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MapReduce (Hadoop)
Programming model designed for:

● Large Datasets (HDFS)
○ Large files broken into chunks

○ Chunks are replicated on different nodes

● Easy Parallelization
○ Takes care of scheduling

● Fault Tolerance
○ Monitors and re-executes failed tasks



Dataflow
MapReduce operates exclusively on <key, value> pairs

Steps:
● Map:

○ Map function be applied independently to each unit of input
● Shuffle:

○ Redistributes data by output key of mappers
● Reduce:

○ Operates on full set of values for each key and produces a single output

Final output is the union of all the reducers
Multiple MapReduce jobs can be chained together
Degree of parallelism determined by # Mapper tasks and Reducer tasks



Coping with Failure
MapReduce is designed to deal with compute nodes failing

Output from previous phases is stored. Re-execute failed tasks, not whole jobs.  

Blocking Property: no output is used until the task is complete. Thus, we can 
restart a Map task that failed without fear that a Reduce task has already used 
some output of the failed Map task.



Frequent Itemsets
● The Market-Basket Model

○ Items
○ Baskets
○ Count how many baskets contain an itemset
○ Support threshold => frequent itemsets

● Application
○ Confidence

■ Pr(D | A, B, C)



Computation Model
● Count frequent pairs
● Main memory is the bottleneck
● How to store pair counts?

○ Triangular matrix/Table

● Frequent pairs -> frequent items
● A-Priori Algorithm

○ Pass 1 - Item counts
○ Pass 2 - Frequent items + pair counts

● PCY
○ Pass 1 - Hash pairs into buckets

■ Infrequent bucket -> infrequent pairs
○ Pass 2 - Bitmap for buckets

■ Count pairs w/ frequent items and frequent bucket



All (Or Most) Frequent Itemsets
● Handle Large Datasets
● Simple Algorithm

○ Sample from all baskets
○ Run A-Priori/PCY in main memory with lower threshold
○ No guarantee

● SON Algorithm
○ Partition baskets into subsets
○ Frequent in the whole => frequent in at least one subset

● Toivonen’s Algorithm
○ Negative Border - not frequent in the sample but all immediate subsets are
○ Pass 2 - Count frequent itemsets and sets in their negative border
○ What guarantee?



Locality-Sensitive Hashing 
Main idea:

● What: hashing techniques to map similar items to the same bucket
● Applications: similar documents, entity resolution, etc.

For the similar document application, the main steps are:

1. Shingling - converting documents to set representations
2. Minhashing - converting sets to short signatures using random permutations
3. Locality-sensitive hashing - applying the “b bands of r rows” technique on the 

signature matrix to an “s-shaped” curve



Locality-Sensitive Hashing
General Theory:

● Distance measures d (similar items are “close”):
○ Ex) Euclidean, Jaccard, cosine, edit, Hamming

● LSH families:
○ A family of hash functions H is (d1, d2, p1, p2)-sensitive if for any x and y:

■ If d(x, y) <= d1, Pr [h(x) = h(y)] >= p1; and
■ If d(x, y) >= d2, Pr [h(x) = h(y)] <= p2.

○ Ex)  minhashing, random hyperplane

● Amplification of an LSH families (“bands” technique):
○ AND construction (“rows in a band”)
○ OR construction (“many bands”)
○ AND-OR/OR-AND compositions



Clustering
What: Given a set of points, group them in ‘clusters’ so that a point is more similar 
to other points within the cluster compared to points in other clusters 
(unsupervised learning - without labels)

How: Two types of approaches

● Point assignments: maintain a set of clusters, assign points, iteratively refine

● Hierarchical: each point is its own cluster, repeatedly combine nearest 

clusters



Point Assignment approaches
● Spherical/convex cluster shapes
● k-means: initialize cluster centroids, assign points to the nearest centroid, 

iteratively refine estimates of the centroids
○ Euclidean space
○ Sensitive to initialization (K-means++)
○ Good values of “k” empirically derived
○ Assumes dataset can fit in memory

● BFR algorithm: variant of k-means for very large datasets (residing on disk)
○ Keep running statistics of previous memory loads
○ Compute centroid, assign points to clusters in a second pass



Hierarchical clustering
● Works better when clusters have weird shapes (e.g. concentric)
● General approach:

○ Start with each point in its own cluster
○ Successively merge two “nearest” clusters until convergence

● Important problems:
○ Location of clusters: centroid in Euclidean spaces, clustroid in 

non-Euclidean spaces
○ Intercluster distance: smallest max distance, smallest average distance, 

cohesion. What works best depends on cluster shapes, often trial and 
error



Dimensionality Reduction
● Methods of Dimensionality Reduction

○ UV Decomposition
■ M = UV

○ SVD
■ M = UΣVT

○ CUR Decomposition
■ M = CUR

● Motivation
○ Discover hidden correlation
○ Remove redundant and noisy features
○ Easier storage and processing of the data



SVD Calculation
● M = UΣVT

○ Based on the orthonormal properties of U and V, it can be shown the 
columns of V are eigenvectors of MTM

○ The columns of U are eigenvectors of MMT

● Steps to calculate
○ Find Σ, V

■ Find eigenpairs of MTM
■ Σ is square root of eigenvalues
■ V is the normalized eigenvectors

○ Similarly, to find U, just find eigenpairs of MMT



PageRank
● PageRank is a method for determining the importance of webpages

○ Named after Larry Page

● Rank of a page depends on how many pages link to it
● Pages with higher rank get more of a vote
● The vote of a page is evenly divided among all pages that it links to



PageRank

[Jure Leskovec, CS 246, Winter 2014]



Hubs and Authorities
● Similar to PageRank
● Every webpage gets two scores: an “authority” score, which measures the 

quality of the webpage, and a “hub” score, which measures how good it is at 
linking to good webpages

● Mutually recursive definition:
○ Good hubs link to good authorities
○ Good authorities are linked to by good hubs



Hubs and Authorities

[Jure Leskovec, CS 246, Winter 2014]



Social Networks & Community Detection
- Basic Terms:

- Locality, Community, Diameter, 
Small-world property

- Betweenness:
- Edges of high betweenness separate 

communities
- Girvin-Newman Algorithm

- Cliques, bi-cliques
- Definition:  Sets of nodes that are fully 

connected
- Growing cliques + bi-cliques

- Laplacian Matrices
- How to Construct a Laplacian Matrix
- Using eigenvector with the 

second-smallest eigenvalue



More Graph Algorithms
- Affiliation-Graph Models(AGM): 

- Model that best explains the edges in the 
graph, given a set of communities with 
associated probabilities

- Gradient Descent optimizes graph

- Triangle Counting via “Heavy 
Hitters”: 

- “heavy hitter” – a node with degree at 
least sqrt(M)

- Using heavy-hitter triangles to count 
triangles => O(M^1.5) algorithm

- Potential speed-up compared to naive 
solution(O(MN) or O(N^3))



Transitive Closure
- Definition: Given a directed graph, 

find out if a vertex j is reachable 
from another vertex i for all vertex 
pairs (i, j) in the given graph. 

- O(NM) in general, but can 
parallelize depending on algorithm



Social Networks & Graph Algorithms: Cheat Sheet
- Property of Social Graphs: Locality, diameters
- Communities Detection: Betweenness, Girvan-Newman(GN) Algorithm
- Communities Detection: Cliques, Bi-Cliques, properties of Bi-Cliques
- Communities Detection: Using Laplacian Matrices
- The Affiliation-Graph Model(AGM), estimating maximum likelihoods
- Graph Algorithms: Using “Heavy Hitters” to count triangles in a large graph
- Graph Algorithms: Transitive Closure, algorithms on computing TC(focus on 

Semi-naive TC, Smart TC…)



Recommender Systems: Content-Based
What: Given a bunch of users, items and ratings, want to predict missing ratings

How: two methods.

● Content-Based:
(1) Collect user profile x and item profile i
(2) Estimate utility: u(x,i) = cos(x,i)

● Collaborative Filtering (next slide)

[from lecture slides]



Recommender Systems: Collaborative Filtering
Collaborative Filtering: 

● user-user CF vs item-item CF
user-user CF: estimate a user’s rating based on ratings of similar users who 
have rated the item. Similar definition for item-item CF.

● Similarity metrics
Jaccard similarity: binary; Cosine similarity: treats missing ratings as “negative”;
Pearson correlation coeff: remove mean of non-missing ratings, zero-centered.

● Baseline estimate: b
xi
 = ᶞ + b

x
 + b

i

In CF, sometimes we remove baseline estimate and only model rating 
deviations from baseline estimate, so that we’re not affected by user/item bias.

Evaluation: Root-Mean-Square error (RMSE), etc.



Recommender Systems: Latent Factor Models
Motivation: Collaborative filtering is a local approach to predicting ratings based 
on finding neighbors. Matrix factorization takes a more global view.

Intuition: We decompose users and movies based on a set of latent factors. 
Using these latent factors, we can make predictions. For example, if you like 
fantasy movies and Harry Potter has a big fantasy component, then the model 
will predict that you’ll be more likely to like Harry Potter.

Model: for user x and movie i





Recommender Systems: Latent Factor Models

● Note that we only sum over observed ratings in the training set
● Use regularization to prevent overfitting
● Can solve this via SGD
● Can be extended to include biases (and temporal biases)

● Netflix Prize: get best performance using large ensemble of models



Machine Learning
Training examples {(x1, y1), (x2, y2), ...} where x is the type of item we wish to 
evaluate, and y is its label. If y belongs to a discrete set, this is a classification 
problem, and if y is a real number, it is a regression problem. 

In binary (two classes) classification problems, y belongs to {-1, 1}. Example: 
spam classification, we might have an email x that is spam, and its label is y = 1. 

Usually evaluated on a test set of the form {(x1, x2, x3, x4...}. 

(Here we are only talking about supervised learning, where labels are given). 



SVM: Maximum margin classifiers

y(w.x + b) >= 1
When we have linearly separable data



Measuring Impurity of a Set S
Let p1,..., pk be the fractions of measures of S with the k possible values of y.

3 main measures of impurity:

1) Accuracy: if output is the most common value of y, what fraction of inputs in 
the set S are not given their correct output: 1 - max_i p_i

2) GINI Impurity: 1 - Σ_i (p_i)^2
3) Entropy: Σ_i -p_i log_2(p_i) or equivalently Σ_i p_i log_2(1/p_i)

We want low impurity!



Linear Separator
● A linear separator is a d-dimensional 

vector w and a threshold theta such 
that the hyperplane defined by w and 
theta separates the positive and 
negative examples.

● Given input x, the separator returns 
+1 If x.w > theta and returns -1 if not.

● The hyperplane is the set of points 
whose dot product with w is theta.



Perceptron
Given a set of training points (x, y) where:

1) X is a real valued vector of d dimensions (i.e. a point in a Euclidean space) 
and

2) y is a binary decision +1 or -1

A perceptron tries to find a linear separator between the positive and negative 
inputs.



Stochastic Gradient Descent
● performs a parameter update for each training example x(i) and label y(i)  

computes the gradient of the cost function w.r.t. to the parameters θθ for the 
entire training dataset



Bloom Filter [1970]
● Basic construction

○ Use one hash function
○ Errors caused by hash function collisions
○ Bounded error probability

● The Magic of independent trials
○ Use many (independent!) hash functions
○ Combine trials by noting if all corresponding cells have a 1
○ Exponentially reduce probability of error

● Tune number of buckets and number of hash functions
○ Query time, and insertion time increase linearly with number of hash functions
○ Trade off error probability with space usage
○ But, space usage does not depend on number of elements in stream!



Count-Min Sketch (HW 4) [2003]
● Similar in spirit to Bloom filter
● Basic construction

○ Use one hash function
○ Each cell stores an overestimate of the true count

■ Again, errors caused by hash function collisions
○ In expectation, overestimate not too bad
○ Bounded probability of overestimating

■ Use a tail bound



Count-Min Sketch (HW 4) [2003]
● The Magic of Independent Trials

○ Use many (independent!) hash functions
○ Combine trials by taking the best overestimate (the minimum!)
○ Exponential reduction in error probability

● Tune error tolerance ε and error probability δ
○ Space usage is O(1/ε log(1/δ))
○ Trade off both tolerance and error probability with space usage
○ Again, space usage does not depend on number of elements in stream!
○ For fixed tolerance and error probability, space is a constant

● This is a primitive at many large tech companies
○ Search queries
○ Web requests



Flajolet-Martin
● Problem: a data stream consists of elements chosen from a set of size n. 

Maintain a count of the number of distinct elements seen so far.
● Pick a hash function h that maps each of the n elements to at least log2n bits.  
● For each stream element a, let r(a) be the number of trailing 0’s in h(a).

○ Record R = the maximum r(a) seen for any a in the stream.  
○ Also known as the “tail length”

● Estimate of distinct elements = 2R .
● Intuitively, seeing r trailing 0s is “unusual”

○ More distinct elements leads to a higher chance of seeing this “unusual” event

● If we notice this “unusual” event, our estimate should be correspondingly 
higher



AMS Algorithm
● Problem: Suppose a stream has elements chosen from a set of n values.  Let 

mi be the number of times value i occurs.  Find the kth moment which is the 
sum of (mi)

k over all i.
○ 0th moment = number of different elements in the stream.
○ 1st moment = sum of counts of the numbers of elements = length of the stream.
○ 2nd moment = measure of how uneven the distribution is.

● Algorithm for 2nd moment:
○ Assume stream has n elements
○ Pick a random starting and let the chosen time have element a in the stream.
○ Let X = # times a is seen in the stream from that point onward
○ Estimate of 2nd moment = n(2X -1)


