
Jeffrey D. Ullman
Stanford University/Infolab

 Why Care?

1. Density of triangles measures maturity of a
community.

 As communities age, their members tend to connect.

2. The algorithm is actually an example of a recent
and powerful theory of optimal join computation.

3

 We need to represent a graph by data
structures that let us do two things efficiently:

1. Given nodes u and v, determine whether there
exists an edge between them in O(1) time.

2. Find the edges out of a node in time proportional
to the number of those edges.

 Question for thought: What data structures
would you recommend?

4

 Let the graph have N nodes and M edges.

 N < M < N2.

 One approach: Consider all N-choose-3 sets of
nodes, and see if there are edges connecting all 3.

 An O(N3) algorithm.

 Another approach: consider all edges e and all
nodes u and see if both ends of e have edges to u.

 An O(MN) algorithm.

 Therefore never worse than the first approach.

5

 To find a better algorithm, we need to use the
concept of a heavy hitter – a node with degree
at least M.

 Note: there can be no more than 2M heavy
hitters, or the sum of the degrees of all nodes
exceeds 2M.

 Impossible because each edge contributes exactly 2
to the sum of degrees.

 A heavy-hitter triangle is one whose three
nodes are all heavy hitters.

6

 First, find the heavy hitters.

 Determine the degrees of all nodes.

 Takes time O(M), assuming you can find the incident
edges for a node in time proportional to the number
of such edges.

 Consider all triples of heavy hitters and see if
there are edges between each pair of the three.

 Takes time O(M1.5), since there is a limit of 2M
on the number of heavy hitters.

7

 At least one node is not a heavy hitter.
 Consider each edge e.

 If both ends are heavy hitters, ignore.

 Otherwise, let end node u not be a heavy hitter.

 For each of the at most M nodes v connected to u,
see whether v is connected to the other end of e.

 Takes time O(M1.5).

 M edges, and at most M work with each.

8

 Both parts take O(M1.5) time and together find
any triangle in the graph.

 For any N and M, you can find a graph with N
nodes, M edges, and (M1.5) triangles, so no
algorithm can do significantly better.

 Hint: consider a complete graph with M nodes, plus
other isolated nodes.

 Note that M1.5 can never be greater than the
running times of the two obvious algorithms
with which we began: N3 and MN.

9

 Needs a constant number of MapReduce
rounds, independent of N or M.

1. Count degrees of each node.

2. Filter edges with two heavy-hitter ends.

3. 1 or 2 rounds to join only the heavy-hitter edges.

4. Join the non-heavy-hitter edges with all edges at a
non-heavy end.

5. Then join the result of (4) with all edges to see if a
triangle is completed.

10

 Different algorithms for the same problem can
be parallelized to different degrees.

 The same activity can (sometimes) be
performed for each node in parallel.

 A relational join or similar step can be
performed in one round of MapReduce.

 Parameters: N = # nodes, M = # edges, D =
diameter.

12

 A directed graph of N nodes and M arcs.
 Arcs are represented by a relation Arc(u,v)

meaning there is an arc from node u to node v.
 Goal is to compute the transitive closure of Arc,

which is the relation Path(u,v), meaning that
there is a path of length 1 or more from u to v.

 Bad news: TC takes (serial) time O(NM) in the
worst case.

 Good news: But you can parallelize it heavily.

13

 Important in its own right.

 Finding structure of the Web, e.g., strongly
connected “central” region.

 Finding connections: “was money ever transferred,
directly or indirectly, from the West-Side Mob to the
Stanford Chess Club?”

 Ancestry: “is Jeff Ullman a descendant of Genghis
Khan?”

 Every linear recursion (only one recursive call)
can be expressed as a transitive closure plus
nonrecursive stuff to translate to and from TC.

14

1. Path := Arc;
2. FOR each node u, Path(v,w) += Path(v,u) AND

 Path(u,w); /*u is called the pivot */
 Running time O(N3) independent of M or D.
 Can parallelize the pivot step for each u (next

slide).
 But the pivot steps must be executed

sequentially, so N rounds of MapReduce are
needed.

16

 A pivot on u is essentially a join of the Path
relation with itself, restricted so the join value is
always u.

 Path(v,w) += Path(v,u) AND Path(u,w).

 But (ick!) every tuple has the same value (u) for
the join attribute.

 Standard MapReduce join will bottleneck, since all
Path facts wind up at the same reducer (the one for
key u).

17

 This problem, where one or more values of the
join attribute are “heavy hitters” is called skew.

 It limits the amount of parallelism, unless you
do something clever.

 But there is a cost: in MapReduce terms, you
communicate each Path fact from its mapper to
many reducers.

 As communication is often the bottleneck, you have
to be clever how you parallelize when there is a
heavy hitter.

18

 The trick: Given Path(v,u) and Path(u,w) facts:

1. Divide the values of v into k equal-sized groups.

2. Divide the values of w into k equal-sized groups.

 Can be the same groups, since v and w range over all nodes.

3. Create a key (reducer) for each pair of groups, one
for v and one for w.

4. Send Path(v,u) to the k reducers for key (g,h), where
g is the group of v, and h is any group for w.

5. Send Path(u,w) to the k reducers for key (g,h), where
h is the group of w and g is any group for v.

 k times the communication, but k2 parallelism
19

20

Path(v,u) group 1

Path(v,u) group 2

Path(v,u) group 3

Path(u,w)
group 1

Path(u,w)
group 2

Path(u,w)
group 3

k = 3

Notice:
every Path(v,u)
meets every
Path(u,w) at
exactly one
reducer.

 Depth-first search from each node.
 O(NM) running time.
 Can parallelize by starting at each node in

parallel.
 But depth-first search is not easily

parallelizable.
 Thus, the equivalent of M rounds of

MapReduce needed, independent of N and D.

21

 Same as depth-first, but search breadth-first
from each node.

 Search from each node can be done in parallel.
 But each search takes only D MapReduce

rounds, not M, provided you can perform the
breadth-first search in parallel from each node
you visit.

 Similar in performance (if implemented
carefully) to “linear TC,” which we will discuss
next.

22

 Large-scale TC can be expressed as the iterated
join of relations.

 Simplest case is where we
1. Initialize Path(U,V) = Arc(U,V).
2. Join an arc with a path to get a longer path, as:
Path(U,V) += PROJECTUV(Arc(U,W) JOIN Path(W,V))
 or alternatively
Path(U,V) += PROJECTUV(Path(U,W) JOIN Arc(W,V))

 Repeat (2) until convergence (requires D iterations).

23

 Join-project, as used here is really the
composition of relations.

 Shorthand: we’ll use R(A,B)  S(B,C) for
PROJECTAC(R(A,B) JOIN S(B,C)).

 MapReduce implementation of composition is
the same as for the join, except:

1. You exclude the key b from the tuple (a,b,c)
generated in the Reduce phase.

2. You need to follow it by a second MapReduce job
that eliminates duplicate (a,c) tuples from the
result.

24

 Joining Path with Arc repeatedly redoes a lot of
work.

 Once I have combined Arc(a,b) with Path(b,c) in
one round, there is no reason to do so in
subsequent rounds.

 I already know Path(a,c).

 At each round, use only those Path facts that
were discovered on the previous round.

25

Path = ;

NewPath = Arc;

while (NewPath != ) {

 Path += NewPath;

 NewPath(U,V)=

 Arc(U,W)  NewPath(W,V));
 NewPath -= Path;

}

26

27

1 3

4

2

Arc U V

1 2

1 3

2 3

2 4

Initial: - 12, 13, 23, 24

Path NewPath

Path += NewPath 12, 13, 23, 24 12, 13, 23, 24

Compute NewPath 12, 13, 23, 24 13, 14

Subtract Path 12, 13, 23, 24 14

Path += NewPath 12, 13, 14, 23, 24 14

Compute NewPath 12, 13, 14, 23, 24 -

Done

 Each Path fact is used in only one round.
 In that round, Path(b,c) is paired with each

Arc(a,b).
 There can be N2 Path facts.
 But the average Path fact is composed with

M/N Arc facts.

 To be precise, Path(b,c) is matched with a number of
arcs equal to the in-degree of node b.

 Thus, the total work, if implemented correctly,
is O(MN).

28

 Each round of seminaive TC requires two
MapReduce jobs.

 One to join, the other to eliminate duplicates.

 Number of rounds needed equals the diameter.

 More parallelizable than classical methods (or
equivalent to breadth-first search) when D is small.

29

 If you have a graph with large diameter D, you do
not want to run the Seminaive TC algorithm for D
rounds.

 Why? Successive MapReduce jobs are inherently
serial.

 Better approach: recursive doubling = compute
Path(U,V) += Path(U,W)  Path(W,V) for log2(D)
number of rounds.

 After r rounds, you have all paths of length < 2r.
 Seminaive works for nonlinear as well as linear.

30

Path = ;

NewPath = Arc;

while (NewPath != ) {

 Path += NewPath;

 NewPath(U,V)=

 Path(U,W) NewPath(W,V));
 NewPath -= Path;

}

31

Note: in general, seminaive evaluation requires
the “new” tuples to be available for each use of
a relation, so we would need the union with another
term NewPath(U,W) o Path(W,V). However, in this case
it can be proved that this one term is enough.

 Each Path fact is in NewPath only once.
 There can be N2 Path facts.
 When (a,b) is in NewPath, it can be joined with

N other Path facts.

 Those of the form Path(x,a).

 Thus, total computation is O(N3).

 Looks worse than the O(MN) we derived for linear
TC.

32

 Good news: You generate the same Path facts
as for linear TC, but in fewer rounds, often a lot
fewer.

 Bad news: you generate the same fact in many
different ways, compared with linear.

 Neither method can avoid the fact that if there
are many different paths from u to v, you will
discover each of those paths, even though one
would be enough.

 But nonlinear discovers the same exact path
many times.

33

34

35

36

 (Valduriez-Boral, Ioannides) Construct a path
from two paths:

1. The first has a length that is a power of 2.

2. The second is no longer than the first.

37

 The trick is to keep two path relations, P and Q.
 After the i-th round:
 P(U,V) contains all those pairs (u,v) such that the

shortest path from u to v has length less than 2i.

 Q(U,V) contains all those pairs (u,v) such that the
shortest path from u to v has length exactly 2i.

 For the next round:
 Compute P += Q  P.

 Paths of length less than 2i+1.

 Compute Q = (Q  Q) – P.
 P here is the new value of P; gives you shortest paths of

length exactly 2i+1.

38

39

Method Total (Serial)
Computation

Parallel
Rounds

Warshall O(N3) O(N)

Depth-First Search O(NM) O(M)

Breadth-First Search O(NM) O(D)

Linear + Seminaive O(NM) O(D)

Nonlinear + Seminaive O(N3) O(log D)

Smart O(N3) O(log D)

Seems odd. But in the worst case, almost all shortest paths can have a
length that is a power of 2, so there is no guarantee of improvement for Smart.

 In a sense, acyclic graphs are the hardest TC
cases.

 If there are large strongly connected
components (SCC’s) = sets of nodes with a path
from any member of the set to any other, you
can simplify TC.

 Example: The Web has a large SCC and other
acyclic structures (see Sect. 5.1.3).

 The big SCC and other SCC’s made it much easier to
discover the structure of the Web.

40

 Pick a node u at random.
 Do a breadth-first search to find all nodes

reachable from u.

 Parallelizable in at most D rounds.

 Imagine the arcs reversed and do another
breadth-first search in the reverse graph.

 The intersection of these two sets is the SCC
containing u.

 With luck, that will be a big set.

 Collapse the SCC to a single node and repeat.

41

 Instead of just asking whether a path from node
u to node v exists, we can attach values to arcs
and extend those values to paths.

 Example: value is the “length” of an arc or path.

 Concatenate paths by taking the sum.

 Path(u,v, x+y) = Arc(u,w, x)  Path(w,v, y).

 Combine two paths from u to v by taking the
minimum.

 Similar example: value is cost of transportation.

42

