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 Given a set of training points (x, y), where: 

1. x is a real-valued vector of d dimensions (i.e., a 
point in a Euclidean space), and 

2. y is a binary decision +1 or -1, 

a perceptron tries to find a linear separator 
between the positive and negative inputs. 
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 A linear separator is a d-dimensional vector w 
and a threshold  such that the hyperplane 
defined by w and  separates the positive and 
negative examples. 

 More precisely: given input x, the separator 
returns +1 if x.w >  and returns -1 if not. 

 I.e., the hyperplane is the set of points whose dot 
product with w is . 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Black points = -1 
Gold points = +1 
w = (1,1) 
  = 7 

w 

Hyperplane x.w =   
If x = (a,b), 
then a+b = 7 



 Possibly w and  do not exist, since there is no 
guarantee that the points are linearly 
separable. 

 Example:  
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 Sometimes, we can transform points that are 
not linearly separable into a space where they 
are linearly separable. 

 Example: Remember the clustering problem of 
concentric circles? 

 Mapping points to their radii gives us a 1-
dimensional space where they are separable. 
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 A simplification: we can arrange that  = 0. 
 Replace each d-dimensional training point x by 

(x,-1), a (d+1)-dimensional vector with -1 as its 
last component. 

 Replace unknown vector w (the normal to the 
separating hyperplane) by (w, ). 

 I.e., add a (d+1)st unknown component, which 
effectively functions as the threshold. 

 Then x.w >  if and only if (x,-1).(w, ) > 0. 
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 The positive training points (3,6) and (5,3) 
become (3,6,-1) and (5,3,-1). 

 The negative training points (1,4), (3,3), and 
(3,1) become (1,4,-1), (3,3,-1), and (3,1,-1). 

 Since we know w = (1,1) and  = 7 separated 
the original points, then w’ = (1,1,7) and  = 0 
will separate the new points. 

 Example: (3,6,-1).(1,1,7) > 0 and                      
(1,4,-1).(1,1,7) < 0. 
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 Assume threshold = 0. 
 Pick a learning rate , typically a small fraction. 
 Start with w = (0, 0,…, 0). 
 Consider each training example (x,y) in turn, 

until there are no misclassified points. 

 Use y = +1 for positive examples, y = -1 for negative. 

 If x.w has a sign different from y, then this is a 
misclassified point. 

 Special case: also misclassified if x.w = 0. 
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 If (x,y) is misclassified, adjust w to 
accommodate x slightly. 

 Replace w by w’ = w + yx. 
 Note x.w’ = x.w + y|x|2. 
 That is, if y = +1, then the dot product of x with 

w’, which was negative, has been increased by 
 times the square of the length of x. 

 Similarly, if y = -1, the dot product has decreased. 

 May still have the wrong sign, but we’re headed in 
the right direction. 
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Name x y 

A (1,4,-1) -1 

B (3,3,-1) -1 

C (3,1,-1) -1 

D (3,6,-1) +1 

E (5,3,-1) +1 

w = (0, 0, 0) 

Use A: misclassified.   New w = 
(0, 0, 0) + (1/3)(-1)(1,4,-1) = (-1/3, -4/3, 1/3). 

Let  = 1/3. 

Use B: OK; Use C: OK. 

Use D: misclassified.   New w = 
(-1/3, -4/3, 1/3) + (1/3)(+1)(3,6,-1) = (2/3, 2/3, 0). 

Use E: OK. 

Use A: misclassified.   New w = 
(2/3, 2/3, 0) + (1/3)(-1)(1,4,-1) = (1/3, -2/3, -1/3). 

. . . 



 Convergence is an inherently sequential 
process. 

 We change w at each step, which can change: 

1. Which training points are misclassified. 

2. What the next vector w’ is. 

 However, if the learning rate is small, these 
changes are not great at each step. 

 It is generally safe to process many training 
points at once, obtain the increments to w for 
each, and add them all at once. 
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 A very small training rate causes convergence to 
be slow. 

 Too large a training rate can cause oscillation 
and may make convergence impossible, even if 
the training points are linearly separable. 
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You are here. 

Slope tells you this 
is the way to go. 

If you travel a short distance, 
you improve things. 

But if you travel too far 
in the right direction, 
you actually can make 
things worse. 



 Perceptron learning for binary training 
examples. 

 I.e., assume components of input vector x are 0 or 1; 
outputs y are -1 or +1. 

 Uses a threshold , usually the number of 
dimensions of the input vector or half that 
number. 

 Select a training rate 0 <  < 1. 
 Initial weight vector w is (1, 1,…, 1). 
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 Visit each training example (x,y) in turn, until 
convergence. 

 If x.w >  and y = +1, or x.w <  and y = -1, 
we’re OK, so make no change to w. 

 If x.w >  and y = -1, lower each component of 
w where x has value 1. 

 More precisely: IF xi = 1 THEN replace wi by wi. 

 If x.w <  and y = +1, raise each component of 
w where x has value 1. 

 More precisely: IF xi = 1 THEN replace wi by wi/. 
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Viewer Star 
Wars 

Martian Aveng- 
ers 

Titanic Lake 
House 

You’ve 
Got Mail 

y 

A 0 1 1 1 1 0 +1 

B 1 1 1 0 0 0 +1 

C 0 1 0 1 1 0 -1 

D 0 0 0 1 0 1 -1 

E 1 0 1 0 0 1 +1 

Goal is to classify “Scifi” viewers (+1) versus “Romance” (-1). 
Initial w = (1, 1, 1, 1, 1, 1). 
Threshold:  = 6. 
Use  = 1/2. 
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S M A T L Y y 

A 0 1 1 1 1 0 +1 

B 1 1 1 0 0 0 +1 

C 0 1 0 1 1 0 -1 

D 0 0 0 1 0 1 -1 

E 1 0 1 0 0 1 +1 

w = (1, 1, 1, 1, 1, 1). 

Use A: misclassified.  x.w = 4 < 6. 
New w = (1, 2, 2, 2, 2, 1). 

Use B: misclassified.  x.w = 5 < 6. 
New w = (2, 4, 4, 2, 2, 1). 

Use C: misclassified.  x.w = 8 > 6. 
New w = (2, 2, 4, 1, 1, 1). 

Now, D, E, A, B, C are all OK, so done. 
Question for thought: 
Would this work if inputs 
were arbitrary reals, not 
just 0, 1? 





1. Not every dataset is linearly separable. 

 More common: a dataset is “almost” separable, but 
with a small fraction of the points on the wrong 
side of the boundary. 

2. Perceptron design stops as soon as a linear 
separator is found. 

 May not be the best boundary for separating the 
data to which the perceptron is applied, even if the 
training data is a random sample from the full 
dataset. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Either red or blue line 
separates training 
points.  Can give 
different answers 
for many points.  



 By designing a better cost function, we can 
force the separating hyperplane to be as far as 
possible from the points in either class. 

 Reduces the likelihood that points in the test or 
validation sets will be misclassified. 

 Later, we’ll also consider picking a hyperplane 
for nonseparable data, in a way that minimizes 
the “damage.” 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Separating 
hyperplane. 

Margin  

(1,4), (3,3), and (5,3) 
are the support 
vectors, limiting the 
margin for this 
choice of hyperplane. 

Call these the “upper” 
and “lower” 
hyperplanes. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Separating 
hyperplane. 

Margin  



 Goal: find w (the normal to the separating 
hyperplane) and b (the constant that positions 
the separating hyperplane) to maximize , 
subject to the constraints that for each training 
example (x,y), we have y(w.x + b) > . 

 That is, if y = +1, then point x is at least  above the 
separating hyperplane, and if y = -1, then x is at least 
 below. 

 Problem: scale of w and b. 

 Double w and b and we can double . 
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 Solution: require |w| to be the unit of length for . 
 Equivalent formulation: require that the constant 

terms in the upper and lower hyperplanes (those 
that are parallel to the separating hyperplanes, but 
just touch the support vectors) be b+1 and b-1. 

 The problem of maximizing , computed in units of 
|w|, is equivalent to minimizing |w| subject to 
the constraint that all points are outside the upper 
and lower hyperplanes. 

 Why? We forced the margin to be 1, so the smaller w is, 
the larger  looks in units of |w|. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Separating hyperplane 
w.x+b = 0. 

Margin  

Upper hyperplane 
w.x+b = 1. 

Lower hyperplane 
w.x+b = -1. 



 Consider the running example, with positive 
points (3,6) and (5,3), and with negative points 
(1,4), (3,3), and (3,1). 

 Let w = (u,v). 
 Then we must minimize |w| subject to: 

 3u + 6v + b > 1. 

 5u + 3v + b > 1. 

 u   + 4v + b < -1. 

 3u + 3v + b < -1. 

 3u +   v + b < -1. 
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 This is almost a linear program. 
 Difference: the objective function sqrt(u2+v2) is 

not linear. 
 Cheat: if we believe the blue hyperplane with 

support vectors (3,6), (5,3), and (3,3) is the best 
we can do, then we know that the normal to 
this hyperplane has v = 2u/3, and we only have 
to minimize u. 
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Point Constraint If v = 2u/3 

(3,6) 3u + 6v + b > 1 7u + b > 1 

(5,3) 5u + 3v + b > 1 7u + b > 1 

(1,4) u + 4v + b < -1 11u/3 + b < -1 

(3,3) 3u + 3v + b < -1 5u + b < -1 

(3,1) 3u + v + b < -1 11u/3 + b < -1 

Constraints of support vectors 
are hardest to satisfy. 
Smallest u is when u = 1, 
v = 2/3, b = -6. 

|w| = sqrt(12 + (2/3)2) = 1.202. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

Separating 
hyperplane. 

Margin  

The normal to the 
hyperplane, w, has 
slope 2, so v = 2u. 
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Point Constraint If v = 2u 

(3,6) 3u + 6v + b > 1 15u + b > 1 

(5,3) 5u + 3v + b > 1 11u + b > 1 

(1,4) u + 4v + b < -1 9u + b < -1 

(3,3) 3u + 3v + b < -1 9u + b < -1 

(3,1) 3u + v + b < -1 5u + b < -1 

Constraints of support vectors 
are hardest to satisfy. 
Smallest u is when 
u = 1, v = 2, b = -10. 

|w| = sqrt(12 + 22) = 2.236. 

Since we want the minimum |w|, 
we prefer the previous hyperplane. 



 2 dimensions is not that hard. 
 In general there are d+1 support vectors for d-

dimensional data. 
 Support vectors must lie on the convex hulls of 

the sets of positive and negative points. 
 Once you find a candidate separating 

hyperplane and its parallel upper and lower 
hyperplanes, you can calculate |w| for that 
candidate. 

 But there is a more general approach, next. 
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(1,4) 

(3,3) 

(3,1) 

(3,6) 

(5,3) 

(3,5) 

(4,4) 

Correctly classified, 
but too close to the 
separating hyperplane 

Misclassified 



 We’ll still assume that we want a “separating” 
hyperplane w.x + b = 0 defined by normal 
vector w and constant b. 

 And to establish the length of w, we take the 
upper and lower hyperplanes to be w.x + b = +1 
and w.x + b = -1. 

 Allow points to be inside the upper and lower 
hyperplanes, or even entirely on the wrong side 
of the separator. 
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 Minimize a cost function that includes: 

1. The square of the length of w (to encourage a 
small |w|), and 

2. A term that penalizes points that are either: 

a. On the right side of the separator, but on the wrong side 
of the upper or lower hyperplanes. 

b. On the wrong side of the separator. 

 The term (2) is hinge loss = 

 0 if point is on the right side of the upper or lower 
hyperplane. 

 Otherwise linear in the amount of “wrong.” 
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 Let w.x + b = 0 be the separating hyperplane, 
and let (x, y) be a training example. 

 The hinge loss for this point is 
 max(0, 1 – y(w.x + b)). 
 Example: If y = +1 and w.x + b = 2, loss = 0. 
 Point x is properly classified and beyond the upper 

hyperplane. 
 Example: If y = +1 and w.x + b = 1/3, loss = 2/3. 
 Point x is properly classified but not beyond the 

upper hyperplane. 
 Example: If y = -1 and w.x + b = 2, loss = 3. 
 Point x is completely misclassified. 
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-2   -1     0    +1    +2   +3 

– y(w.x + b) 



 Let there be n training examples (xi, yi). 
 The cost expression: 

f(w, b) = |w|2/2 + C j=1,…,n max(0, 1 - yj(w.xj +b)) 
 C is a constant to be chosen. 

 Solve by gradient descent. 
 Remember, w = (w1, w2,…, wd) and each xj =  

(xj1, xj2,…, xjd). 
 Take partial derivatives with respect to each wi. 
 First term has derivative wi. 

 Which, BTW, is why we divided by 2 for convenience. 

38 



 The second term C j=1,…,n max(0, 1 - yj(w.xj +b)) 
is trickier. 

 There is one term in the partial derivative with 
respect to wi for each j.  

 If yj(w.xj +b) > 1, then this term is 0. 
 But if not, then this term is -Cyjxji. 
 So given the current w, you need first to sort 

out which xj’s give 0 and which give -Cyjxji 

before you can compute the partial derivatives. 
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Bad point.  What if it 
is an error and really 
should be positive? 

OK to misclassify some points in 
order to get a large margin. 

Separator makes sense, 
especially if the bad point 
really is misclassified. 
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Margin must be small so there 
are no misclassified points or 
points inside the margins. 

Makes sense if you believe the bad point 
is correctly classified and cannot tolerate 
even a few errors. 

Note also: If you use the first 
method, where points inside 
the margins are forbidden 
absolutely, this is what you get. 


