
Jeffrey D. Ullman
Stanford University/Infolab

 A real story from CS341 data-mining project
class.

 Students involved did a wonderful job, got an
“A.”

 But their first attempt at a MapReduce
algorithm caused them problems and led to the
development of an interesting theory.

3

 Data consisted of records for 3000 drugs.

 List of patients taking, dates, diagnoses.

 About 1M of data per drug.

 Problem was to find drug interactions.

 Example: two drugs that when taken together
increase the risk of heart attack.

 Must examine each pair of drugs and compare
their data.

4

 The first attempt used the following plan:

 Key = set of two drugs {i, j}.

 Value = the record for one of these drugs.

 Given drug i and its record Ri, the mapper
generates all key-value pairs ({i, j}, Ri), where j is
any other drug besides i.

 Each reducer receives its key and a list of the
two records for that pair: ({i, j}, [Ri, Rj]).

 Question for thought: wouldn’t it be better if
the value were a pointer to Ri?

5

6

Mapper
for drug 2

Mapper
for drug 1

Mapper
for drug 3

Drug 1 data {1, 2}
Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data {1, 3}

Drug 2 data {1, 2}

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data {2, 3}

7

Mapper
for drug 2

Mapper
for drug 1

Mapper
for drug 3

Drug 1 data {1, 2}
Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data {1, 3}

Drug 2 data {1, 2}

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data {2, 3}

8

Drug 1 data {1, 2} Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data

Drug 2 data

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data

 3000 drugs
 times 2999 key-value pairs per drug
 times 1,000,000 bytes per key-value pair
 = 9 terabytes communicated over a 1Gb

Ethernet
 = 90,000 seconds of network use.

9

 The team grouped the drugs into 30 groups of
100 drugs each.

 Say G1 = drugs 1-100, G2 = drugs 101-200,…, G30 =
drugs 2901-3000.

 Let g(i) = the number of the group into which drug i
goes.

10

 A key is a set of two group numbers.
 The mapper for drug i produces 29 key-value

pairs.

 Each key is the set containing g(i) and one of the
other group numbers.

 The value is a pair consisting of the drug number i
and the megabyte-long record for drug i.

11

 The reducer for pair of groups {m, n} gets that
key and a list of 200 drug records – the drugs
belonging to groups m and n.

 Its job is to compare each record from group m
with each record from group n.

 Special case: also compare records in group n with
each other, if m = n+1 or if n = 30 and m = 1.

 Notice each pair of records is compared at
exactly one reducer, so the total computation is
not increased.

12

 The big difference is in the communication
requirement.

 Now, each of 3000 drugs’ 1MB records is
replicated 29 times.

 Communication cost = 87GB, vs. 9TB.

13

1. A set of inputs.

 Example: the drug records.

2. A set of outputs.

 Example: one output for each pair of drugs, telling
whether a statistically significant interaction was
detected.

3. A many-many relationship between each
output and the inputs needed to compute it.

 Example: The output for the pair of drugs {i, j} is
related to inputs i and j.

15

16

Drug 1

Drug 2

Drug 3

Drug 4

Output 1-2

Output 1-3

Output 2-4

Output 1-4

Output 2-3

Output 3-4

17

 =

i

j j

i

 Reducer size, denoted q, is the maximum
number of inputs that a given reducer can have.

 I.e., the length of the value list.

 Limit might be based on how many inputs can
be handled in main memory.

 Or: make q low to force lots of parallelism.

18

 The average number of key-value pairs created
by each mapper is the replication rate.

 Denoted r.

 Represents the communication cost per input.

19

 Suppose we use g groups and d drugs.
 A reducer needs two groups, so q = 2d/g.
 Each of the d inputs is sent to g-1 reducers, or

approximately r = g.
 Replace g by r in q = 2d/g to get r = 2d/q.

20

Tradeoff!
The bigger the reducers,
the less communication.

 What we did gives an upper bound on r as a
function of q.

 A solid investigation of MapReduce algorithms
for a problem includes lower bounds.

 Proofs that you cannot have lower r for a given q.

21

 A mapping schema for a problem and a reducer
size q is an abstraction of a MR algorithm.

 It assigns inputs to sets of reducers, with two
conditions:

1. No reducer is assigned more than q inputs.

2. For every output, there is some reducer that
receives all of the inputs associated with that
output.

 Say the reducer covers the output.

 If some output is not covered, we can’t compute that
output.

22

 Every MapReduce algorithm has a mapping
schema.

 The requirement that there be a mapping
schema is what distinguishes MapReduce
algorithms from general parallel algorithms.

23

 d drugs, reducer size q.
 Each drug has to meet each of the d-1 other

drugs at some reducer.
 If a drug is sent to a reducer, then at most q-1

other drugs are there.
 Thus, each drug is sent to at least (d-1)/(q-1)

reducers, and r > (d-1)/(q-1).

 Or approximately r > d/q.

 Half the r from the algorithm we described.
 Better algorithm gives r < d/q + 1, so lower

bound is actually tight.
24

 Given a set of bit strings of length b, find all
those that differ in exactly one bit.

 Example: For b=2, the inputs are 00, 01, 10, 11,
and the outputs are (00,01), (00,10), (01,11),
(10,11).

 Theorem: r > b/log2q.

 (Part of) the proof later.

26

 If all bit strings of length b are in the input, then
we already know the answer, and running
MapReduce is a waste of time.

 A more realistic scenario is that we are doing a
similarity search, where some of the possible
bit strings are present and others not.

 Example: Find viewers who like the same set of
movies except for one.

 We can adjust q to be the expected number of
inputs at a reducer, rather than the maximum
number.

27

 We can use one reducer for every output.
 Each input is sent to b reducers (so r = b).
 Each reducer outputs its pair if both its inputs

are present, otherwise, nothing.
 Subtle point: if neither input for a reducer is

present, then the reducer doesn’t really exist.

28

 Alternatively, we can send all inputs to one
reducer.

 No replication (i.e., r = 1).
 The lone reducer looks at all pairs of inputs that

it receives and outputs pairs at distance 1.

29

 Assume b is even.
 Two reducers for each string of length b/2.

 Call them the left and right reducers for that string.

 String w = xy, where |x| = |y| = b/2, goes to the
left reducer for x and the right reducer for y.

 If w and z differ in exactly one bit, then they will
both be sent to the same left reducer (if they
disagree in the right half) or to the same right
reducer (if they disagree in the left half).

 Thus, r = 2; q = 2b/2.

30

1. Get an upper bound on the number of outputs
that a reducer of size q can cover.

2. Divide the number of outputs by (1) to get a
lower bound on the number of reducers needed.

3. Multiply q by (2) to get a lower bound on the
total communication.

4. Divide (3) by the number of inputs to get a lower
bound on r.

 Important point: if the function from (1) grows at
least linearly (it always does), then there is no
need to consider more-but-smaller reducers.

31

1. Lemma: A reducer of size q cannot cover more
than (q/2)log2q outputs.

 Induction on b; proof omitted.

2. (b/2)2b outputs must be covered, so there are
at least p = (b/2)2b/((q/2)log2q) = (b/q)2b/log2q
reducers.

3. Sum of inputs over all reducers > pq =
b2b/log2q.

4. Replication rate r = pq/2b = b/log2q.

32

Algorithms Matching Lower Bound

q = reducer
size

b

2

1

21 2b/2 2b

All inputs

to one

reducer

One reducer

for each output Splitting

Generalized Splitting

33

r = replication
rate

r = b/log2q

 Problem: multiply two n-by-n matrices.
 A reducer of size q produces < q2/4n2 outputs.
 Thus at least 4n4/q2 reducers and 4n4/q total

communication.
 Implies r > 2n2/q replication rate.
 A generalization of the one-round algorithm

given in MMDS matches the lower bound.
 But there is a two-round MM algorithm that

uses total communication 4n3/q.

35

 Get matching upper and lower bounds for the
Hamming-distance problem for distances
greater than 1.

 Ugly fact: For HD=1, you cannot have a large
reducer with all pairs at distance 1; for HD=2, it is
possible.

 Consider all inputs of weight 1 and length b.

36

 It appears very hard to extend this theory to
more than one MapReduce round.

 Exception is the “two rounds better than one” result
for Matrix Multiplication.

 Are there other problems for which you can show
“two better than one”?

 Can you get a lower bound on total communication
cost for multiround solutions to some problem?

37

 What happens if inputs are of different sizes?

 Example: the drug records were only 1MB on
average; some were actually much longer than
others.

 Put a limit not on the number of inputs at a reducer
but on the total size of the inputs.

38

