying-window
sense.

 Frequency of an itemset can be measured
similarly by imagining there is a stream that has
1 if and only if all its items appear at a given
time.

 But there are too many itemsets to maintain a
value for every possible itemset.

31

 Take the support threshold s to be 1/2.

 I.e., count a set only when the value of its stream is
at least 1/2.

 Start by counting only the singleton items that
are above threshold.

 Then, start counting a set when it occurs at
time t, provided all of its immediate subsets
were already being counted (before time t).

 Question for thought: Why not choose s = 1?
Or s = 2?

32

1. Suppose set of items S are all the items sold at
time t.

2. Multiply the value for each itemset being
counted by (1-c).

3. Add 1 to the values for every set T  S, such
that either:

 T is a singleton, or

 Every immediate subset of T was being counted at
time t-1.

4. Drop any values < 1/2.

33

