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 We are given a set of training examples, 
consisting of input-output pairs (x,y), where: 

1. x is an item of the type we want to evaluate. 

2. y is the value of some function f(x). 

 Example: x is an email, and f(x) is +1 if x is 
spam and -1 if not. 

 Binary classification. 

 Example: x is a vector giving characteristics of 
a voter, and y is their preferred candidate. 

 More general classification. 
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 In general, input x can be of any type. 
 Often, output y is binary. 

 Usually represented as +1 = true, or “in the class” 
and -1 = false, or “not in the class.” 

 Called binary classification. 

 y can be one of a finite set of categories. 

 Called classification. 

 y can be a real number. 

 Called regression. 
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 Supervised learning is building, from the 
training data, a model that closely represents 
the function y = f(x). 

 Example: If x and y are real numbers, the model 
of f might be a straight line. 

 Example: if x is a email and y is +1 or -1, the 
model might be weights on words together 
with a threshold such that the answer is +1 
(spam) if the weighted sum of the words in the 
email exceeds the threshold. 
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 A decision tree is a model in the form of a tree 
where: 

 Interior nodes have tests about the value of x, with 
one child for each possible outcome of the test. 

 Leaves have a value for f(x). 

 Given an x to be tested, start at the root, and 
perform the tests, moving to the proper child. 

 When you reach a leaf, declare the value of f(x) 
to be whatever is found at that leaf. 
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 We need to choose a loss function that 
measures how well or badly a given model 
represents the function y = f(x). 

 Common choice: the fraction of x’s for which 
the model gives a value different from y. 

 Example: if we use a model of email spam that 
is a weight for each word and a threshold, then 
the loss for given weights + threshold could be 
the fraction of misclassified emails. 
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 But are all errors equally bad? 
 Question for thought: do you think that the loss 

should be the same for a good email classified 
as spam and a spam email passed to the user’s 
inbox? 

 If y is a numerical value, cost could be the 
average magnitude of the difference between 
f(x) as computed by the model, and the true y. 

 Or square each error (like RMSE). 

 Subtle point: squaring errors makes the loss function much 
more tolerant of small errors, but not big ones. 
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 Given training data and a form of model you 
wish to develop, find the instance of the model 
that minimizes the loss on the training data. 

 Example: For the email-spam problem, 
incrementally adjust weights on words until 
small changes cannot decrease the probability 
of misclassification. 

 Example: design a decision tree top-down, 
picking at each node the test that makes the 
branches most homogeneous. 
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 Divide your data randomly 
into training and test data. 

 Build your best model based 
on the training data only. 

 Apply your model to the test 
data. 

 Does your model predict y’ 
for the test data as well as it 
predicted y for the training 
data? 
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 Sometimes, your model will show much greater 
loss on the test data than on the training data. 

 Called overfitting. 

 The problem is that the modeling process has 
picked up on details of the training data that are 
so fine-grained that they do not apply to the 
population from which the data is drawn. 

 Example: a decision tree with so many levels 
that the typical leaf is reached by only one 
member of the training set. 
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 The test data helps you measure overfitting. 
 But you want your model to work not only on 

the test data, but on all the unseen data that it 
will eventually be called upon to process. 

 The validation set. 

 If the training and test sets are truly drawn at 
random from the population of all data, and the 
test set shows little overfitting, then the model 
should not exhibit overfitting on real data. 

 A big “if,” e.g., with email spam, where the 
population is always changing. 
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 Given a query q (a data point), find the nearest 
inputs (values of x) in the training set. 

 Combine the outputs y associated with these 
values of x, in some way. 

 Result is the estimated output for the query q. 
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 Input for training set is a number. 
 Output is the value of some function. 
 For any query point, take the two nearest points 

in the training set and 

a. (Option 1): Average their outputs. 

b. (Option 2): Take the average of their outputs, 
weighted by the distance to the other point. 

 I.e., give more influence to the closer point. 
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1. How do we find nearest neighbors, especially 
in very high-dimensional spaces? 

2. How many neighbors do we consider? 
3. How do we weight the influence of each near 

neighbor? 
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 For some chosen k, find the k training points 
nearest to the query point q, according to some 
distance measure d. 

 If y is numerical, blend the y’s for the k nearest 
x’s. 

 Weight (inversely) by distance or just take the average. 

 If y is not numerical, combine in some 
appropriate way. 

 Example: If y is a category (e.g., a presidential 
candidate), take the value appearing most often. 
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 All training points contribute to the estimate of 
y for a query point q. 

 Assumes some distance function d. 
 Weight of training point x is a function g (the 

kernel function) of d(x,q). 
 Predict f(q) = average of y’s for all training 

points, weighted by g(d(x,q)). 
 Common example: g(d) is a scaled Gaussian 

distribution c*exp(-d2/2). 
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 Many data structures that have been designed 
to find near neighbors of a query point in a 
high-dimensional space (somewhat) efficiently: 
kd-trees, Quad trees, R-trees, Grid files. 

 Not covered in CS246; may be worth Googling. 
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 Locality-sensitive hashing may be an option. 
 Previously used, in LSH discussion, for many-

many similarity search. 
 Rather, bucketize the training set as if you were 

looking for similar training points. 
 Given query point q, hash it to buckets using 

the same process as for the training points. 
 Compare q with members of all the buckets into 

which it falls, but do not add it to the buckets. 
 As usual, false negatives are possible. 
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Some material borrowed from Hendrik Blockeel 



 We are given a training set of input/output 
pairs (x,y). 

 Inputs x are vectors whose components 
correspond to attributes of entities. 

 Our goal is to build a decision tree, where each 
node looks at the value of one attribute and 
sends us to one of its two children (left or 
right), depending on that value. 

 Leaves declare a value for the output y. 

 Hopefully, all the inputs that get us to that leaf have 
the same y; else there are incorrect classifications. 
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 At each step of the decision-tree construction, we 
are at one node of the tree, and we have a set S 
of training examples getting us to that node. 

 Our goal is to find a test that partitions S into sets 
S1 and S2 that are as close to pure (all examples 
in the set have the same output) as possible. 

 Tests are normally simple: compare one attribute 
to a value, not complex logical expressions. 

 Not allowed: “IF Age < 30 AND (hair != “blond” OR 
eyes = “blue”) AND …” 
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 Let p1,…,pk be the fractions of members of S 
with the k possible values of y. 

1. Accuracy: if output is the most common value of y, 
what fraction of inputs in the set S are not given 
their correct output; i.e., 1 – maxi pi. 

2. GINI Impurity: 1 – i (pi)
2. 

3. Entropy: i –pi log2pi or equivalently i pi log2(1/pi). 
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 Suppose S consists of examples with three 
possible outputs, with probabilities 2/3, 1/4, 
and 1/12. 

 Note: We are measuring impurity, so high is bad. 

 Accuracy-based impurity = 1/4 + 1/12 = 1/3. 
 GINI = 1 – (2/3)2 – (1/4)2 – (1/12)2 = 35/72. 
 Entropy = (2/3) log(3/2) + 1/4 log(4) +           

1/12 log(12) = 1.19. 
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Question for thought: Didn’t 
the previous slide have an 
example with Entropy = 1.19? 
How can 1.0 be the maximum 
entropy? 



1. If a set S is pure, then its impurity measure is 0. 
2. Impurity is concave downward. 
 GINI and Entropy have these properties; 

Accuracy lacks (2). 
 When we partition S into S1 and S2, we gain 

according to impurity measure M if                       
|S1|M(S1) + |S2|M(S2) < |S|M(S). 

 I.e., the weighted-average impurity drops. 
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M(S2) 

M(S) 
M(S1) 

Fraction in Class 1 

Loss? 

Question for thought: What 
if both S1 and S2 are on the 
same side of S. 
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Fraction in Class 1 

M(S1) 
M(S) 

M(S2) 

Gain as long as the dominant 
classes of S1 and S2 are different. 
Otherwise, M(S) is the weighted 
average of M(S1) and M(S2), so 
no gain. 
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Fraction in Class 1 

M(S1) 

M(S) 

M(S2) 

No gain if the dominant classes of 
S1 and S2 are the same. 



 Given set S of examples, we want to find the 
simple test that partitions S into S1 and S2 in a 
way that maximizes the gain. 

 Consider each component of the input vector to 
see which simple comparison breaks S into the 
sets with the lowest weighted-average impurity. 

 Case 1: numerical attributes. 

 Comparisons are of the form attribute < constant. 

 Case 2: discrete-value attributes. 

 Comparisons are of the form attribute in {set of 
values} 
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 Consider an attribute (component of x) A with a 
numerical value. 

 Sort the set of examples S according to A. 
 Visit each example (x,y) in sorted order. 
 Keep a running count of the number of 

examples in each class. 
 As we visit each example, compute the measure 

M (e.g., GINI or Entropy) assuming the split is 
just after that example. 

 Remember the point at which the minimum M 
occurs; that is the best split using A. 
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Example, 
assumes x = A 

M(S1) if S1 
ends here 

M(S2) if S2 
begins below 

Weighted 
average 

(10, -1) 0 12/25 2/5 

(12, +1) 1/2 1/2 1/2 

(15, -1) 4/9 4/9 4/9 

(19, -1) 3/8 0 1/4 

(24, +1) 12/25 0 2/5 

(30, +1) 

Best choice: test = A < 20 
(or maybe A < 21.5 to split 
the difference between 
19 and 24). 

Example: for the test A < 11, M(S1) = 0; 
M(S2) = 1 – (2/5)2 – (3/5)2 = 12/25. 
Weighted average = (1/6)*0 + (5/6)*12/25 = 2/5. 
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10, 12, 15, 19, 24, 30 

10, 12, 15, 19 

24, 30 10, 12 

15, 19 

10 12 

Note: decisions need 
not be based on this 
one attribute. 



 Sorting can be done with a lot of parallelism. 

 “Batcher Sort uses O(log2n) rounds, and there are 
O(log n) expected-time randomized algorithms. 

 More relevant: two-pass external (disk-based) 
parallel mergesort can be done on petabytes 
today. 
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 We can compute the best split for each 
numerical attribute in parallel. 

 Remember, what we showed in the example was 
only for one of possibly many attributes, and we 
want only the split with the biggest gain. 

 Computing the running sum of occurrences of 
each output value is also parallelizable in     
O(log n) rounds. 

 Parallel algorithm on next slide. 

 From these sums, you can compute the impurity of a 
split at each point, in parallel. 
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 Given a1, a2,…, an, compute xi = j=1,2,…,i ai for all i. 
 Basis: if n=1, then x1 = a1. 
 Induction: In parallel, compute the accumulated 

sums for the left half a1,…,an/2 and for the right 
half a(n/2)+1,…,an. 

 Then, add xn/2 from the left half to every sum 
from the right half, in one parallel step. 

 Application: Let ai be 1 if the i-th training 
example is positive, 0 if negative. 

 Or vice-versa. 
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Left-Half Accumulated 
Sums  

Right-Half Accumulated 
Sums  

xn/2 Add to each 

… 
… 

… 

All Accumulated Sums  



 For each value of the discrete attribute A, 
compute the number of positive and negative 
examples in the training set. 

 Sort the values of A by the fraction of positive 
examples. 

 Visit each value in sorted order, keeping a 
running count of the number of examples in 
each class. 

 For each prefix of the value list, apply the 
impurity measure, and remember the best. 
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Value of 
attribute 

Positive 
examples 

Negative 
examples 

M(S1) if S1 
ends here 

M(S2) if S2 
begins below 

Weighted 
average 

a 10 1 .165 .499 .420 

b 7 3 .308 .480 .401 

c 6 5 .404 .408 .405 

d 4 10 

Positive = 17; negative = 4. 
1 – (17/21)2 – (4/21)2 = .308. Best choice. 

Count of S1 = 10+1+7+3 = 21. 
Count of S2 = 6+5+4+10 = 25. 
Weighted average = 
.308*(21/46) + .480*(25/46). 



 Counting positive and negative examples for 
each attribute value is a group-and-aggregate. 

 One round of MapReduce suffices. 

 Sorting attribute values is O(log2n) at most. 

 Note: this “n” is the number of different values of 
the attribute, not the number of training examples. 

 Accumulated sums of positive and negative 
examples is O(log n). 
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 As we build the decision tree top-down, we 
double the number of nodes at each level. 

 But each training example goes with only one 
node at each level. 

 Thus, the total work is the same at each level. 
 And we can work on all the nodes at a level in 

parallel. 
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 We can add levels to the tree until all leaves are 
pure. 

 At that point, there is 100% accuracy on the 
training set. 

 But there might be significant error on the test 
set, because we have wildly overfit to the 
training set. 

 Post-pruning eliminates interior nodes if they 
do not contribute (much) to the accuracy on the 
test set. 
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 Eliminate the test at a node N, both of whose 
children are leaves. 

 Makes N a leaf; give it the output that is the 
majority of its children. 

 Compare the performance of the original tree 
and the pruned tree on the test set. 

 If difference is small, accept the pruning and 
repeat. 

 If the difference is large, restore the children 
and look for other places to prune. 
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Is this node 
useful? 
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< 20 

< 13 1 

-1 1 

Y 
N 

Y N 

Since an equal number of training examples 
went to either side, we picked +1 arbitrarily. 

Does the error rate (on the test set) 
for this tree exceed by much the error 
Rate for the tree on the previous slide? 


