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 Data mining = extraction of actionable 
information from (usually) very large datasets, 
is the subject of extreme hype, fear, and 
interest. 

 It’s not all about machine learning. 
 But some of it is. 
 Emphasis in CS246 on algorithms that scale. 

 Parallelization often essential. 
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 Often, especially for ML-type algorithms, the 
result is a model = a simple representation of 
the data. 

 Example: PageRank is a number Google assigns 
to each Web page, representing the 
“importance” of the page. 

 Calculated from the link structure of the Web. 

 Summarizes in one number, all the links leading to 
one page. 

 Used to help decide which pages Google shows you. 
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1. Build a model of the data; answer questions 
from the model. 

 The classical approach of statisticians. 

 Also used in machine-learning community. 

2. Compute answers from data. 

 The computer-science/algorithmic approach. 

 Example: given a set of points on a line, a 
Statistician would try to fit the best Gaussian 
to the data; a Computer Scientist would 
compute the average. 
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 Example: email spam. 
 A model of spam might be based on weighted 

occurrences of words or phrases. 

 Would give high weight to words like “Viagra” or 
phrases like “Nigerian prince.” 

 Problem: when the weights are in favor of spam, 
there is no obvious reason why it is spam. 

 Sometimes, no one cares; other times 
understanding is vital. 

 Weird but true: EU is outlawing unexplainable models. 
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 Rules like “Nigerian prince” -> spam are 
understandable and actionable. 

 But the downside is that every email with that 
phrase will be considered spam. 

 Next lecture will talk about these association 
rules, and how they are used in managing (brick 
and mortar) stores, where understanding the 
meaning of a rule is essential. 
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Prerequisites 
Requirements 
Staff 
Resources 
Honor Code 
Lateness Policy 



 Programming.  Java is best for homeworks. 
 Basic Algorithms. 

 CS161 is surely sufficient. 

 Probability, e.g., CS109 or Stat116. 

 There will be a review session and a review doc is 
linked from the class home page. 

 Linear algebra. 

 Another review doc + review session is available. 

 Multivariable calculus. 
 Database systems (SQL, relational algebra). 

 CS145 is sufficient by not necessary. 
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 Each of the topics listed is important for a small 
part of the course. 

 If you are missing an item of background, you could 
consider just-in-time learning of the needed 
material. 

 The exception is programming. 

 To do well in this course, you really need to be 
comfortable with writing code in Java or a similar 
language. 
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 Final Exam (40%).  The exam will be held Tues., 
March 21, 3:30-6:30PM. 

 Place TBD. 

 There is no alternative final, but if you truly 
have a conflict, we can arrange for you to take 
the exam immediately after the regular final. 
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 Gradiance on-line homework (18%). 

 This automated system lets you try questions as 
many times as you like, and the goal is that everyone 
will work until they get all problems right. 

 Sign up at www.gradiance.com/services and enter 
class  380CE054 

 Note: your score is based on the most recent 
submission, not the max. 

 Note: After the due date, you can see the solutions 
to all problems by looking at one of your 
submissions, so you must try at least once. 
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 You should work each of the implied problems 
before answering the multiple-choice 
questions. 

 That way, if you have to repeat the work to get 
100%, you will have available what you need for 
the questions you have solved correctly, and 
the process can go quickly. 

 Note: There is a 10-minute delay between 
submissions, to protect against people who 
randomly fire off guesses. 
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 Written Homework (40%). 

 Four major assignments, involving programming, 
proofs, algorithm development. 

 Preceded by a “warmup” assignment, called 
“tutorial,” to introduce everyone to Hadoop. 

 Submission of work will be via gradescope.com and 
you need to use class code MBDY2M for CS246. 
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 2% of your grade will be awarded for 
participating in Piazza discussions. 

 Especially valuable are answers to questions 
posed by other students. 
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 There are 13 great TA’s this year! Naveen 
Arivazhagan, Rishabh Bhargava, Yixin Cai, Nihit 
Desai, Anthony Kim, Sachin Padmanabhan, Vinaya 
Polamreddi, Jessica Su, Yixin Wang, Junwei Yang, 
Leon Yao (chief TA), Luda Zhao, and Michael Zhu. 

 See class page web.stanford.edu/class/cs246 for 
schedule of office hours. 

 cs246-win1617-staff@lists.stanford.edu will 
contact TA’s + Jure + Jeff. 
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 Class textbook: Mining of Massive Datasets by Jure 
Leskovec, Anand Rajaraman, and U. 

 Sold by Cambridge Univ. Press, but available for free 
download at www.mmds.org 

 Review notes for Probability, Proofs, and Linear 
Algebra are available. 

 MOOC www.youtube.com 
/channel/UC_Oao2FYkLAUlUVkBfze4jg/videos 

 Piazza discussion group (please join) at 
piazza.com/stanford/winter2017/cs246 (code 
mmds) 
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 The first two Fridays, we will be holding 
tutorials in B03 Gates at 3PM. 

 Linear Algebra: Jan. 13, 2017. 
 Statistics: Jan. 20, 2017. 
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 We’ll follow the standard CS Dept. approach: 
You can get help, but you MUST acknowledge 
the help on the work you hand in. 

 Failure to acknowledge your sources is a 
violation of the Honor Code. 

 We use MOSS to check the originality of your 
code. 
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 You can talk to others about the algorithm(s) to 
be used to solve a homework problem. 

 As long as you then mention their name(s) on the 
work you submit. 

 You should not use code of others or be looking 
at code of others when you write your own. 

 If you do so, and mention their contributions on your 
own homework, then it is not an HC violation, 
although we may deduct points. 

 If you fail to mention your sources, MOSS will catch 
you, and you will be charged with an HC violation. 
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 There is no possibility of submitting Gradiance 
homework late. 

 For the five written homeworks, you have two 
late periods. 

 If a homework is due on a Thursday (Tuesday), then 
the late period expires 11:59PM on the following 
Tuesday (Thursday). 

 You can only use one late period per homework. 
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 Designed for a computing cluster (large 
collection of loosely connected compute nodes). 

 Goal: never lose any data (resilience). 
 File is split into contiguous chunks, typically 

64MB. 
 Each chunk replicated (usually 3x). 
 Master Node for a file. 
 Stores metadata, location of all chunks. 

 Must be replicated. 
 Google file system was original; HDFS is used by 

Hadoop; Colossus now used at Google. 



 More recent approach to resilient file storage. 
 Allows reconstruction of a lost chunk. 
 Advantage: less redundancy for a given 

probability of loss. 
 Disadvantage: no choice regarding where to 

obtain a given chunk. 
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A Quick Introduction 
Word-Count Example 
Fault-Tolerance 



 MapReduce is a style of programming designed 
for: 

1. Easy parallel programming. 

2. Invisible management of hardware and software 
failures. 

3. Easy management of very-large-scale data. 

 It has several implementations, including 
Hadoop (used in this class), Spark (becoming 
dominant), Flink, and the original Google 
implementation just called “MapReduce.” 
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 A MapReduce job starts with a collection of input 
elements of a single type. 

 Technically, all types are key-value pairs. 

 Apply a user-written Map function to each input 
element, in parallel. 

 Mapper applies the Map function to a single element. 

 Many mappers grouped in a Map task (the unit of parallelism). 

 The output of the Map function is a set of 0, 1, or 
more key-value pairs. 

 The system sorts all the key-value pairs by key, 
forming key-(list of values) pairs. 



 Another user-written function, the Reduce 
function, is applied to each key-(list of values). 

 Application of the Reduce function to one key and its 
list of values is a reducer. 

 Often, many reducers are grouped into a Reduce task. 

 Each reducer produces some output, and the 
output of the entire job is the union of what is 
produced by each reducer. 

27 



28 

Mappers Reducers 

Input Output 

key-value 
    pairs 



 We have a large file of documents (the input 
elements). 

 Documents are words separated by whitespace. 
 Count the number of times each distinct word 

appears in the file. 



map(key, value): 
// key: document ID; value: text of document 
 FOR (each word w IN value) 
  emit(w, 1); 
 
reduce(key, value-list): 
// key: a word; value-list: a list of integers 
 result = 0; 
 FOR (each integer v on value-list) 
  result += v; 
 emit(key, result); 

Expect to be all 1’s, but 
“combiners” (Sect. 2.2.4) 
Allow local summing of 
integers with the same 
key before passing to 
reducers. 
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 MapReduce is designed to deal with compute 
nodes failing to execute a Map task or Reduce 
task. 

 Re-execute failed tasks, not whole jobs. 
 Key point: MapReduce tasks have the blocking 

property: no output is used until the task is 
complete. 

 Thus, we can restart a Map task that failed 
without fear that a Reduce task has already 
used some output of the failed Map task. 
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Relational Join 
Matrix Multiplication in One or Two 
 Rounds 



 Stick the tuples of two relations together when 
they agree on common attributes (column 
names). 

 Example: R(A,B) JOIN S(B,C) = {abc | ab is in R 
and bc is in S}. 

 
 
  JOIN        = 
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A B 

1 2 

3 2 

4 5 

A B C 

1 2 6 

3 2 6 

4 5 7 

4 5 8 

B C 

2 6 

5 7 

5 8 

9 10 



 Each tuple (a,b) in R is mapped to key = b, value 
= (R,a). 

 Note: “R” in the value is just a bit that means “this 
value represents a tuple in R, not S.” 

 Each tuple (b,c) in S is mapped to key = b, value 
= (S,c). 

 After grouping by keys, each reducer gets a key-
list that looks like                                                    
 (b, [(R,a1), (R,a2),…, (S,c1), (S,c2),…]). 

34 



 For each pair (R,a) and (S,c) on the list for key b, 
emit (a,b,c). 

 Note this process can produce a quadratic number 
of outputs as a function of the list length. 

 If you took CS245, you may recognize this algorithm 
as essentially a “parallel hash join.” 

 It’s a really efficient way to join relations, as long as 
you don’t have too many tuples with a common 
shared value. 
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 Multiply matrix M = [mij] by N = [njk]. 

 Want: P = [pik], where pik = j mij*njk. 

 First pass is similar to relational join. 

 Computes each mij*njk. 

 Second pass is a group + aggregate operation. 

 Computes the sum over j. 

 Typically, large relations are sparse (mostly 0’s). 
 Assume a nonzero mij is really a tuple of a 

relation (i, j, mij); similarly for njk. 

 0 elements are not represented at all. 
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 The Map function: (i,j,mij) -> key = j, value = 
(M,i,mij); (j,k,njk) -> key = j, value = (N,k,njk). 

 As for join, M and N here are bits indicating which 
relation the value comes from. 

 The Reduce function: for key j, pair each 
(M,i,mij) on its list with each (N,k,njk) and 
produce key = (i,k), value = mij * njk. 
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 The Map function: The identity function. 
 Result is that each key (i,k) is paired with the list 

of products mij * njk for all j. 
 The Reduce function: sum all the elements on 

the list, and produce key = (i,k), value = that 
sum. 

 I.e., each output element ((i,k),s) says that the 
element pik of the product matrix P is s. 
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 We can use a single pass if: 

1. Keys (reducers) correspond to output elements (i,k). 

2. Map sends input elements to more than one reducer. 

 The Map function: mij -> for all k: key = (i,k), value 
= (M,j,mij);  njk -> for all i: key = (i,k), value = 
(N,j,njk). 

 The Reduce function: for each (M,j,mij) on the list 
for key (i,k) find the (N,j,njk) with the same j.  
Multiply mij by njk and then sum the products.  
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Data-Flow Systems 
Bulk-Synchronous Systems 
Tyranny of Communication 



 MapReduce uses two ranks of tasks: one for 
Map the second for Reduce. 

 Data flows from the first rank to the second. 

 Generalize in two ways: 

1. Allow any number of ranks. 

2. Allow functions other than Map and Reduce. 

 As long as data flow is in one direction only, we 
can have the blocking property and allow 
recovery of tasks rather than whole jobs. 
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 The most popular implementation of a dataflow 
system. 

 Data passed from one rank of processes to the 
next forms a  Resilient Distributed Dataset 
(RDD). 

 Elements of an RDD are like tuples of a relation. 

 Generalizes (key-value) pairs. 

 Built-in operations include Map, Reduce, and 
also group-aggregate using any components of 
the RDD type. 

 The thing Hadoop does behind-the-scenes. 
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 The 2-pass MapReduce algorithm had a second 
Map function that didn’t really do anything. 

 We could think of it as a five-rank data-flow 
algorithm of the form Map-GA-Reduce-GA-
Reduce, where the RDD types are: 

1. (j, (M,i,mij)) and (j, (N,k,njk)). 

2. j with list of (M,i,mij)’s and (N,k,njk)’s. 

3. ((i,k), mij * njk). 

4. (i,k) with list of mij * njk’s. 

5. ((i,k), pik). 
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Graph Model of Data 
Some Systems Using This Model 
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 Computation is a recursion on some graph. 
 Graph nodes send messages to one another. 

 Messages bunched into supersteps, where each 
graph node processes all data received. 

 Sending individual messages would result in far too 
much overhead. 

 Checkpoint all compute nodes after some 
fixed number of supersteps. 

 Note blocking property fails to hold. 

 On failure, roll all tasks back to previous 
checkpoint. 
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Node             
N                 

I found a path 
from node M to 
you of length L 

5 3 6 

I found a path 
from node M to 
you of length L+3 

I found a path 
from node M to 
you of length L+5 

I found a path 
from node M to 
you of length L+6 

Is this the 
shortest path from 

M I know about? 
If so … 

table of 
shortest 
paths 
to N 



 Pregel: the original, from Google. 
 Giraph: open-source (Apache) Pregel. 

 Built on Hadoop. 

 GraphX: a similar front end for Spark. 
 GraphLab: similar system that deals more 

effectively with nodes of high degree. 

 Will split the work for such a graph node among 
several compute nodes. 
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