More Large-Scale Machine Learning

Perceptrons

Support-Vector Machines

Jeffrey D. Ullman

Stanford University

The Perceptron

- Given a set of training points (\mathbf{x}, y), where:

1. \mathbf{x} is a real-valued vector of d dimensions (i.e., a point in a Euclidean space), and
2. y is a binary decision +1 or -1 , a perceptron tries to find a linear separator between the positive and negative inputs.

Linear Separators

- A linear separator is a d-dimensional vector w and a threshold θ such that the hyperplane defined by \mathbf{w} and θ separates the positive and negative examples.
- More precisely: given input \mathbf{x}, the separator returns +1 if $\mathbf{x . w}>\theta$ and returns -1 if not.
- I.e., the hyperplane is the set of points whose dot product with \mathbf{w} is θ.

Example: Linear Separator

Black points $=-1$
Gold points $=+1$

$$
\begin{aligned}
\mathbf{w} & =(1,1) \\
\theta & =7
\end{aligned}
$$

Hyperplane $\mathbf{x} . \mathbf{w}=\theta$ If $x=(a, b)$,
then $a+b=7$

Goal: Finding w and θ

- Possibly \mathbf{w} and θ do not exist, since there is no guarantee that the points are linearly separable.
- Example:

Kernel Functions Can Linearize

- Sometimes, we can transform points that are not linearly separable into a space where they are linearly separable.
- Example: Remember the clustering problem of concentric circles?
- Mapping points to their radii gives us a 1dimensional space where they are separable.

Making the Threshold Zero

- A simplification: we can arrange that $\theta=0$.
- Replace each d-dimensional training point \mathbf{x} by ($\mathbf{x},-1$), a ($d+1$)-dimensional vector with -1 as its last component.
- Replace unknown vector w (the normal to the separating hyperplane) by (w, θ).
- I.e., add a (d+1)st unknown component, which effectively functions as the threshold.
- Then $\mathbf{x . w}>\theta$ if and only if $(\mathbf{x},-1) .(\mathbf{w}, \theta)>0$.

Previous Example, Continued

- The positive training points $(3,6)$ and $(5,3)$ become ($3,6,-1$) and ($5,3,-1$).
- The negative training points $(1,4),(3,3)$, and $(3,1)$ become $(1,4,-1),(3,3,-1)$, and ($3,1,-1$).
- Since we know $\mathbf{w}=(1,1)$ and $\theta=7$ separated the original points, then $\mathbf{w}^{\prime}=(1,1,7)$ and $\theta=0$ will separate the new points.
- Example: $(3,6,-1) .(1,1,7)>0$ and $(1,4,-1) .(1,1,7) \leq 0$.

Training a Perceptron

- Assume threshold $=0$.
- Pick a learning rate η, typically a small fraction.
- Start with w = (0, 0,..., 0).
- Consider each training example (\mathbf{x}, y) in turn, until there are no misclassified points.
- Use y = +1 for positive examples, y = -1 for negative.
- If $\mathbf{x . w}$ has a sign different from y, then this is a misclassified point.
- Special case: also misclassified if $\mathbf{x . w}=0$.

Training - (2)

- If (\mathbf{x}, \mathbf{y}) is misclassified, adjust \mathbf{w} to accommodate \mathbf{x} slightly.
- Replace \mathbf{w} by $\mathbf{w}^{\prime}=\mathbf{w}+\eta y \mathbf{x}$.
- Note $\mathbf{x} . \mathbf{w}^{\prime}=\mathbf{x} . \mathbf{w}+\eta \mathbf{y}|\mathbf{x}|^{2}$.
- That is, if $\mathbf{y}=+1$, then the dot product of \mathbf{x} with \mathbf{w}^{\prime}, which was negative, has been increased by η times the square of the length of \mathbf{x}.
- Similarly, if $\mathrm{y}=-1$, the dot product has decreased.
- May still have the wrong sign, but we're headed in the right direction.

Example: Training

Name	x	y
A	$(1,4,-1)$	-1
B	$(3,3,-1)$	-1
C	$(3,1,-1)$	-1
D	$(3,6,-1)$	+1
E	$(5,3,-1)$	+1

$$
w=(0,0,0)
$$

Use A: misclassified. New w= $(0,0,0)+(1 / 3)(-1)(1,4,-1)=(-1 / 3,-4 / 3,1 / 3)$.

Use B: OK; Use C: OK.
Use D: misclassified. New w=
$(-1 / 3,-4 / 3,1 / 3)+(1 / 3)(+1)(3,6,-1)=(2 / 3,2 / 3,0)$.
Use E: OK.
Use A: misclassified. New w=
$(2 / 3,2 / 3,0)+(1 / 3)(-1)(1,4,-1)=(1 / 3,-2 / 3,-1 / 3)$.

Parallelization

- Convergence is an inherently sequential process.
- We change w at each step, which can change:

1. Which training points are misclassified.
2. What the next vector w^{\prime} is.

However, if the learning rate is small, these changes are not great at each step.

- It is generally safe to process many training points at once, obtain the increments to \mathbf{w} for each, and add them all at once.

Picking the Training Rate

- A very small training rate causes convergence to be slow.
- Too large a training rate can cause oscillation and may make convergence impossible, even if the training points are linearly separable.

The Problem With High Training Rate

The Winnow Algorithm

- Perceptron learning for binary training examples.
- I.e., assume components of input vector \mathbf{x} are 0 or 1; outputs y are -1 or +1 .
- Uses a threshold θ, usually the number of dimensions of the input vector or half that number.
- Select a training rate $0<\eta<1$.
- Initial weight vector \mathbf{w} is $(1,1, \ldots, 1)$.

Winnow Algorithm - (2)

- Visit each training example (\mathbf{x}, y) in turn, until convergence.
- If $\mathbf{x} . \mathbf{w}>\theta$ and $\mathbf{y}=+1$, or $\mathbf{x . w}<\theta$ and $\mathbf{y}=-1$, we're OK, so make no change to \mathbf{w}.
- If $\mathbf{x} . \mathbf{w} \geq \theta$ and $\mathbf{y}=-1$, lower each component of \mathbf{w} where \mathbf{x} has value 1 .
- More precisely: IF $x_{i}=1$ THEN replace w_{i} by ηw_{i}.
- If $\mathbf{x} . \mathbf{w} \leq \theta$ and $\mathbf{y}=+1$, raise each component of \mathbf{w} where \mathbf{x} has value 1 .
- More precisely: IF $x_{i}=1$ THEN replace w_{i} by w_{i} / η.

Example: Winnow Algorithm

Viewer	Star Wars	Martian	Aveng- ers	Titanic	Lake House	You've Got Mail	y
A	0	1	1	1	1	0	+1
B	1	1	1	0	0	0	+1
C	0	1	0	1	1	0	-1
D	0	0	0	1	0	1	-1
E	1	0	1	0	0	1	+1

Goal is to classify "Scifi" viewers (+1) versus "Romance" (-1). Initial w = (1, 1, 1, 1, 1, 1).
Threshold: $\theta=6$.
Use $\eta=1 / 2$.

Example: Winnow - (2)

	S	M	A	T	L	Y	Y
A	0	1	1	1	1	0	+1
B	1	1	1	0	0	0	+1
C	0	1	0	1	1	0	-1
D	0	0	0	1	0	1	-1
E	1	0	1	0	0	1	+1

$\mathbf{w}=(1,1,1,1,1,1)$.
Use A: misclassified. $\mathbf{x} . \mathbf{w}=4 \leq 6$.
New w = (1, 2, 2, 2, 2, 1).
Use B: misclassified. x. $\mathbf{w}=5 \leq 6$.
New w = (2, 4, 4, 2, 2, 1).
Use C: misclassified. $\mathbf{x} . \mathbf{w}=8>6$.
New $\mathbf{w}=(2,2,4,1,1,1)$.
Now, D, E, A, B, C are all OK, so done.

Question for thought:
Would this work if inputs were arbitrary reals, not just 0, 1?

Support-Vector Machines

Problem with Perceptrons
Linearly Separable Data
Dealing with Nonseparable Data

Problems With Perceptrons

1. Not every dataset is linearly separable.

- More common: a dataset is "almost" separable, but with a small fraction of the points on the wrong side of the boundary.

2. Perceptron design stops as soon as a linear separator is found.

- May not be the best boundary for separating the data to which the perceptron is applied, even if the training data is a random sample from the full dataset.

Example: Problem

Either red or blue line separates training points. Can give different answers for many points.

Intuition Behind SVM

- By designing a better cost function, we can force the separating hyperplane to be as far as possible from the points in either class.
- Reduces the likelihood that points in the test or validation sets will be misclassified.
- Later, we'll also consider picking a hyperplane for nonseparable data, in a way that minimizes the "damage."

Example: One Candidate

Margin γ

Separating hyperplane.
$(1,4),(3,3)$, and $(5,3)$ are the support vectors, limiting the margin for this choice of hyperplane.

Call these the "upper" and "lower" hyperplanes.

Example: Hyperplane With Larger γ

Margin γ

Maximizing γ

- Goal: find w (the normal to the separating hyperplane) and b (the constant that positions the separating hyperplane) to maximize γ, subject to the constraints that for each training example (\mathbf{x}, y), we have $\mathrm{y}(\mathbf{w} . \boldsymbol{x}+\mathrm{b}) \geq \gamma$.
- That is, if $y=+1$, then point \mathbf{x} is at least γ above the separating hyperplane, and if $\mathbf{y}=-1$, then \mathbf{x} is at least γ below.
- Problem: scale of w and b.
- Double wand band we can double γ.

Maximizing $\gamma-(2)$

- Solution: require $|\mathbf{w}|$ to be the unit of length for γ.
- Equivalent formulation: require that the constant terms in the upper and lower hyperplanes (those that are parallel to the separating hyperplanes, but just touch the support vectors) be $b+1$ and $b-1$.
- The problem of maximizing γ, computed in units of $|\mathbf{w}|$, is equivalent to minimizing $|\mathbf{w}|$ subject to the constraint that all points are outside the upper and lower hyperplanes.
- Why? We forced the margin to be 1 , so the smaller \mathbf{w} is, the larger γ looks in units of $|\mathbf{w}|$.

Example: Unit Separation

Margin γ

Separating hyperplane $\mathbf{w} \cdot \mathbf{x}+\mathrm{b}=0$.

Upper hyperplane $\mathbf{w} \cdot \mathbf{x + b}=1$.

Lower hyperplane $\mathbf{w} . \mathbf{x}+\mathrm{b}=-1$.

Example: Constraints

- Consider the running example, with positive points $(3,6)$ and $(5,3)$, and with negative points $(1,4),(3,3)$, and $(3,1)$.
- Let $\mathbf{w}=(u, v)$.
- Then we must minimize $|\mathbf{w}|$ subject to:
- $3 u+6 v+b \geq 1$.
- $5 u+3 v+b \geq 1$.
- $u+4 v+b \leq-1$.
- $3 u+3 v+b \leq-1$.
- $3 u+v+b \leq-1$.

Solving the Constraints

- This is almost a linear program.
- Difference: the objective function $\operatorname{sqrt}\left(u^{2}+v^{2}\right)$ is not linear.
- Cheat: if we believe the blue hyperplane with support vectors $(3,6),(5,3)$, and $(3,3)$ is the best we can do, then we know that the normal to this hyperplane has $v=2 u / 3$, and we only have to minimize u.

Solving the Constraints if $v=2 \mathbf{u} / 3$

Point	Constraint	If $v=2 u / 3$		
$(3,6)$	$3 u+6 v+b \geq 1$	$7 u+b \geq 1$		
$(5,3)$	$5 u+3 v+b \geq 1$	$7 u+b \geq 1$		
$(1,4)$	$u+4 v+b \leq-1$	$11 u / 3+b \leq-1$		
$(3,3)$	$3 u+3 v+b \leq-1$	$5 u+b \leq-1$	\quad	Constraints of support vectors
:---				
$(3,1)$				
$3 u+v+b \leq-1$				

Remember This Hyperplane With a Smaller Margin?

Margin γ

Separating hyperplane.

The normal to the hyperplane, w, has slope 2 , so $v=2 u$.

Here's What Happens if v=2u

Point	Constraint	If $\mathrm{v}=2 \mathrm{U}$	Constraints of support vec are hardest to satisfy.
$(3,6)$	$3 u+6 v+b \geq 1$	$15 u+b \geq 1$	
$(5,3)$	$50+3 v+b \geq 1$	$110+b \geq 1$	
$(1,4)$	$u+4 v+b \leq-1$	$9 \mathrm{e}+\mathrm{b} \leq-1$	Smallest u is when
$(3,3)$	$3 u+3 v+b \leq-1$	$90+b \leq-1$	$u=1, v=2, b=-10$.
$(3,1)$	$3 u+v+b \leq-1$	$5 \mathrm{u}+\mathrm{b} \leq-1$	
			$\|\mathbf{w}\|=\operatorname{sqrt}\left(1^{2}+2^{2}\right)=2.236$.

Since we want the minimum $|\mathbf{w}|$, we prefer the previous hyperplane.

Did That Look Too Easy?

- 2 dimensions is not that hard.
- In general there are $\mathrm{d}+1$ support vectors for d dimensional data.
- Support vectors must lie on the convex hulls of the sets of positive and negative points.
- Once you find a candidate separating hyperplane and its parallel upper and lower hyperplanes, you can calculate $|\mathbf{w}|$ for that candidate.
- But there is a more general approach, next.

Nonseparable Data

New Goal

- We'll still assume that we want a "separating" hyperplane $\mathbf{w} \cdot \mathbf{x}+\mathrm{b}=0$ defined by normal vector \mathbf{w} and constant b.
- And to establish the length of \mathbf{w}, we take the upper and lower hyperplanes to be $\mathbf{w} \cdot \mathbf{x}+\mathrm{b}=+1$ and $\mathbf{w} \cdot \mathbf{x}+\mathrm{b}=-1$.
- Allow points to be inside the upper and lower hyperplanes, or even entirely on the wrong side of the separator.

New Goal - (2)

- Minimize a cost function that includes:

1. The square of the length of \mathbf{w} (to encourage a small |w|), and
2. A term that penalizes points that are either:
a. On the right side of the separator, but on the wrong side of the upper or lower hyperplanes.
b. On the wrong side of the separator.

- The term (2) is hinge loss =
- 0 if point is on the right side of the upper or lower hyperplane.
" Otherwise linear in the amount of "wrong."

Hinge Loss Function

- Let w.x + b = 0 be the separating hyperplane, and let (\mathbf{x}, y) be a training example. $\quad-y(\mathbf{w}, \mathbf{x}+\mathrm{b}) \longrightarrow$
- The hinge loss for this point is $\max (0,1-y(\mathbf{w} \cdot x+b))$.
- Example: If $y=+1$ and $\mathbf{w} \cdot \mathbf{x}+b=2$, loss $=0$.
- Point \mathbf{x} is properly classified and beyond the upper hyperplane.
- Example: If $y=+1$ and $\mathbf{w} . \boldsymbol{x}+b=1 / 3$, loss $=2 / 3$.
- Point \mathbf{x} is properly classified but not beyond the upper hyperplane.
- Example: If $\mathbf{y}=-1$ and $\mathbf{w} \cdot \mathbf{x}+b=2$, loss $=3$.
- Point \mathbf{x} is completely misclassified.

Expression to Be Minimized

- Let there be n training examples ($\left.\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$.
- The cost expression:
$f(\mathbf{w}, \mathrm{~b})=|\mathbf{w}|^{2} / 2+C \Sigma_{\mathrm{j}=1, \ldots, \mathrm{n}} \max \left(0,1-\mathrm{y}_{\mathrm{j}}\left(\mathbf{w} \cdot \mathbf{x}_{\mathrm{j}}+\mathrm{b}\right)\right)$
- C is a constant to be chosen.
- Solve by gradient descent.
- Remember, $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{d}\right)$ and each $\mathbf{x}_{j}=$ $\left(x_{j 1}, x_{j 2}, \ldots, x_{j d}\right)$.
- Take partial derivatives with respect to each w_{i}.
- First term has derivative w_{i}.
- Which, BTW, is why we divided by 2 for convenience.

Gradient Descent - (2)

- The second term $C \sum_{\mathrm{j}=1, \ldots, \mathrm{n}} \max \left(0,1-\mathrm{y}_{\mathrm{j}}\left(\mathbf{w} \cdot \mathbf{x}_{\mathrm{j}}+\mathrm{b}\right)\right)$ is trickier.
- There is one term in the partial derivative with respect to w_{i} for each j.
- If $y_{j}\left(w \cdot x_{j}+b\right) \geq 1$, then this term is 0 .
- But if not, then this term is $-\mathrm{Cy}_{\mathrm{j}} \mathrm{x}_{\mathrm{ji}}$.
- So given the current w, you need first to sort out which x_{j} 's give 0 and which give $-\mathrm{C} \mathrm{y}_{\mathrm{j}} \mathrm{x}_{\mathrm{ji}}$ before you can compute the partial derivatives.

When C is Small

OK to misclassify some points in order to get a large margin.

Bad point. What if it is an error and really should be positive?

Separator makes sense, especially if the bad point really is misclassified.

When C is Large

Margin must be small so there are no misclassified points or points inside the margins.

-

-

Makes sense if you believe the bad point is correctly classified and cannot tolerate even a few errors.

Note also: If you use the first method, where points inside the margins are forbidden absolutely, this is what you get.

