CS246 Finals Review

The CS 246 Course Staff

MapReduce (Hadoop)

Programming model designed for:

- Large Datasets (HDFS)
 - Large files broken into chunks
 - Chunks are replicated on different nodes
- Easy Parallelization
 - Takes care of scheduling
- Fault Tolerance
 - Monitors and re-executes failed tasks

Dataflow

MapReduce operates exclusively on <key, value> pairs

Steps:

- Map:
 - Map function be applied independently to each unit of input
- Shuffle:
 - Redistributes data by output key of mappers
- Reduce:
 - Operates on full set of values for each key and produces a single output

Final output is the union of all the reducers

Multiple MapReduce jobs can be chained together

Degree of parallelism determined by # Mapper tasks and Reducer tasks

Coping with Failure

MapReduce is designed to deal with compute nodes failing

Output from previous phases is stored. Re-execute failed tasks, not whole jobs.

Blocking Property: no output is used until the task is complete. Thus, we can restart a Map task that failed without fear that a Reduce task has already used some output of the failed Map task.

Frequent Itemsets

- The Market-Basket Model
 - o Items
 - Baskets
 - Count how many baskets contain an itemset
 - Support threshold => frequent itemsets
- Application
 - Confidence
 - Pr(D | A, B, C)

Computation Model

- Count frequent pairs
- Main memory is the bottleneck
- How to store pair counts?
 - Triangular matrix/Table
- Frequent pairs -> frequent items
- A-Priori Algorithm
 - Pass 1 Item counts
 - Pass 2 Frequent items + pair counts
- PCY
 - Pass 1 Hash pairs into buckets
 - Infrequent bucket -> infrequent pairs
 - Pass 2 Bitmap for buckets
 - Count pairs w/ frequent items and frequent bucket

Pass 1 Pass 2

All (Or Most) Frequent Itemsets

- Handle Large Datasets
- Simple Algorithm
 - Sample from all baskets
 - Run A-Priori/PCY in main memory with lower threshold
 - No guarantee
- SON Algorithm
 - Partition baskets into subsets
 - Frequent in the whole => frequent in at least one subset
- Toivonen's Algorithm
 - Negative Border not frequent in the sample but all immediate subsets are
 - Pass 2 Count frequent itemsets and sets in their negative border
 - What guarantee?

Locality-Sensitive Hashing

Main idea:

- What: hashing techniques to map similar items to the same bucket
- Applications: similar documents, entity resolution, etc.

For the similar document application, the main steps are:

- 1. Shingling converting documents to set representations
- 2. Minhashing converting sets to short signatures using random permutations
- 3. Locality-sensitive hashing applying the "b bands of r rows" technique on the signature matrix to an "s-shaped" curve

Locality-Sensitive Hashing

General Theory:

- Distance measures d (similar items are "close"):
 - o Ex) Euclidean, Jaccard, cosine, edit, Hamming
- LSH families:
 - A family of hash functions H is (d_1, d_2, p_1, p_2) -sensitive if for any x and y:
 - If $d(x, y) \le d_1$, $Pr[h(x) = h(y)] >= p_1$; and
 - If $d(x, y) >= d_2$, $Pr[h(x) = h(y)] <= p_2$.
 - Ex) minhashing, random hyperplane
- Amplification of an LSH families ("bands" technique):
 - AND construction ("rows in a band")
 - OR construction ("many bands")
 - AND-OR/OR-AND compositions

Clustering

What: Given a set of points, group them in 'clusters' so that a point is more similar to other points within the cluster compared to points in other clusters (unsupervised learning - without labels)

How: Two types of approaches

- Point assignments: maintain a set of clusters, assign points, iteratively refine
- Hierarchical: each point is its own cluster, repeatedly combine nearest clusters

Point Assignment approaches

- Spherical/convex cluster shapes
- k-means: initialize cluster centroids, assign points to the nearest centroid, iteratively refine estimates of the centroids
 - Euclidean space
 - Sensitive to initialization (K-means++)
 - Good values of "k" empirically derived
 - Assumes dataset can fit in memory
- BFR algorithm: variant of k-means for very large datasets (residing on disk)
 - Keep running statistics of previous memory loads
 - Compute centroid, assign points to clusters in a second pass

Hierarchical clustering

- Works better when clusters have weird shapes (e.g. concentric)
- General approach:
 - Start with each point in its own cluster
 - Successively merge two "nearest" clusters until convergence
- Important problems:
 - Location of clusters: centroid in Euclidean spaces, clustroid in non-Euclidean spaces
 - Intercluster distance: smallest max distance, smallest average distance, cohesion. What works best depends on cluster shapes, often trial and error

Dimensionality Reduction

- Methods of Dimensionality Reduction
 - UV Decomposition
 - M = UV
 - o SVD
 - $M = U\Sigma V^T$
 - CUR Decomposition
 - M = CUR
- Motivation
 - Discover hidden correlation
 - Remove redundant and noisy features
 - Easier storage and processing of the data

• A = U Σ V^T - example:

V is "movie-to-concept" similarity matrix

SVD Calculation

- $M = U\Sigma V^T$
 - Based on the orthonormal properties of U and V, it can be shown the columns of V are eigenvectors of M^TM
 - The columns of U are eigenvectors of MM^T
- Steps to calculate
 - Find Σ, V
 - Find eigenpairs of M^TM
 - \blacksquare Σ is square root of eigenvalues
 - V is the normalized eigenvectors
 - Similarly, to find U, just find eigenpairs of MM^T

PageRank

- PageRank is a method for determining the importance of webpages
 - Named after Larry Page
- Rank of a page depends on how many pages link to it
- Pages with higher rank get more of a vote
- The vote of a page is evenly divided among all pages that it links to

PageRank

PageRank equation [Brin-Page, '98]

$$r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

The Google Matrix A:

[1/N]_{NxN}...N by N matrix where all entries are 1/N

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

• We have a recursive problem: $r = A \cdot r$

Hubs and Authorities

- Similar to PageRank
- Every webpage gets two scores: an "authority" score, which measures the
 quality of the webpage, and a "hub" score, which measures how good it is at
 linking to good webpages
- Mutually recursive definition:
 - Good hubs link to good authorities
 - Good authorities are linked to by good hubs

Hubs and Authorities

Adjacency matrix A (NxN): $A_{ij} = 1$ if $i \rightarrow j$, 0 otherwise

Set:
$$a_i = h_i = \frac{1}{\sqrt{n}}$$

Repeat until convergence:

- $h = A \cdot a$
- $\mathbf{a} = A^T \cdot h$
- Normalize a and h

Social Networks & Community Detection

Basic Terms:

Locality, Community, Diameter,
 Small-world property

- Betweenness:

- Edges of high betweenness separate communities
- Girvin-Newman Algorithm

- Cliques, bi-cliques

- Definition: Sets of nodes that are fully connected
- Growing cliques + bi-cliques

- Laplacian Matrices

- How to Construct a Laplacian Matrix
- Using eigenvector with the second-smallest eigenvalue

More Graph Algorithms

Affiliation-Graph Models(AGM):

- Model that best explains the edges in the graph, given a set of communities with associated probabilities
- Gradient Descent optimizes graph

Triangle Counting via "Heavy Hitters":

- "heavy hitter" a node with degree at least sqrt(M)
- Using heavy-hitter triangles to count triangles => O(M^1.5) algorithm
- Potential speed-up compared to naive solution(O(MN) or O(N^3))

Graph with 2 triangles

Transitive Closure

- Definition: Given a directed graph, find out if a vertex j is reachable from another vertex i for all vertex pairs (i, j) in the given graph.
- O(NM) in general, but can parallelize depending on algorithm

Method	Total (Serial) Computation	Parallel Rounds
Warshall	O(N ₃)	O(N)
Depth-First Search	O(NM)	O(M)
Breadth-First Search	O(NM)	O(D)
Linear + Seminaive	O(NM)	O(D)
Nonlinear + Seminaive	O(N3)	O(log D)
Smart	O(N3)	O(log D)

Seems odd. But in the worst case, almost all shortest paths can have a length that is a power of 2, so there is no guarantee of improvement for Smart.

Social Networks & Graph Algorithms: Cheat Sheet

- Property of Social Graphs: Locality, diameters
- Communities Detection: Betweenness, Girvan-Newman(GN) Algorithm
- Communities Detection: Cliques, Bi-Cliques, properties of Bi-Cliques
- Communities Detection: Using Laplacian Matrices
- The Affiliation-Graph Model(AGM), estimating maximum likelihoods
- Graph Algorithms: Using "Heavy Hitters" to count triangles in a large graph
- Graph Algorithms: Transitive Closure, algorithms on computing TC(focus on Semi-naive TC, Smart TC...)

Recommender Systems: Content-Based

What: Given a bunch of users, items and ratings, want to predict missing ratings

How: two methods.

- Content-Based:
 - (1) Collect user profile x and item profile i
 - (2) Estimate utility: $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i})$
- Collaborative Filtering (next slide)

		users							
		1	2	3	4	5			
5010011	1	1		3		?			
	2			5	4				
	3	2	4		1	2			
	4		2	4		5			
	5			4	3	4			
	6	1		3		3			

[from lecture slides]

Recommender Systems: Collaborative Filtering

Collaborative Filtering:

- user-user CF vs item-item CF
 user-user CF: estimate a user's rating based on ratings of similar users who
 have rated the item. Similar definition for item-item CF.
- **Similarity metrics**Jaccard similarity: *binary*; Cosine similarity: *treats missing ratings as "negative"*;
 Pearson correlation coeff: *remove mean of non-missing ratings, zero-centered.*
- **Baseline estimate**: $b_{xi} = \mu + b_x + b_i$ In CF, sometimes we remove baseline estimate and only model rating deviations from baseline estimate, so that we're not affected by user/item bias.

Evaluation: Root-Mean-Square error (RMSE), etc.

Recommender Systems: Latent Factor Models

<u>Motivation:</u> Collaborative filtering is a local approach to predicting ratings based on finding neighbors. Matrix factorization takes a more global view.

<u>Intuition:</u> We decompose users and movies based on a set of latent factors. Using these latent factors, we can make predictions. For example, if you like fantasy movies and Harry Potter has a big fantasy component, then the model will predict that you'll be more likely to like Harry Potter.

<u>Model:</u> $\hat{r}_{xi} = p_x \cdot q_i$ for user x and movie i

Recommender Systems: Latent Factor Models

$$\min_{P,Q} \sum_{(x,i) \in \text{training}} (r_{xi} - p_x \cdot q_i)^2 + \lambda_1 \sum_{x} \|p_x\|^2 + \lambda_2 \sum_{i} \|q_i\|^2$$

- Note that we only sum over observed ratings in the training set
- Use regularization to prevent overfitting
- Can solve this via SGD
- Can be extended to include biases (and temporal biases)

$$\hat{r}_{xi} = \mu + b_x + b_i + p_x \cdot q_i$$

Netflix Prize: get best performance using large ensemble of models

Machine Learning

Training examples $\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ...\}$ where \mathbf{x} is the type of item we wish to evaluate, and \mathbf{y} is its label. If \mathbf{y} belongs to a discrete set, this is a **classification** problem, and if \mathbf{y} is a real number, it is a **regression** problem.

In binary (two classes) classification problems, y belongs to $\{-1, 1\}$. Example: spam classification, we might have an email \mathbf{x} that is spam, and its label is y = 1.

Usually evaluated on a test set of the form $\{(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4...)\}$.

(Here we are only talking about supervised learning, where labels are given).

SVM: Maximum margin classifiers

Measuring Impurity of a Set S

Let p1,..., pk be the fractions of measures of S with the k possible values of y.

3 main measures of impurity:

- 1) Accuracy: if output is the most common value of y, what fraction of inputs in the set S are not given their correct output: 1 max i p i
- 2) GINI Impurity: 1Σ i (p i)²
- 3) Entropy: Σ_i -p_i log_2(p_i) or equivalently Σ_i p_i log_2(1/p_i)

We want low impurity!

Linear Separator

- A linear separator is a d-dimensional vector w and a threshold theta such that the hyperplane defined by w and theta separates the positive and negative examples.
- Given input x, the separator returns
 +1 If x.w > theta and returns -1 if not.
- The hyperplane is the set of points whose dot product with w is theta.

Black points = -1 Gold points = +1 $\mathbf{w} = (1,1)$ $\theta = 7$

Hyperplane $\mathbf{x}.\mathbf{w} = \theta$ If $\mathbf{x} = (a,b)$, then a+b=7

Perceptron

Given a set of training points (x, y) where:

- X is a real valued vector of d dimensions (i.e. a point in a Euclidean space) and
- 2) y is a binary decision +1 or -1

A perceptron tries to find a linear separator between the positive and negative inputs.

Stochastic Gradient Descent

 performs a parameter update for each training example x(i) and label y(i) computes the gradient of the cost function w.r.t. to the parameters θθ for the entire training dataset

$$\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)}).$$

Bloom Filter [1970]

- Basic construction
 - Use one hash function
 - Errors caused by hash function collisions
 - Bounded error probability
- The Magic of independent trials
 - Use many (independent!) hash functions
 - Combine trials by noting if all corresponding cells have a 1
 - Exponentially reduce probability of error
- Tune number of buckets and number of hash functions
 - Query time, and insertion time increase linearly with number of hash functions
 - Trade off error probability with space usage
 - But, space usage does not depend on number of elements in stream!

Count-Min Sketch (HW 4) [2003]

- Similar in spirit to Bloom filter
- Basic construction
 - Use one hash function
 - Each cell stores an overestimate of the true count
 - Again, errors caused by hash function collisions
 - In expectation, overestimate not too bad
 - Bounded probability of overestimating
 - Use a tail bound

Count-Min Sketch (HW 4) [2003]

- The Magic of Independent Trials
 - Use many (independent!) hash functions
 - Combine trials by taking the best overestimate (the minimum!)
 - Exponential reduction in error probability
- Tune error tolerance ε and error probability δ
 - \circ Space usage is O(1/ε log(1/δ))
 - Trade off both tolerance and error probability with space usage
 - Again, space usage does not depend on number of elements in stream!
 - For fixed tolerance and error probability, space is a constant
- This is a primitive at many large tech companies
 - Search queries
 - Web requests

Flajolet-Martin

- Problem: a data stream consists of elements chosen from a set of size n.
 Maintain a count of the number of distinct elements seen so far.
- Pick a hash function h that maps each of the n elements to at least log₂n bits.
- For each stream element a, let r(a) be the number of trailing 0's in h(a).
 - \circ Record R = the maximum r(a) seen for any a in the stream.
 - Also known as the "tail length"
- Estimate of distinct elements = 2^R.
- Intuitively, seeing r trailing 0s is "unusual"
 - More distinct elements leads to a higher chance of seeing this "unusual" event
- If we notice this "unusual" event, our estimate should be correspondingly higher

AMS Algorithm

- Problem: Suppose a stream has elements chosen from a set of n values. Let
 m_i be the number of times value i occurs. Find the kth moment which is the
 sum of (m_i)^k over all i.
 - 0th moment = number of different elements in the stream.
 - o 1st moment = sum of counts of the numbers of elements = length of the stream.
 - 2nd moment = measure of how uneven the distribution is.
- Algorithm for 2nd moment:
 - Assume stream has n elements
 - Pick a random starting and let the chosen time have element a in the stream.
 - Let X = # times a is seen in the stream from that point onward
 - Estimate of 2^{nd} moment = n(2X 1)