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 Given a set of training points (x, y), where: 

1. x is a real-valued vector of d dimensions (i.e., a 
point in a Euclidean space), and 

2. y is a binary decision +1 or -1, 

a perceptron tries to find a linear separator 
between the positive and negative inputs. 
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 A linear separator is a d-dimensional vector w 
and a threshold  such that the hyperplane 
defined by w and  separates the positive and 
negative examples. 

 More precisely: given input x, the separator 
returns +1 if x.w >  and returns -1 if not. 

 I.e., the hyperplane is the set of points whose dot 
product with w is . 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Black points = -1 
Gold points = +1 
w = (1,1) 
  = 7 

w 

Hyperplane x.w =   
If x = (a,b), 
then a+b = 7 



 Possibly w and  do not exist, since there is no 
guarantee that the points are linearly 
separable. 

 Example:  
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 Sometimes, we can transform points that are 
not linearly separable into a space where they 
are linearly separable. 

 Example: Remember the clustering problem of 
concentric circles? 

 Mapping points to their radii gives us a 1-
dimensional space where they are separable. 
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 A simplification: we can arrange that  = 0. 
 Replace each d-dimensional training point x by 

(x,-1), a (d+1)-dimensional vector with -1 as its 
last component. 

 Replace unknown vector w (the normal to the 
separating hyperplane) by (w, ). 

 I.e., add a (d+1)st unknown component, which 
effectively functions as the threshold. 

 Then x.w >  if and only if (x,-1).(w, ) > 0. 
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 The positive training points (3,6) and (5,3) 
become (3,6,-1) and (5,3,-1). 

 The negative training points (1,4), (3,3), and 
(3,1) become (1,4,-1), (3,3,-1), and (3,1,-1). 

 Since we know w = (1,1) and  = 7 separated 
the original points, then w’ = (1,1,7) and  = 0 
will separate the new points. 

 Example: (3,6,-1).(1,1,7) > 0 and                      
(1,4,-1).(1,1,7) < 0. 

8 



 Assume threshold = 0. 
 Pick a learning rate , typically a small fraction. 
 Start with w = (0, 0,…, 0). 
 Consider each training example (x,y) in turn, 

until there are no misclassified points. 

 Use y = +1 for positive examples, y = -1 for negative. 

 If x.w has a sign different from y, then this is a 
misclassified point. 

 Special case: also misclassified if x.w = 0. 
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 If (x,y) is misclassified, adjust w to 
accommodate x slightly. 

 Replace w by w’ = w + yx. 
 Note x.w’ = x.w + y|x|2. 
 That is, if y = +1, then the dot product of x with 

w’, which was negative, has been increased by 
 times the square of the length of x. 

 Similarly, if y = -1, the dot product has decreased. 

 May still have the wrong sign, but we’re headed in 
the right direction. 

10 



11 

Name x y 

A (1,4,-1) -1 

B (3,3,-1) -1 

C (3,1,-1) -1 

D (3,6,-1) +1 

E (5,3,-1) +1 

w = (0, 0, 0) 

Use A: misclassified.   New w = 
(0, 0, 0) + (1/3)(-1)(1,4,-1) = (-1/3, -4/3, 1/3). 

Let  = 1/3. 

Use B: OK; Use C: OK. 

Use D: misclassified.   New w = 
(-1/3, -4/3, 1/3) + (1/3)(+1)(3,6,-1) = (2/3, 2/3, 0). 

Use E: OK. 

Use A: misclassified.   New w = 
(2/3, 2/3, 0) + (1/3)(-1)(1,4,-1) = (1/3, -2/3, -1/3). 

. . . 



 Convergence is an inherently sequential 
process. 

 We change w at each step, which can change: 

1. Which training points are misclassified. 

2. What the next vector w’ is. 

 However, if the learning rate is small, these 
changes are not great at each step. 

 It is generally safe to process many training 
points at once, obtain the increments to w for 
each, and add them all at once. 
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 A very small training rate causes convergence to 
be slow. 

 Too large a training rate can cause oscillation 
and may make convergence impossible, even if 
the training points are linearly separable. 
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You are here. 

Slope tells you this 
is the way to go. 

If you travel a short distance, 
you improve things. 

But if you travel too far 
in the right direction, 
you actually can make 
things worse. 



 Perceptron learning for binary training 
examples. 

 I.e., assume components of input vector x are 0 or 1; 
outputs y are -1 or +1. 

 Uses a threshold , usually the number of 
dimensions of the input vector or half that 
number. 

 Select a training rate 0 <  < 1. 
 Initial weight vector w is (1, 1,…, 1). 

15 



 Visit each training example (x,y) in turn, until 
convergence. 

 If x.w >  and y = +1, or x.w <  and y = -1, 
we’re OK, so make no change to w. 

 If x.w >  and y = -1, lower each component of 
w where x has value 1. 

 More precisely: IF xi = 1 THEN replace wi by wi. 

 If x.w <  and y = +1, raise each component of 
w where x has value 1. 

 More precisely: IF xi = 1 THEN replace wi by wi/. 
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Viewer Star 
Wars 

Martian Aveng- 
ers 

Titanic Lake 
House 

You’ve 
Got Mail 

y 

A 0 1 1 1 1 0 +1 

B 1 1 1 0 0 0 +1 

C 0 1 0 1 1 0 -1 

D 0 0 0 1 0 1 -1 

E 1 0 1 0 0 1 +1 

Goal is to classify “Scifi” viewers (+1) versus “Romance” (-1). 
Initial w = (1, 1, 1, 1, 1, 1). 
Threshold:  = 6. 
Use  = 1/2. 
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S M A T L Y y 

A 0 1 1 1 1 0 +1 

B 1 1 1 0 0 0 +1 

C 0 1 0 1 1 0 -1 

D 0 0 0 1 0 1 -1 

E 1 0 1 0 0 1 +1 

w = (1, 1, 1, 1, 1, 1). 

Use A: misclassified.  x.w = 4 < 6. 
New w = (1, 2, 2, 2, 2, 1). 

Use B: misclassified.  x.w = 5 < 6. 
New w = (2, 4, 4, 2, 2, 1). 

Use C: misclassified.  x.w = 8 > 6. 
New w = (2, 2, 4, 1, 1, 1). 

Now, D, E, A, B, C are all OK, so done. 
Question for thought: 
Would this work if inputs 
were arbitrary reals, not 
just 0, 1? 





1. Not every dataset is linearly separable. 

 More common: a dataset is “almost” separable, but 
with a small fraction of the points on the wrong 
side of the boundary. 

2. Perceptron design stops as soon as a linear 
separator is found. 

 May not be the best boundary for separating the 
data to which the perceptron is applied, even if the 
training data is a random sample from the full 
dataset. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Either red or blue line 
separates training 
points.  Can give 
different answers 
for many points.  



 By designing a better cost function, we can 
force the separating hyperplane to be as far as 
possible from the points in either class. 

 Reduces the likelihood that points in the test or 
validation sets will be misclassified. 

 Later, we’ll also consider picking a hyperplane 
for nonseparable data, in a way that minimizes 
the “damage.” 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Separating 
hyperplane. 

Margin  

(1,4), (3,3), and (5,3) 
are the support 
vectors, limiting the 
margin for this 
choice of hyperplane. 

Call these the “upper” 
and “lower” 
hyperplanes. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Separating 
hyperplane. 

Margin  



 Goal: find w (the normal to the separating 
hyperplane) and b (the constant that positions 
the separating hyperplane) to maximize , 
subject to the constraints that for each training 
example (x,y), we have y(w.x + b) > . 

 That is, if y = +1, then point x is at least  above the 
separating hyperplane, and if y = -1, then x is at least 
 below. 

 Problem: scale of w and b. 

 Double w and b and we can double . 
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 Solution: require |w| to be the unit of length for . 
 Equivalent formulation: require that the constant 

terms in the upper and lower hyperplanes (those 
that are parallel to the separating hyperplanes, but 
just touch the support vectors) be b+1 and b-1. 

 The problem of maximizing , computed in units of 
|w|, is equivalent to minimizing |w| subject to 
the constraint that all points are outside the upper 
and lower hyperplanes. 

 Why? We forced the margin to be 1, so the smaller w is, 
the larger  looks in units of |w|. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Separating hyperplane 
w.x+b = 0. 

Margin  

Upper hyperplane 
w.x+b = 1. 

Lower hyperplane 
w.x+b = -1. 



 Consider the running example, with positive 
points (3,6) and (5,3), and with negative points 
(1,4), (3,3), and (3,1). 

 Let w = (u,v). 
 Then we must minimize |w| subject to: 

 3u + 6v + b > 1. 

 5u + 3v + b > 1. 

 u   + 4v + b < -1. 

 3u + 3v + b < -1. 

 3u +   v + b < -1. 
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 This is almost a linear program. 
 Difference: the objective function sqrt(u2+v2) is 

not linear. 
 Cheat: if we believe the blue hyperplane with 

support vectors (3,6), (5,3), and (3,3) is the best 
we can do, then we know that the normal to 
this hyperplane has v = 2u/3, and we only have 
to minimize u. 
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Point Constraint If v = 2u/3 

(3,6) 3u + 6v + b > 1 7u + b > 1 

(5,3) 5u + 3v + b > 1 7u + b > 1 

(1,4) u + 4v + b < -1 11u/3 + b < -1 

(3,3) 3u + 3v + b < -1 5u + b < -1 

(3,1) 3u + v + b < -1 11u/3 + b < -1 

Constraints of support vectors 
are hardest to satisfy. 
Smallest u is when u = 1, 
v = 2/3, b = -6. 

|w| = sqrt(12 + (2/3)2) = 1.202. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Separating 
hyperplane. 

Margin  

The normal to the 
hyperplane, w, has 
slope 2, so v = 2u. 
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Point Constraint If v = 2u 

(3,6) 3u + 6v + b > 1 15u + b > 1 

(5,3) 5u + 3v + b > 1 11u + b > 1 

(1,4) u + 4v + b < -1 9u + b < -1 

(3,3) 3u + 3v + b < -1 9u + b < -1 

(3,1) 3u + v + b < -1 5u + b < -1 

Constraints of support vectors 
are hardest to satisfy. 
Smallest u is when 
u = 1, v = 2, b = -10. 

|w| = sqrt(12 + 22) = 2.236. 

Since we want the minimum |w|, 
we prefer the previous hyperplane. 



 2 dimensions is not that hard. 
 In general there are d+1 support vectors for d-

dimensional data. 
 Support vectors must lie on the convex hulls of 

the sets of positive and negative points. 
 Once you find a candidate separating 

hyperplane and its parallel upper and lower 
hyperplanes, you can calculate |w| for that 
candidate. 

 But there is a more general approach, next. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

(3,5) 

(4,4) 

Correctly classified, 
but too close to the 
separating hyperplane 

Misclassified 



 We’ll still assume that we want a “separating” 
hyperplane w.x + b = 0 defined by normal 
vector w and constant b. 

 And to establish the length of w, we take the 
upper and lower hyperplanes to be w.x + b = +1 
and w.x + b = -1. 

 Allow points to be inside the upper and lower 
hyperplanes, or even entirely on the wrong side 
of the separator. 
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 Minimize a cost function that includes: 

1. The square of the length of w (to encourage a 
small |w|), and 

2. A term that penalizes points that are either: 

a. On the right side of the separator, but on the wrong side 
of the upper or lower hyperplanes. 

b. On the wrong side of the separator. 

 The term (2) is hinge loss = 

 0 if point is on the right side of the upper or lower 
hyperplane. 

 Otherwise linear in the amount of “wrong.” 
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 Let w.x + b = 0 be the separating hyperplane, 
and let (x, y) be a training example. 

 The hinge loss for this point is 
 max(0, 1 – y(w.x + b)). 
 Example: If y = +1 and w.x + b = 2, loss = 0. 
 Point x is properly classified and beyond the upper 

hyperplane. 
 Example: If y = +1 and w.x + b = 1/3, loss = 2/3. 
 Point x is properly classified but not beyond the 

upper hyperplane. 
 Example: If y = -1 and w.x + b = 2, loss = 3. 
 Point x is completely misclassified. 
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– y(w.x + b) 



 Let there be n training examples (xi, yi). 
 The cost expression: 

f(w, b) = |w|2/2 + C j=1,…,n max(0, 1 - yj(w.xj +b)) 
 C is a constant to be chosen. 

 Solve by gradient descent. 
 Remember, w = (w1, w2,…, wd) and each xj =  

(xj1, xj2,…, xjd). 
 Take partial derivatives with respect to each wi. 
 First term has derivative wi. 

 Which, BTW, is why we divided by 2 for convenience. 

38 



 The second term C j=1,…,n max(0, 1 - yj(w.xj +b)) 
is trickier. 

 There is one term in the partial derivative with 
respect to wi for each j.  

 If yj(w.xj +b) > 1, then this term is 0. 
 But if not, then this term is -Cyjxji. 
 So given the current w, you need first to sort 

out which xj’s give 0 and which give -Cyjxji 

before you can compute the partial derivatives. 
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Bad point.  What if it 
is an error and really 
should be positive? 

OK to misclassify some points in 
order to get a large margin. 

Separator makes sense, 
especially if the bad point 
really is misclassified. 
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Margin must be small so there 
are no misclassified points or 
points inside the margins. 

Makes sense if you believe the bad point 
is correctly classified and cannot tolerate 
even a few errors. 

Note also: If you use the first 
method, where points inside 
the margins are forbidden 
absolutely, this is what you get. 


