Counting Triangles
Transitive Closure

Jeffrey D. Ullman
Stanford University/Infolab

Counting Triangles

Bounds on Numbers of Triangles
Heavy Hitters
An Optimal Algorithm

Counting Triangles

Why Care?
1. Density of triangles measures maturity of a
community.

As communities age, their members tend to connect.

2. The algorithm is actually an example of a recent
and powerful theory of optimal join computation.

Data Structures Needed

We need to represent a graph by data
structures that let us do two things efficiently:

1. Given nodes u and v, determine whether there
exists an edge between them in O(1) time.

2. Find the edges out of a node in time proportional
to the number of those edges.

Question for thought: What data structures
would you recommend?

First Observations

Let the graph have N nodes and M edges.

= N<M< N2

One approach: Consider all N-choose-3 sets of
nodes, and see if there are edges connecting all 3.
= An O(N3) algorithm.

Another approach: consider all edges e and all
nodes u and see if both ends of e have edges to u.
* An O(MN) algorithm.

Therefore never worse than the first approach.

Heavy Hitters

To find a better algorithm, we need to use the

concept of a heavy hitter —a node with degree
at least VM.

. there can be no more than 2VM heavy

hitters, or the sum of the degrees of all nodes
exceeds 2M.

" Impossible because each edge contributes exactly 2
to the sum of degrees.

A heavy-hitter triangle is one whose three
nodes are all heavy hitters.

Finding Heavy-Hitter Triangles

First, find the heavy hitters.
= Determine the degrees of all nodes.

= Takes time O(M), assuming you can find the incident
edges for a node in time proportional to the number
of such edges.

Consider all triples of heavy hitters and see if
there are edges between each pair of the three.
Takes time O(M5), since there is a limit of 2YM
on the number of heavy hitters.

Finding Other Triangles

At least one node is not a heavy hitter.
Consider each edge e.

= |f both ends are heavy hitters, ignore.
= Otherwise, let end node u not be a heavy hitter.

= For each of the at most YM nodes v connected to u,
see whether v is connected to the other end of e.

Takes time O(M*-).

= M edges, and at most \/I_/I work with each.

Optimality of This Algorithm

Both parts take O(M*~) time and together find
any triangle in the graph.

For any N and M, you can find a graph with N
nodes, M edges, and QQ(M*>) triangles, so no
algorithm can do significantly better.

= Hint: consider a complete graph with \/ﬁnodes, plus
other isolated nodes.

Note that M~ can never be greater than the
running times of the two obvious algorithms
with which we began: N3 and MN.

Parallelization

Needs a constant number of MapReduce
rounds, independent of N or M.

1.
2.
3.
4. Join the non-heavy-hitter edges with all edges at a

Count degrees of each node.
Filter edges with two heavy-hitter ends.
1 or 2 rounds to join only the heavy-hitter edges.

non-heavy end.

Then join the result of (4) with all edges to see if a
triangle is completed.

10

Transitive Closure

Classical Approaches

Arc + Path => Path

Path + Path => Path

“Smart” Transitive Closure
Strongly Connected Components

Issues Regarding Parallelism

Different algorithms for the same problem can
be parallelized to different degrees.

The same activity can (sometimes) be
performed for each node in parallel.

A relational join or similar step can be
performed in one round of MapReduce.
Parameters: N = # nodes, M = # edges, D =
diameter.

12

The Setting

A directed graph of N nodes and M arcs.

Arcs are represented by a relation Arc(u,v)
meaning there is an arc from node u to node v.
Goal is to compute the transitive closure of Arc,
which is the relation Path(u,v), meaning that
there is a path of length 1 or more from u to v.
Bad news: TC takes (serial) time O(NM) in the
worst case.

Good news: But you can parallelize it heavily.

13

Why Transitive Closure?

Important in its own right.
" Finding structure of the Web, e.g., strongly
connected “central” region.

" Finding connections: “was money ever transferred,
directly or indirectly, from the West-Side Mob to the
Stanford Chess Club?”

= Ancestry: “is Jeff Ullman a descendant of Genghis
Khan?”

Every linear recursion (only one recursive call)

can be expressed as a transitive closure plus

nonrecursive stuff to translate to and from TC.

14

Classical Methods for TC

Warshall’s Algorithm
Depth-First Search
Breadth-First Search

Path := Arc;
FOR each node u, Path(v,w) += Path(v,u) AND
Path(u,w); /*u is called the pivot */

Running time O(N3) independent of M or D.
Can parallelize the pivot step for each u (next
slide).
But the pivot steps must be executed
sequentially, so N rounds of MapReduce are

needed.

16

Parallelizing the Pivot Step

A pivot on u is essentially a join of the Path

relation with itself, restricted so the join value is
always u.

= Path(v,w) += Path(v,u) AND Path(u,w).
But (ick!) every tuple has the same value (u) for
the join attribute.

= Standard MapReduce join will bottleneck, since all

Path facts wind up at the same reducer (the one for
key u).

17

This problem, where one or more values of the
join attribute are “heavy hitters” is called skew.
It [imits the amount of parallelism, unless you
do something clever.

But there is a cost: in MapReduce terms, you
communicate each Path fact from its mapper to
many reducers.

= As communication is often the bottleneck, you have
to be clever how you parallelize when there is a
heavy hitter.

18

Skew Joins — (2)

The trick: Given Path(v,u) and Path(u,w) facts:

1.
2.

Divide the values of v into k equal-sized groups.
Divide the values of w into k equal-sized groups.

Can be the same groups, since v and w range over all nodes.

Create a key (reducer) for each pair of groups, one
for vand one for w.

Send Path(v,u) to the k reducers for key (g,h), where
g is the group of v, and h is any group for w.

Send Path(u,w) to the k reducers for key (g,h), where
h is the group of w and g is any group for v.

k times the communication, but k? parallelism

19

Mapping Path Facts to Reducers

Path(u,w) Path(u,w)

Path(u,w)

group 1

k=3 A

group 2

group 3

v

Path(v,u) group 1

v

/

A
Path(v,u) group 2 =<f=—mm—

\

/

!

Path(v,u) group 3 ===

Notice:

every Path(v,u)
meets every
Path(u,w) at
exactly one
reducer.

20

Depth-First Search

Depth-first search from each node.

O(NM) running time.

Can parallelize by starting at each node in
parallel.

But depth-first search is not easily
parallelizable.

Thus, the equivalent of M rounds of
MapReduce needed, independent of N and D.

21

Breadth-First Search

Same as depth-first, but search breadth-first
from each node.

Search from each node can be done in parallel.
But each search takes only D MapReduce
rounds, not M, provided you can perform the
breadth-first search in parallel from each node
you Visit.

Similar in performance (if implemented
carefully) to “linear TC,” which we will discuss
next.

22

Linear Transitive Closure

Large-scale TC can be expressed as the iterated

join of relations.

Simplest case is where we

nitialize Path(U,V) = Arc(U,V).

Join an arc with a path to get a longer path, as:

Path(U,V) += PROJECT ,,(Arc(U,W) JOIN Path(W\V))
or alternatively

Path(U,V) += PROJECT ,,(Path(U,W) JOIN Arc(W,\V))

= Repeat (2) until convergence (requires D iterations).

23

Notation for Join-Project

Join-project, as used here is really the
composition of relations.

Shorthand: we’ll use R(A,B) o S(B,C) for
PROJECT,.(R(A,B) JOIN S(B,C)).

MapReduce implementation of composition is
the same as for the join, except:

1. You exclude the key b from the tuple (a,b,c)
generated in the Reduce phase.

2. You need to follow it by a second MapReduce job

that eliminates duplicate (a,c) tuples from the
result.

24

Seminaive Algorithm

Joining Path with Arc repeatedly redoes a lot of
work.

Once | have combined Arc(a,b) with Path(b,c) in
one round, there is no reason to do so in
subsequent rounds.

= | already know Path(a,c).
At each round, use only those Path facts that
were discovered on the previous round.

25

Seminaive Detalls

Path = J;
NewPath = Arc;
while (NewPath !=) {

Path += NewPath;
NewPath (U, V) =

Arc (U,W) o NewPath((w,V));
NewPath -= Path;

26

Example: Seminaive TC

1 2\9 3 Path NewPath
4 Initial: - 12, 13, 23, 24

Path += NewPath 12, 13, 23, 24 12, 13, 23, 24
Compute NewPath 12, 13, 23, 24 13, 14

1 2

1 3 Subtract Path 12, 13, 23, 24 14

2 3 Path += NewPath 12,13, 14, 23,24 14

2 A

Compute NewPath 12, 13, 14, 23,24 -

Done

27

Computation Time of Seminaive

Each Path fact is used in only one round.

In that round, Path(b,c) is paired with each
Arc(a,b).

There can be N? Path facts.

But the average Path fact is composed with
M/N Arc facts.

= To be precise, Path(b,c) is matched with a number of
arcs equal to the in-degree of node b.

Thus, the total work, if implemented correctly,
is O(MN).

28

How Many Rounds?

Each round of seminaive TC requires two
MapReduce jobs.

= One to join, the other to eliminate duplicates.
Number of rounds needed equals the diameter.

* More parallelizable than classical methods (or
equivalent to breadth-first search) when D is small.

29

Nonlinear Transitive Closure

If you have a graph with large diameter D, you do
not want to run the Seminaive TC algorithm for D
rounds.

= Why? Successive MapReduce jobs are inherently
serial.

Better approach: recursive doubling = compute
Path(U,V) += Path(U,W) o Path(W,\V) for log,(D)
number of rounds.

After r rounds, you have all paths of length < 2.
Seminaive works for nonlinear as well as linear.

30

Nonlinear Seminaive Detalls

Path = O;
NewPath = Arc;
while (NewPath !=) {
Path += NewPath;
NewPath (U, V) =
Path (U, W) o NewPath (W, V)) ;

NewPath -= Pathi/’

} Note: in general, seminaive evaluation requires
the "new"” tuples to be available for each use of
a relation, so we would need the union with another
term NewPath(U,W) o Path(W,V). However, in this case
it can be proved that this one term is enough.

31

Computation Time of Nonlinear + Seminaive

Each Path fact is in NewPath only once.

There can be N2 Path facts.

When (a,b) is in NewPath, it can be joined with
N other Path facts.

=" Those of the form Path(x,a).
Thus, total computation is O(N3).

= Looks worse than the O(MN) we derived for linear
TC.

32

A Problem With Nonlinear TC

Good news: You generate the same Path facts
as for linear TC, but in fewer rounds, often a lot
fewer.

Bad news: you generate the same fact in many
different ways, compared with linear.

Neither method can avoid the fact that if there
are many different paths from u to v, you will
discover each of those paths, even though one
would be enough.

But nonlinear discovers the same exact path
many times.

33

Example: Linear TC Arc + Path = Path

Nonlinear onstructs
Many Ways

35

(Valduriez-Boral, loannides) Construct a path
from two paths:

1. The first has a length that is a power of 2.
2. The second is no longer than the first.

36

Example: Smart TC

O—0O—0—0—0—0

Implementing Smart TC

The trick is to keep two path relations,
After the i-th round:

Pand Q.

= P(U,V) contains all those pairs (u,v) such that the

shortest path from u to v has length less t

= Q(U,V) contains all those pairs (u,v) such t
shortest path from u to v has length exact

For the next round:

= ComputeP+=QoP.
Paths of length less than 21,

" ComputeQ=(QoQ)-P

han 2.
nat the

y 2,

P here is the new value of P; gives you shortest paths of

length exactly 2*1,

38

Summary of TC Options

Method Total (Serial) Parallel
Computation Rounds
Warshall O(NB3) O(N)
Depth-First Search O(NM) O(M)
Breadth-First Search O(NM) O(D)
Linear + Seminaive O(NM) O(D)
Nonlinear + Seminaive O(N3) O(log D)

Smart / O(NB3) O(log D)

Seems odd. Butinthe worst case, almost all shortest paths can have a
length that is a power of 2, so there is no guarantee of improvement for Smart.

39

Graphs With Large Cycles

In a sense, acyclic graphs are the hardest TC
cases.

If there are large strongly connected
components (SCC’s) = sets of nodes with a path
from any member of the set to any other, you
can simplify TC.

Example: The Web has a large SCC and other
acyclic structures (see Sect. 5.1.3).

=" The big SCC and other SCC’s made it much easier to
discover the structure of the Web.

40

The Trick: Collapse Cycles Fast

Pick a node u at random.

Do a breadth-first search to find all nodes
reachable from u.

= Parallelizable in at most D rounds.

Imagine the arcs reversed and do another
breadth-first search in the reverse graph.
The intersection of these two sets is the SCC
containing u.

= With luck, that will be a big set.
Collapse the SCC to a single node and repeat.

41

TC-Like Applications

Instead of just asking whether a path from node
u to node v exists, we can attach values to arcs
and extend those values to paths.
Example: value is the “length” of an arc or path.
= Concatenate paths by taking the sum.

Path(u,v, x+y) = Arc(u,w, x) o Path(w,v, y).

= Combine two paths from u to v by taking the
minimum.

Similar example: value is cost of transportation.

42

