
Jeffrey D. Ullman
Stanford University/Infolab

 We are given a set of training examples,
consisting of input-output pairs (x,y), where:

1. x is an item of the type we want to evaluate.

2. y is the value of some function f(x).

 Example: x is an email, and f(x) is +1 if x is
spam and -1 if not.

 Binary classification.

 Example: x is a vector giving characteristics of
a voter, and y is their preferred candidate.

 More general classification.

3

 In general, input x can be of any type.
 Often, output y is binary.

 Usually represented as +1 = true, or “in the class”
and -1 = false, or “not in the class.”

 Called binary classification.

 y can be one of a finite set of categories.

 Called classification.

 y can be a real number.

 Called regression.

4

 Supervised learning is building, from the
training data, a model that closely represents
the function y = f(x).

 Example: If x and y are real numbers, the model
of f might be a straight line.

 Example: if x is a email and y is +1 or -1, the
model might be weights on words together
with a threshold such that the answer is +1
(spam) if the weighted sum of the words in the
email exceeds the threshold.

5

 A decision tree is a model in the form of a tree
where:

 Interior nodes have tests about the value of x, with
one child for each possible outcome of the test.

 Leaves have a value for f(x).

 Given an x to be tested, start at the root, and
perform the tests, moving to the proper child.

 When you reach a leaf, declare the value of f(x)
to be whatever is found at that leaf.

6

7

Age < 30
Y N

Intelligence
Stupid Very Stupid

Sanders

Liberal?
Y N

Clinton Cruz Trump

 We need to choose a loss function that
measures how well or badly a given model
represents the function y = f(x).

 Common choice: the fraction of x’s for which
the model gives a value different from y.

 Example: if we use a model of email spam that
is a weight for each word and a threshold, then
the loss for given weights + threshold could be
the fraction of misclassified emails.

8

 But are all errors equally bad?
 Question for thought: do you think that the loss

should be the same for a good email classified
as spam and a spam email passed to the user’s
inbox?

 If y is a numerical value, cost could be the
average magnitude of the difference between
f(x) as computed by the model, and the true y.

 Or square each error (like RMSE).

 Subtle point: squaring errors makes the loss function much
more tolerant of small errors, but not big ones.

9

 Given training data and a form of model you
wish to develop, find the instance of the model
that minimizes the loss on the training data.

 Example: For the email-spam problem,
incrementally adjust weights on words until
small changes cannot decrease the probability
of misclassification.

 Example: design a decision tree top-down,
picking at each node the test that makes the
branches most homogeneous.

10

11

 Divide your data randomly
into training and test data.

 Build your best model based
on the training data only.

 Apply your model to the test
data.

 Does your model predict y’
for the test data as well as it
predicted y for the training
data?

X Y

X’ Y’

Training

data

Test

data

 Sometimes, your model will show much greater
loss on the test data than on the training data.

 Called overfitting.

 The problem is that the modeling process has
picked up on details of the training data that are
so fine-grained that they do not apply to the
population from which the data is drawn.

 Example: a decision tree with so many levels
that the typical leaf is reached by only one
member of the training set.

12

 The test data helps you measure overfitting.
 But you want your model to work not only on

the test data, but on all the unseen data that it
will eventually be called upon to process.

 The validation set.

 If the training and test sets are truly drawn at
random from the population of all data, and the
test set shows little overfitting, then the model
should not exhibit overfitting on real data.

 A big “if,” e.g., with email spam, where the
population is always changing.

13

 Given a query q (a data point), find the nearest
inputs (values of x) in the training set.

 Combine the outputs y associated with these
values of x, in some way.

 Result is the estimated output for the query q.

15

 Input for training set is a number.
 Output is the value of some function.
 For any query point, take the two nearest points

in the training set and

a. (Option 1): Average their outputs.

b. (Option 2): Take the average of their outputs,
weighted by the distance to the other point.

 I.e., give more influence to the closer point.

16

17

x

y

18

x

y

1. How do we find nearest neighbors, especially
in very high-dimensional spaces?

2. How many neighbors do we consider?
3. How do we weight the influence of each near

neighbor?

19

 For some chosen k, find the k training points
nearest to the query point q, according to some
distance measure d.

 If y is numerical, blend the y’s for the k nearest
x’s.

 Weight (inversely) by distance or just take the average.

 If y is not numerical, combine in some
appropriate way.

 Example: If y is a category (e.g., a presidential
candidate), take the value appearing most often.

20

 All training points contribute to the estimate of
y for a query point q.

 Assumes some distance function d.
 Weight of training point x is a function g (the

kernel function) of d(x,q).
 Predict f(q) = average of y’s for all training

points, weighted by g(d(x,q)).
 Common example: g(d) is a scaled Gaussian

distribution c*exp(-d2/2).

21

 Many data structures that have been designed
to find near neighbors of a query point in a
high-dimensional space (somewhat) efficiently:
kd-trees, Quad trees, R-trees, Grid files.

 Not covered in CS246; may be worth Googling.

22

 Locality-sensitive hashing may be an option.
 Previously used, in LSH discussion, for many-

many similarity search.
 Rather, bucketize the training set as if you were

looking for similar training points.
 Given query point q, hash it to buckets using

the same process as for the training points.
 Compare q with members of all the buckets into

which it falls, but do not add it to the buckets.
 As usual, false negatives are possible.

23

Some material borrowed from Hendrik Blockeel

 We are given a training set of input/output
pairs (x,y).

 Inputs x are vectors whose components
correspond to attributes of entities.

 Our goal is to build a decision tree, where each
node looks at the value of one attribute and
sends us to one of its two children (left or
right), depending on that value.

 Leaves declare a value for the output y.

 Hopefully, all the inputs that get us to that leaf have
the same y; else there are incorrect classifications.

25

 At each step of the decision-tree construction, we
are at one node of the tree, and we have a set S
of training examples getting us to that node.

 Our goal is to find a test that partitions S into sets
S1 and S2 that are as close to pure (all examples
in the set have the same output) as possible.

 Tests are normally simple: compare one attribute
to a value, not complex logical expressions.

 Not allowed: “IF Age < 30 AND (hair != “blond” OR
eyes = “blue”) AND …”

26

 Let p1,…,pk be the fractions of members of S
with the k possible values of y.

1. Accuracy: if output is the most common value of y,
what fraction of inputs in the set S are not given
their correct output; i.e., 1 – maxi pi.

2. GINI Impurity: 1 – i (pi)
2.

3. Entropy: i –pi log2pi or equivalently i pi log2(1/pi).

27

 Suppose S consists of examples with three
possible outputs, with probabilities 2/3, 1/4,
and 1/12.

 Note: We are measuring impurity, so high is bad.

 Accuracy-based impurity = 1/4 + 1/12 = 1/3.
 GINI = 1 – (2/3)2 – (1/4)2 – (1/12)2 = 35/72.
 Entropy = (2/3) log(3/2) + 1/4 log(4) +

1/12 log(12) = 1.19.

28

29

p = 0 p = 1

0.5

1.0

Accuracy

Gini

Entropy

Question for thought: Didn’t
the previous slide have an
example with Entropy = 1.19?
How can 1.0 be the maximum
entropy?

1. If a set S is pure, then its impurity measure is 0.
2. Impurity is concave downward.
 GINI and Entropy have these properties;

Accuracy lacks (2).
 When we partition S into S1 and S2, we gain

according to impurity measure M if
|S1|M(S1) + |S2|M(S2) < |S|M(S).

 I.e., the weighted-average impurity drops.

30

31

M(S2)

M(S)
M(S1)

Fraction in Class 1

Gain

32

M(S2)

M(S)
M(S1)

Fraction in Class 1

Loss?

Question for thought: What
if both S1 and S2 are on the
same side of S.

33

Fraction in Class 1

M(S1)
M(S)

M(S2)

Gain as long as the dominant
classes of S1 and S2 are different.
Otherwise, M(S) is the weighted
average of M(S1) and M(S2), so
no gain.

34

Fraction in Class 1

M(S1)

M(S)

M(S2)

No gain if the dominant classes of
S1 and S2 are the same.

 Given set S of examples, we want to find the
simple test that partitions S into S1 and S2 in a
way that maximizes the gain.

 Consider each component of the input vector to
see which simple comparison breaks S into the
sets with the lowest weighted-average impurity.

 Case 1: numerical attributes.

 Comparisons are of the form attribute < constant.

 Case 2: discrete-value attributes.

 Comparisons are of the form attribute in {set of
values}

35

 Consider an attribute (component of x) A with a
numerical value.

 Sort the set of examples S according to A.
 Visit each example (x,y) in sorted order.
 Keep a running count of the number of

examples in each class.
 As we visit each example, compute the measure

M (e.g., GINI or Entropy) assuming the split is
just after that example.

 Remember the point at which the minimum M
occurs; that is the best split using A.

36

37

Example,
assumes x = A

M(S1) if S1
ends here

M(S2) if S2
begins below

Weighted
average

(10, -1) 0 12/25 2/5

(12, +1) 1/2 1/2 1/2

(15, -1) 4/9 4/9 4/9

(19, -1) 3/8 0 1/4

(24, +1) 12/25 0 2/5

(30, +1)

Best choice: test = A < 20
(or maybe A < 21.5 to split
the difference between
19 and 24).

Example: for the test A < 11, M(S1) = 0;
M(S2) = 1 – (2/5)2 – (3/5)2 = 12/25.
Weighted average = (1/6)*0 + (5/6)*12/25 = 2/5.

38

< 20

< 11

< 13 1

-1

1 -1

Y
N

Y

Y N

N

10, 12, 15, 19, 24, 30

10, 12, 15, 19

24, 30 10, 12

15, 19

10 12

Note: decisions need
not be based on this
one attribute.

 Sorting can be done with a lot of parallelism.

 “Batcher Sort uses O(log2n) rounds, and there are
O(log n) expected-time randomized algorithms.

 More relevant: two-pass external (disk-based)
parallel mergesort can be done on petabytes
today.

39

 We can compute the best split for each
numerical attribute in parallel.

 Remember, what we showed in the example was
only for one of possibly many attributes, and we
want only the split with the biggest gain.

 Computing the running sum of occurrences of
each output value is also parallelizable in
O(log n) rounds.

 Parallel algorithm on next slide.

 From these sums, you can compute the impurity of a
split at each point, in parallel.

40

 Given a1, a2,…, an, compute xi = j=1,2,…,i ai for all i.
 Basis: if n=1, then x1 = a1.
 Induction: In parallel, compute the accumulated

sums for the left half a1,…,an/2 and for the right
half a(n/2)+1,…,an.

 Then, add xn/2 from the left half to every sum
from the right half, in one parallel step.

 Application: Let ai be 1 if the i-th training
example is positive, 0 if negative.

 Or vice-versa.

41

42

Left-Half Accumulated
Sums

Right-Half Accumulated
Sums

xn/2 Add to each

…
…

…

All Accumulated Sums

 For each value of the discrete attribute A,
compute the number of positive and negative
examples in the training set.

 Sort the values of A by the fraction of positive
examples.

 Visit each value in sorted order, keeping a
running count of the number of examples in
each class.

 For each prefix of the value list, apply the
impurity measure, and remember the best.

43

44

Value of
attribute

Positive
examples

Negative
examples

M(S1) if S1
ends here

M(S2) if S2
begins below

Weighted
average

a 10 1 .165 .499 .420

b 7 3 .308 .480 .401

c 6 5 .404 .408 .405

d 4 10

Positive = 17; negative = 4.
1 – (17/21)2 – (4/21)2 = .308. Best choice.

Count of S1 = 10+1+7+3 = 21.
Count of S2 = 6+5+4+10 = 25.
Weighted average =
.308*(21/46) + .480*(25/46).

 Counting positive and negative examples for
each attribute value is a group-and-aggregate.

 One round of MapReduce suffices.

 Sorting attribute values is O(log2n) at most.

 Note: this “n” is the number of different values of
the attribute, not the number of training examples.

 Accumulated sums of positive and negative
examples is O(log n).

45

 As we build the decision tree top-down, we
double the number of nodes at each level.

 But each training example goes with only one
node at each level.

 Thus, the total work is the same at each level.
 And we can work on all the nodes at a level in

parallel.

46

 We can add levels to the tree until all leaves are
pure.

 At that point, there is 100% accuracy on the
training set.

 But there might be significant error on the test
set, because we have wildly overfit to the
training set.

 Post-pruning eliminates interior nodes if they
do not contribute (much) to the accuracy on the
test set.

47

 Eliminate the test at a node N, both of whose
children are leaves.

 Makes N a leaf; give it the output that is the
majority of its children.

 Compare the performance of the original tree
and the pruned tree on the test set.

 If difference is small, accept the pruning and
repeat.

 If the difference is large, restore the children
and look for other places to prune.

48

49

< 20

< 11

< 13 1

-1

1 -1

Y
N

Y

Y N

N

Is this node
useful?

50

< 20

< 13 1

-1 1

Y
N

Y N

Since an equal number of training examples
went to either side, we picked +1 arbitrarily.

Does the error rate (on the test set)
for this tree exceed by much the error
Rate for the tree on the previous slide?

