
Jeffrey D. Ullman
Stanford University

 Given a set of training points (x, y), where:

1. x is a real-valued vector of d dimensions (i.e., a
point in a Euclidean space), and

2. y is a binary decision +1 or -1,

a perceptron tries to find a linear separator
between the positive and negative inputs.

2

 A linear separator is a d-dimensional vector w
and a threshold such that the hyperplane
defined by w and separates the positive and
negative examples.

 More precisely: given input x, the separator
returns +1 if x.w > and returns -1 if not.

 I.e., the hyperplane is the set of points whose dot
product with w is .

3

4

(1,4)

(3,3)

(3,1)

(3,6)

(5,3)

Black points = -1
Gold points = +1
w = (1,1)
 = 7

w

Hyperplane x.w =
If x = (a,b),
then a+b = 7

 Possibly w and do not exist, since there is no
guarantee that the points are linearly
separable.

 Example:

5

 Sometimes, we can transform points that are
not linearly separable into a space where they
are linearly separable.

 Example: Remember the clustering problem of
concentric circles?

 Mapping points to their radii gives us a 1-
dimensional space where they are separable.

6

C
V

C
V

C
V

C
V

C
V

C
V

C
V

C
V

C
V

 A simplification: we can arrange that = 0.
 Replace each d-dimensional training point x by

(x,-1), a (d+1)-dimensional vector with -1 as its
last component.

 Replace unknown vector w (the normal to the
separating hyperplane) by (w,).

 I.e., add a (d+1)st unknown component, which
effectively functions as the threshold.

 Then x.w > if and only if (x,-1).(w,) > 0.

7

 The positive training points (3,6) and (5,3)
become (3,6,-1) and (5,3,-1).

 The negative training points (1,4), (3,3), and
(3,1) become (1,4,-1), (3,3,-1), and (3,1,-1).

 Since we know w = (1,1) and = 7 separated
the original points, then w’ = (1,1,7) and = 0
will separate the new points.

 Example: (3,6,-1).(1,1,7) > 0 and
(1,4,-1).(1,1,7) < 0.

8

 Assume threshold = 0.
 Pick a learning rate , typically a small fraction.
 Start with w = (0, 0,…, 0).
 Consider each training example (x,y) in turn,

until there are no misclassified points.

 Use y = +1 for positive examples, y = -1 for negative.

 If x.w has a sign different from y, then this is a
misclassified point.

 Special case: also misclassified if x.w = 0.

9

 If (x,y) is misclassified, adjust w to
accommodate x slightly.

 Replace w by w’ = w + yx.
 Note x.w’ = x.w + y|x|2.
 That is, if y = +1, then the dot product of x with

w’, which was negative, has been increased by
 times the square of the length of x.

 Similarly, if y = -1, the dot product has decreased.

 May still have the wrong sign, but we’re headed in
the right direction.

10

11

Name x y

A (1,4,-1) -1

B (3,3,-1) -1

C (3,1,-1) -1

D (3,6,-1) +1

E (5,3,-1) +1

w = (0, 0, 0)

Use A: misclassified. New w =
(0, 0, 0) + (1/3)(-1)(1,4,-1) = (-1/3, -4/3, 1/3).

Let = 1/3.

Use B: OK; Use C: OK.

Use D: misclassified. New w =
(-1/3, -4/3, 1/3) + (1/3)(+1)(3,6,-1) = (2/3, 2/3, 0).

Use E: OK.

Use A: misclassified. New w =
(2/3, 2/3, 0) + (1/3)(-1)(1,4,-1) = (1/3, -2/3, -1/3).

. . .

 Convergence is an inherently sequential
process.

 We change w at each step, which can change:

1. Which training points are misclassified.

2. What the next vector w’ is.

 However, if the learning rate is small, these
changes are not great at each step.

 It is generally safe to process many training
points at once, obtain the increments to w for
each, and add them all at once.

12

 A very small training rate causes convergence to
be slow.

 Too large a training rate can cause oscillation
and may make convergence impossible, even if
the training points are linearly separable.

13

14

You are here.

Slope tells you this
is the way to go.

If you travel a short distance,
you improve things.

But if you travel too far
in the right direction,
you actually can make
things worse.

 Perceptron learning for binary training
examples.

 I.e., assume components of input vector x are 0 or 1;
outputs y are -1 or +1.

 Uses a threshold , usually the number of
dimensions of the input vector or half that
number.

 Select a training rate 0 < < 1.
 Initial weight vector w is (1, 1,…, 1).

15

 Visit each training example (x,y) in turn, until
convergence.

 If x.w > and y = +1, or x.w < and y = -1,
we’re OK, so make no change to w.

 If x.w > and y = -1, lower each component of
w where x has value 1.

 More precisely: IF xi = 1 THEN replace wi by wi.

 If x.w < and y = +1, raise each component of
w where x has value 1.

 More precisely: IF xi = 1 THEN replace wi by wi/.

16

17

Viewer Star
Wars

Martian Aveng-
ers

Titanic Lake
House

You’ve
Got Mail

y

A 0 1 1 1 1 0 +1

B 1 1 1 0 0 0 +1

C 0 1 0 1 1 0 -1

D 0 0 0 1 0 1 -1

E 1 0 1 0 0 1 +1

Goal is to classify “Scifi” viewers (+1) versus “Romance” (-1).
Initial w = (1, 1, 1, 1, 1, 1).
Threshold: = 6.
Use = 1/2.

18

S M A T L Y y

A 0 1 1 1 1 0 +1

B 1 1 1 0 0 0 +1

C 0 1 0 1 1 0 -1

D 0 0 0 1 0 1 -1

E 1 0 1 0 0 1 +1

w = (1, 1, 1, 1, 1, 1).

Use A: misclassified. x.w = 4 < 6.
New w = (1, 2, 2, 2, 2, 1).

Use B: misclassified. x.w = 5 < 6.
New w = (2, 4, 4, 2, 2, 1).

Use C: misclassified. x.w = 8 > 6.
New w = (2, 2, 4, 1, 1, 1).

Now, D, E, A, B, C are all OK, so done.
Question for thought:
Would this work if inputs
were arbitrary reals, not
just 0, 1?

1. Not every dataset is linearly separable.

 More common: a dataset is “almost” separable, but
with a small fraction of the points on the wrong
side of the boundary.

2. Perceptron design stops as soon as a linear
separator is found.

 May not be the best boundary for separating the
data to which the perceptron is applied, even if the
training data is a random sample from the full
dataset.

20

21

(1,4)

(3,3)

(3,1)

(3,6)

(5,3)

Either red or blue line
separates training
points. Can give
different answers
for many points.

 By designing a better cost function, we can
force the separating hyperplane to be as far as
possible from the points in either class.

 Reduces the likelihood that points in the test or
validation sets will be misclassified.

 Later, we’ll also consider picking a hyperplane
for nonseparable data, in a way that minimizes
the “damage.”

22

23

(1,4)

(3,3)

(3,1)

(3,6)

(5,3)

Separating
hyperplane.

Margin

(1,4), (3,3), and (5,3)
are the support
vectors, limiting the
margin for this
choice of hyperplane.

Call these the “upper”
and “lower”
hyperplanes.

24

(1,4)

(3,3)

(3,1)

(3,6)

(5,3)

Separating
hyperplane.

Margin

 Goal: find w (the normal to the separating
hyperplane) and b (the constant that positions
the separating hyperplane) to maximize ,
subject to the constraints that for each training
example (x,y), we have y(w.x + b) > .

 That is, if y = +1, then point x is at least above the
separating hyperplane, and if y = -1, then x is at least
 below.

 Problem: scale of w and b.

 Double w and b and we can double .

25

 Solution: require |w| to be the unit of length for .
 Equivalent formulation: require that the constant

terms in the upper and lower hyperplanes (those
that are parallel to the separating hyperplanes, but
just touch the support vectors) be b+1 and b-1.

 The problem of maximizing , computed in units of
|w|, is equivalent to minimizing |w| subject to
the constraint that all points are outside the upper
and lower hyperplanes.

 Why? We forced the margin to be 1, so the smaller w is,
the larger looks in units of |w|.

26

27

(1,4)

(3,3)

(3,1)

(3,6)

(5,3)

Separating hyperplane
w.x+b = 0.

Margin

Upper hyperplane
w.x+b = 1.

Lower hyperplane
w.x+b = -1.

 Consider the running example, with positive
points (3,6) and (5,3), and with negative points
(1,4), (3,3), and (3,1).

 Let w = (u,v).
 Then we must minimize |w| subject to:

 3u + 6v + b > 1.

 5u + 3v + b > 1.

 u + 4v + b < -1.

 3u + 3v + b < -1.

 3u + v + b < -1.

28

 This is almost a linear program.
 Difference: the objective function sqrt(u2+v2) is

not linear.
 Cheat: if we believe the blue hyperplane with

support vectors (3,6), (5,3), and (3,3) is the best
we can do, then we know that the normal to
this hyperplane has v = 2u/3, and we only have
to minimize u.

29

30

Point Constraint If v = 2u/3

(3,6) 3u + 6v + b > 1 7u + b > 1

(5,3) 5u + 3v + b > 1 7u + b > 1

(1,4) u + 4v + b < -1 11u/3 + b < -1

(3,3) 3u + 3v + b < -1 5u + b < -1

(3,1) 3u + v + b < -1 11u/3 + b < -1

Constraints of support vectors
are hardest to satisfy.
Smallest u is when u = 1,
v = 2/3, b = -6.

|w| = sqrt(12 + (2/3)2) = 1.202.

31

(1,4)

(3,3)

(3,1)

(3,6)

(5,3)

Separating
hyperplane.

Margin

The normal to the
hyperplane, w, has
slope 2, so v = 2u.

32

Point Constraint If v = 2u

(3,6) 3u + 6v + b > 1 15u + b > 1

(5,3) 5u + 3v + b > 1 11u + b > 1

(1,4) u + 4v + b < -1 9u + b < -1

(3,3) 3u + 3v + b < -1 9u + b < -1

(3,1) 3u + v + b < -1 5u + b < -1

Constraints of support vectors
are hardest to satisfy.
Smallest u is when
u = 1, v = 2, b = -10.

|w| = sqrt(12 + 22) = 2.236.

Since we want the minimum |w|,
we prefer the previous hyperplane.

 2 dimensions is not that hard.
 In general there are d+1 support vectors for d-

dimensional data.
 Support vectors must lie on the convex hulls of

the sets of positive and negative points.
 Once you find a candidate separating

hyperplane and its parallel upper and lower
hyperplanes, you can calculate |w| for that
candidate.

 But there is a more general approach, next.

33

34

(1,4)

(3,3)

(3,1)

(3,6)

(5,3)

(3,5)

(4,4)

Correctly classified,
but too close to the
separating hyperplane

Misclassified

 We’ll still assume that we want a “separating”
hyperplane w.x + b = 0 defined by normal
vector w and constant b.

 And to establish the length of w, we take the
upper and lower hyperplanes to be w.x + b = +1
and w.x + b = -1.

 Allow points to be inside the upper and lower
hyperplanes, or even entirely on the wrong side
of the separator.

35

 Minimize a cost function that includes:

1. The square of the length of w (to encourage a
small |w|), and

2. A term that penalizes points that are either:

a. On the right side of the separator, but on the wrong side
of the upper or lower hyperplanes.

b. On the wrong side of the separator.

 The term (2) is hinge loss =

 0 if point is on the right side of the upper or lower
hyperplane.

 Otherwise linear in the amount of “wrong.”
36

 Let w.x + b = 0 be the separating hyperplane,
and let (x, y) be a training example.

 The hinge loss for this point is
 max(0, 1 – y(w.x + b)).
 Example: If y = +1 and w.x + b = 2, loss = 0.
 Point x is properly classified and beyond the upper

hyperplane.
 Example: If y = +1 and w.x + b = 1/3, loss = 2/3.
 Point x is properly classified but not beyond the

upper hyperplane.
 Example: If y = -1 and w.x + b = 2, loss = 3.
 Point x is completely misclassified.

37

-2 -1 0 +1 +2 +3

– y(w.x + b)

 Let there be n training examples (xi, yi).
 The cost expression:

f(w, b) = |w|2/2 + C j=1,…,n max(0, 1 - yj(w.xj +b))
 C is a constant to be chosen.

 Solve by gradient descent.
 Remember, w = (w1, w2,…, wd) and each xj =

(xj1, xj2,…, xjd).
 Take partial derivatives with respect to each wi.
 First term has derivative wi.

 Which, BTW, is why we divided by 2 for convenience.

38

 The second term C j=1,…,n max(0, 1 - yj(w.xj +b))
is trickier.

 There is one term in the partial derivative with
respect to wi for each j.

 If yj(w.xj +b) > 1, then this term is 0.
 But if not, then this term is -Cyjxji.
 So given the current w, you need first to sort

out which xj’s give 0 and which give -Cyjxji

before you can compute the partial derivatives.

39

40

Bad point. What if it
is an error and really
should be positive?

OK to misclassify some points in
order to get a large margin.

Separator makes sense,
especially if the bad point
really is misclassified.

41

Margin must be small so there
are no misclassified points or
points inside the margins.

Makes sense if you believe the bad point
is correctly classified and cannot tolerate
even a few errors.

Note also: If you use the first
method, where points inside
the margins are forbidden
absolutely, this is what you get.

