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 Why Care? 

1. Density of triangles measures maturity of a 
community. 

 As communities age, their members tend to connect. 

2. The algorithm is actually an example of a recent 
and powerful theory of optimal join computation. 
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 We need to represent a graph by data 
structures that let us do two things efficiently: 

1. Given nodes u and v, determine whether there 
exists an edge between them in O(1) time. 

2. Find the edges out of a node in time proportional 
to the number of those edges. 

 Question for thought: What data structures 
would you recommend? 
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 Let the graph have N nodes and M edges. 

 N < M < N2. 

 One approach: Consider all N-choose-3 sets of 
nodes, and see if there are edges connecting all 3. 

 An O(N3) algorithm. 

 Another approach: consider all edges e and all 
nodes u and see if both ends of e have edges to u. 

 An O(MN) algorithm. 

 Therefore never worse than the first approach. 
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 To find a better algorithm, we need to use the 
concept of a heavy hitter – a node with degree 
at least M. 

 Note: there can be no more than 2M heavy 
hitters, or the sum of the degrees of all nodes 
exceeds 2M. 

 Impossible because each edge contributes exactly 2 
to the sum of degrees. 

 A heavy-hitter triangle is one whose three 
nodes are all heavy hitters. 
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 First, find the heavy hitters. 

 Determine the degrees of all nodes. 

 Takes time O(M), assuming you can find the incident 
edges for a node in time proportional to the number 
of such edges. 

 Consider all triples of heavy hitters and see if 
there are edges between each pair of the three. 

 Takes time O(M1.5), since there is a limit of 2M 
on the number of heavy hitters. 
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 At least one node is not a heavy hitter. 
 Consider each edge e. 

 If both ends are heavy hitters, ignore. 

 Otherwise, let end node u not be a heavy hitter. 

 For each of the at most M nodes v connected to u, 
see whether v is connected to the other end of e. 

 Takes time O(M1.5). 

 M edges, and at most M work with each. 

8 



 Both parts take O(M1.5) time and together find 
any triangle in the graph. 

 For any N and M, you can find a graph with N 
nodes, M edges, and (M1.5) triangles, so no 
algorithm can do significantly better. 

 Hint: consider a complete graph with M nodes, plus 
other isolated nodes. 

 Note that M1.5 can never be greater than the 
running times of the two obvious algorithms 
with which we began: N3 and MN. 
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 Needs a constant number of MapReduce 
rounds, independent of N or M. 

1. Count degrees of each node. 

2. Filter edges with two heavy-hitter ends. 

3. 1 or 2 rounds to join only the heavy-hitter edges. 

4. Join the non-heavy-hitter edges with all edges at a 
non-heavy end. 

5. Then join the result of (4) with all edges to see if a 
triangle is completed. 
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 Different algorithms for the same problem can 
be parallelized to different degrees. 

 The same activity can (sometimes) be 
performed for each node in parallel. 

 A relational join or similar step can be 
performed in one round of MapReduce. 

 Parameters: N = # nodes, M = # edges, D = 
diameter. 

12 



 A directed graph of N nodes and M arcs. 
 Arcs are represented by a relation Arc(u,v) 

meaning there is an arc from node u to node v. 
 Goal is to compute the transitive closure of Arc, 

which is the relation Path(u,v), meaning that 
there is a path of length 1 or more from u to v. 

 Bad news: TC takes (serial) time O(NM) in the 
worst case. 

 Good news: But you can parallelize it heavily. 
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 Important in its own right. 

 Finding structure of the Web, e.g., strongly 
connected “central” region. 

 Finding connections: “was money ever transferred, 
directly or indirectly, from the West-Side Mob to the 
Stanford Chess Club?” 

 Ancestry: “is Jeff Ullman a descendant of Genghis 
Khan?” 

 Every linear recursion (only one recursive call) 
can be expressed as a transitive closure plus 
nonrecursive stuff to translate to and from TC. 
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1. Path := Arc; 
2. FOR each node u, Path(v,w) += Path(v,u) AND 

 Path(u,w); /*u is called the pivot */ 
 Running time O(N3) independent of M or D. 
 Can parallelize the pivot step for each u (next 

slide). 
 But the pivot steps  must be executed 

sequentially, so N rounds of MapReduce are 
needed. 
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 A pivot on u is essentially a join of the Path 
relation with itself, restricted so the join value is 
always u. 

 Path(v,w) += Path(v,u) AND Path(u,w). 

 But (ick!) every tuple has the same value (u) for 
the join attribute. 

 Standard MapReduce join will bottleneck, since all 
Path facts wind up at the same reducer (the one for 
key u). 
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 This problem, where one or more values of the 
join attribute are “heavy hitters” is called skew. 

 It limits the amount of parallelism, unless you 
do something clever. 

 But there is a cost: in MapReduce terms, you 
communicate each Path fact from its mapper to 
many reducers. 

 As communication is often the bottleneck, you have 
to be clever how you parallelize when there is a 
heavy hitter. 
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 The trick: Given Path(v,u) and Path(u,w) facts: 

1. Divide the values of v into k equal-sized groups. 

2. Divide the values of w into k equal-sized groups. 

 Can be the same groups, since v and w range over all nodes. 

3. Create a key (reducer) for each pair of groups, one 
for v and one for w. 

4. Send Path(v,u) to the k reducers for key (g,h), where 
g is the group of v, and h is any group for w. 

5. Send Path(u,w) to the k reducers for key (g,h), where 
h is the group of w and g is any group for v. 

 k times the communication, but k2 parallelism 
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Path(v,u) group 1 

Path(v,u) group 2 

Path(v,u) group 3 

Path(u,w) 
group 1 

Path(u,w) 
group 2 

Path(u,w) 
group 3 

k = 3 

Notice: 
every Path(v,u) 
meets every 
Path(u,w) at 
exactly one 
reducer. 



 Depth-first search from each node. 
 O(NM) running time. 
 Can parallelize by starting at each node in 

parallel. 
 But depth-first search is not easily 

parallelizable. 
 Thus, the equivalent of M rounds of 

MapReduce needed, independent of N and D. 
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 Same as depth-first, but search breadth-first 
from each node. 

 Search from each node can be done in parallel. 
 But each search takes only D MapReduce 

rounds, not M, provided you can perform the 
breadth-first search in parallel from each node 
you visit. 

 Similar in performance (if implemented 
carefully) to “linear TC,” which we will discuss 
next. 
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 Large-scale TC can be expressed as the iterated 
join of relations. 

 Simplest case is where we 
1. Initialize Path(U,V) = Arc(U,V). 
2. Join an arc with a path to get a longer path, as: 
Path(U,V) += PROJECTUV(Arc(U,W) JOIN Path(W,V)) 
 or alternatively 
Path(U,V) += PROJECTUV(Path(U,W) JOIN Arc(W,V)) 

 Repeat (2) until convergence (requires D iterations). 
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 Join-project, as used here is really the 
composition of relations. 

 Shorthand: we’ll use R(A,B)  S(B,C) for 
PROJECTAC(R(A,B) JOIN S(B,C)). 

 MapReduce implementation of composition is 
the same as for the join, except: 

1. You exclude the key b from the tuple (a,b,c) 
generated in the Reduce phase. 

2. You need to follow it by a second MapReduce job 
that eliminates duplicate (a,c) tuples from the 
result. 
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 Joining Path with Arc repeatedly redoes a lot of 
work. 

 Once I have combined Arc(a,b) with Path(b,c) in 
one round, there is no reason to do so in 
subsequent rounds. 

 I already know Path(a,c). 

 At each round, use only those Path facts that 
were discovered on the previous round.  
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Path = ; 

NewPath = Arc; 

while (NewPath != ) { 

 Path += NewPath; 

 NewPath(U,V)= 

  Arc(U,W)   NewPath(W,V)); 
 NewPath -= Path; 

} 
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1 3 

4 

2 

Arc U V 

1 2 

1 3 

2 3 

2 4 

Initial:  -  12, 13, 23, 24 

Path  NewPath 

Path += NewPath 12, 13, 23, 24 12, 13, 23, 24 

Compute NewPath  12, 13, 23, 24  13, 14 

Subtract Path 12, 13, 23, 24 14 

Path += NewPath 12, 13, 14, 23, 24 14 

Compute NewPath  12, 13, 14, 23, 24 - 

Done 



 Each Path fact is used in only one round. 
 In that round, Path(b,c) is paired with each 

Arc(a,b). 
 There can be N2 Path facts. 
 But the average Path fact is composed with 

M/N Arc facts. 

 To be precise, Path(b,c) is matched with a number of 
arcs equal to the in-degree of node b. 

 Thus, the total work, if implemented correctly, 
is O(MN). 
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 Each round of seminaive TC requires two 
MapReduce jobs. 

 One to join, the other to eliminate duplicates. 

 Number of rounds needed equals the diameter. 

 More parallelizable than classical methods (or 
equivalent to breadth-first search) when D is small.  
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 If you have a graph with large diameter D, you do 
not want to run the Seminaive TC algorithm for D 
rounds. 

 Why? Successive MapReduce jobs are inherently 
serial. 

 Better approach: recursive doubling = compute 
Path(U,V) += Path(U,W)  Path(W,V) for log2(D) 
number of rounds. 

 After r rounds, you have all paths of length < 2r. 
 Seminaive works for nonlinear as well as linear. 
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Path = ; 

NewPath = Arc; 

while (NewPath != ) { 

 Path += NewPath; 

 NewPath(U,V)= 

  Path(U,W) NewPath(W,V)); 
 NewPath -= Path; 

} 
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Note: in general, seminaive evaluation requires 
the “new” tuples to be available for each use of  
a relation, so we would need the union with another 
term NewPath(U,W) o Path(W,V).  However, in this case 
it can be proved that this one term is enough. 



 Each Path fact is in NewPath only once. 
 There can be N2 Path facts. 
 When (a,b) is in NewPath, it can be joined with 

N other Path facts. 

 Those of the form Path(x,a). 

 Thus, total computation is O(N3). 

 Looks worse than the O(MN) we derived for linear 
TC. 
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 Good news: You generate the same Path facts 
as for linear TC, but in fewer rounds, often a lot 
fewer. 

 Bad news: you generate the same fact in many 
different ways, compared with linear. 

 Neither method can avoid the fact that if there 
are many different paths from u to v, you will 
discover each of those paths, even though one 
would be enough. 

 But nonlinear discovers the same exact path 
many times. 
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 (Valduriez-Boral, Ioannides) Construct a path 
from two paths: 

1. The first has a length that is a power of 2. 

2. The second is no longer than the first. 
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 The trick is to keep two path relations, P and Q. 
 After the i-th round: 
 P(U,V) contains all those pairs (u,v) such that the 

shortest path from u to v has length less than 2i. 

 Q(U,V) contains all those pairs (u,v) such that the 
shortest path from u to v has length exactly 2i. 

 For the next round: 
 Compute P += Q  P. 

 Paths of length less than 2i+1. 

 Compute Q = (Q  Q) – P. 
 P here is the new value of P; gives you shortest paths of 

length exactly 2i+1. 
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Method Total (Serial) 
Computation 

Parallel 
Rounds 

Warshall O(N3) O(N) 

Depth-First Search O(NM) O(M) 

Breadth-First Search O(NM) O(D) 

Linear + Seminaive O(NM) O(D) 

Nonlinear + Seminaive O(N3) O(log D) 

Smart O(N3) O(log D) 

Seems odd.   But in the worst case, almost all shortest paths can have a 
length that is a power of 2, so there is no guarantee of improvement for Smart. 



 In a sense, acyclic graphs are the hardest TC 
cases. 

 If there are large strongly connected 
components (SCC’s) = sets of nodes with a path 
from any member of the set to any other, you 
can simplify TC. 

 Example: The Web has a large SCC and other 
acyclic structures (see Sect. 5.1.3). 

 The big SCC and other SCC’s made it much easier to 
discover the structure of the Web.  
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 Pick a node u at random. 
 Do a breadth-first search to find all nodes 

reachable from u. 

 Parallelizable in at most D rounds. 

 Imagine the arcs reversed and do another 
breadth-first search in the reverse graph. 

 The intersection of these two sets is the SCC 
containing u. 

 With luck, that will be a big set. 

 Collapse the SCC to a single node and repeat. 
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 Instead of just asking whether a path from node 
u to node v exists, we can attach values to arcs 
and extend those values to paths. 

 Example: value is the “length” of an arc or path. 

 Concatenate paths by taking the sum. 

 Path(u,v, x+y) = Arc(u,w, x)  Path(w,v, y). 

 Combine two paths from u to v by taking the 
minimum. 

 Similar example: value is cost of transportation. 
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