
Jeffrey D. Ullman
Stanford University/Infolab

 Graphs can be either directed or undirected.
 Example: The Facebook “friends” graph

(undirected).

 Nodes = people; edges between friends.

 Example: Twitter followers (directed).

 Nodes = people; arcs from a person to one they
follow.

 Example: Phonecalls (directed, but could be
considered undirected as well).

 Nodes = phone numbers; arc from caller to callee, or
edge between both.

2

1. Locality (edges are not randomly chosen, but
tend to cluster in “communities”).

2. Small-world property (low diameter =
maximum distance from any node to any
other).

3

 A graph exhibits locality if when there is an
edge from x to y and an edge from y to z, then
the probability of an edge from x to z is higher
than one would expect given the number of
nodes and edges in the graph.

 Example: On Facebook, if y is friends with x and
z, then there is a good chance x and z are
friends.

 Community = set of nodes with an unusually
high density of edges.

4

 Many very large graphs have small diameter
(maximum distance between two nodes).

 Called the small world property.

 Example: 6 degrees of Kevin Bacon.
 Example: “Erdos numbers.”
 Example: Most pairs of Web pages are within 12

links of one another.

 But study at Google found pairs of pages whose
shortest path has a length about a thousand.

5

1. Partition the graph into disjoint communities
such that the number of edges that cross
between two communities is minimized
(subject to some constraints).

 Question for thought: what would you do if you
only wanted to minimize edges between
communities?

2. Construct overlapping communities: a node
can be in 0, 1, or more communities, but each
community has many internal edges.

7

 Used to partition a graph into reasonable
communities.

 Roughly: the betweenness of an edge e is the
number of pairs of nodes (A,B) for which the edge
e lies on the shortest path between A and B.

 More precisely: if there are several shortest paths
between A and B, then e is credited with the
fraction of those paths on which it appears.

 Edges of high betweenness separate
communities.

8

9

A D

C

E

F G

B

Edge (B,D) has betweenness = 12, since it is on the
shortest path from each of {A,B,C} to each of {D,E,F,G}.

Edge (G,F) has betweenness = 1.5, since it is on no
shortest path other than that for its endpoints and
half the shortest paths between E and G.

1. Perform a breadth-first search from each node
of the graph.

2. Label nodes top-down (root to leaves) to count
the shortest paths from the root to that node.

3. Label both nodes and edges bottom-up with
sum, over all nodes N at or below, of the fraction
of shortest paths from the root to N, passing
through this node or edge.

4. The betweenness of an edge is half the sum of
its labels, starting with each node as root.

 Half to avoid double-counting each path.
10

11

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

Label of root = 1

Label of other
nodes = sum of
labels of parents

BFS starting
at E

12

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

4.5 1.5

4.5 1.5

1

1

1

Leaves get label 1

1 1 Edges get their
share of their
children

3

Interior nodes get
1 plus the sum of
the edges below

3
0.5 0.5

Split of G’s label
is according to the
path counts (black
labels) of its parents
D and F.

13

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

4.5 1.5

4.5 1.5

1

1

1

1 1

3

3
0.5 0.5

Edge (D,E) has label 4.5.

This edge is on all shortest
paths from E to A, B, C, and D.

It is also on half the shortest
paths from E to G.

But on none of the shortest
paths from E to F.

14

A D

C

E

F G

B

12 5

5

4.5

4.5
4

1.5

1.5

1

15

A D

C

E

F G

B

5

5

4.5

4.5
4

1.5

1.5

1

A sensible partition into communities

16

A D

C

E

F G

B

4.5

4.5
4

1.5

1.5

1

Why are A and C closer than B?
B is a “traitor” to the community,
being connected to D outside the group.

1. Algorithm can be done with each node as root,
in parallel.

2. Depth of a breadth-first tree is no greater than
the diameter of the graph.

3. One MapReduce round per level suffices for
each part.

17

 Recall a community in a social graph is a set of
nodes that have an unusually high number of
edges among those nodes.

 Example: A family (mom+dad+kids) might form
a complete subgraph on Facebook.

 In addition, more distant relations (e.g., cousins)
might be connected to many if not all of the family
members and frequently connected to each other.

19

 One approach to finding communities is to start
by finding cliques = sets of nodes that are fully
connected.

 Grow a community from a clique by adding
nodes that connect to many of the nodes
chosen so far.

 Prefer nodes that add more edges.

 Keep the fraction of possible edges that are present
suitably high.

 May not yield a unique result.

 May produce overlapping communities.
20

 Start with 3-clique {D, F, G}.
 Can add E, and the fraction of edges present

becomes 5/6.
 Better than adding B to {D, F, G}, because that

would result in an edge fraction of only 4/6.
 And adding B to {D, E, F, G} would give a fraction

6/10, perhaps too low.

21

A D

C

E

F G

B

1. Finding largest cliques is highly intractable.
2. Large cliques may not exist, even if the graph

is very dense (most pairs of nodes are
connected by an edge).

 Strangely, a similar approach based on bi-
cliques (two sets of nodes S and T with an edge
from every member of S to every member of T)
works.

 We can grow a bi-clique by adding more nodes, just
as we suggested for cliques.

22

23

 It’s an application of “frequent itemsets.”
 Think of the nodes on the left as “items” and

the nodes on the right as “baskets.”
 If we want bi-cliques with t nodes on the left

and s nodes on the right, then look for itemsets
of size t with support s.

 Note: We find frequent itemsets for the whole
graph, but we’ll argue that if there is a dense
community, then the nodes of that community
have a large bi-clique.

24

 Divide the nodes of the graph randomly into
two equal-sized sets (“left” and “right”).

 For each node on the right, make a basket.
 For each node on the left make an item.
 The basket for node N contains the item for

node M iff there is an edge between N and M.
 Key points: A large community is very likely to

have about half its nodes on each side.

 And there is a good chance it will have a fairly large
bi-clique.

 Question for thought: Why?
25

 Suppose we have a community with 2n nodes,
divided into left and right sides of size n.

 Suppose the average degree of a node within
the community is 2d, so the average node has d
edges connecting to the other side.

 Then a “basket” (right-side node) with di items
generates about itemsets of size t.

 Minimum number of itemsets of size t is
generated when all di‘s are the same and
therefore = d.

 That number is n .
26

d
t ()

di
t ()

 Total number of itemsets of size t is .
 Average number of baskets per itemset is at

least n / .
 Assume n > d >> t, and we can approximate the

average by n(d/n)t.
 At least one itemset of size t must appear in an

average number of baskets, so there will be an
itemset of size t with support s as long as
n(d/n)t > s.

27

n
t ()

d
t () n

t ()

Uses approximation
x choose y is about
xy/y! when x >> y.

 Suppose there is a community of 200 nodes,
which we divide into the two sides with n = 100
each.

 Suppose that within the community, half of all
possible edges exist, so d = 50.

 Then there is a bi-clique with t nodes on the left
and s nodes on the right as long as 100(1/2)t > s.

 For instance, (t, s) could be (2, 25), (3,13), or
(4, 6).

28

 As with “betweenness” approach, we want to
divide a social graph into communities with
most edges contained within a community.

 A surprising technique involving the eigenvector
with the second-smallest eigenvalue serves as a
good heuristic for breaking a graph into two
parts that have the smallest number of edges
between them.

 Can iterate to divide into as many parts as we
like.

30

1. Degree matrix: entry (i, i) is the degree of node
i; off-diagonal entries are 0.

2. Adjacency matrix: entry (i, j) is 1 if there is an
edge between node i and node j, otherwise 0.

3. Laplacian matrix = degree matrix minus
adjacency matrix.

31

32

A B C D

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

Degree
matrix

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

Adjacency
matrix

 1 -1 0 0
-1 2 -1 0
 0 -1 2 -1
 0 0 -1 1

Laplacian
matrix

 Proof: Each row has a sum of 0, so Laplacian L
multiplying an all-1’s vector is all 0’s, which is
also 0 times the all-1’s vector.

 Example:

33

1
1
1
1

 1 -1 0 0
-1 2 -1 0
 0 -1 2 -1
 0 0 -1 1

= 0

1
1
1
1

 Let L be a Laplacian matrix, so L = D – A, where
D and A are the degree matrix and adjacency
matrix for some graph.

 The second eigenvector x can be found by
minimizing xTLx subject to the constraints:

1. The length of x is 1.

2. x is orthogonal to the eigenvector associated with
the smallest eigenvalue.

 The all-1’s vector for Laplacian matrices L.

 And the minimum of xTLx is the eigenvalue.

34

 Let the i-th component of x be xi.
 Aside: Constraint that x is orthogonal to all-1’s

vector says sum of xi‘s = 0.
 Break up xTLx as xTLx = xTDx – xTAx.
 Since D is diagonal, with degree di as i-th

diagonal entry, Dx = vector with i-th element dixi.
 Therefore, xTDx = sum of dixi

2.
 i-th component of Ax = sum of xj’s where node j

is adjacent to node i.
 – xTAx = sum of -2xixj over all adjacent i and j.

35

 Now we know xTLx = i dixi
2 – i,j adjacent 2xixj.

 Distribute dixi
2 over all nodes adjacent to node i.

 Gives us xTLx = i,j adjacent xi
2- 2xixj + xj

2 =
i,j adjacent (xi-xj)

2.
 Remember: we’re minimizing xTLx.
 The minimum will tend to make xi and xj close

when there is an edge between i and j.
 Also, constraint that sum of xi‘s = 0 means there

will be roughly the same number of positive
and negative xi‘s.

36

 Put another way: if there is an edge between i
and j, then there is a good chance that both xi
and xj will be positive or both negative.

 So partition the graph according to the sign of
xi.

 Likely to minimize the number of edges with
one end in either side.

37

38

A B C D

Laplacian
matrix

2

Eigenvalues: 0, 2- , 2, 2+ 2 2

 1 -1 0 0
-1 2 -1 0
 0 -1 2 -1
 0 0 -1 1

1
 -1
1-
-1

2
=

2

2

2 2-
3 -4
4-3
 -2

2

Puts A and B in the positive
group, C and D in the
negative group.

=

.586

.242
-.242
-.586

 We are given a graph and a set of communities.
 We want to find a model that best explains the

edges in the graph, assuming:

1. Nodes (people) can be in any subset of the
communities.

2. For each community C, there is a probability pC that
this community will cause there to be an edge
between two members.

3. Each community independently “inspires” edges.

40

 Consider two nodes i and j, both members of
communities C and D, and no others.

 The probability that there is no edge between i
and j is (1-pC)(1-pD).

 Thus, the probability of an edge (i, j) is
1 - (1-pC)(1-pD).

 Generalizes to 1 minus the product of 1-pC over
all communities C containing both i and j.

 Tiny ε if i and j do not share any communities.

 Else there is no way to explain an edge not contained
in any community.

41

 Given a graph and a tentative assignment of
nodes to sets of communities, we can compute
the likelihood of the graph by taking the
product of:

1. For each edge in the graph, the probability this
assignment would cause this edge.

2. For each pair of nodes not connected by an edge, 1
minus the probability that the assignment would
cause an edge between these nodes.

42

43

1

3

2

4

C D

p12 = p13 = pC

p14 = ε

p23 = 1 – (1-pC)(1-pD)

p24 = p34 = pD

Likelihood of this graph =
p12p13p23p24(1-p14)(1-p34) =

(pC)2(1 – (1-pC)(1-pD))pD(1-ε)(1-pD)

Very close to 1;
drop this factor

Technically this
is 1 – (1-pC).

 Given our assignment to communities, we can
find the probability pC associated with each
community C that maximizes the probability of
seeing this graph.

 Find maximum by gradient descent; i.e., change
each pC slightly in the direction that the partial
derivative wrt this variable says will increase the
likelihood expression.

 Iterate to convergence.

44

 For this likelihood expression

 (pC)2(1 – (1-pC)(1-pD))pD(1-pD)

 first notice that increasing pC can
 only increase the expression.
 Thus, choose pC = 1.
 Expression becomes pD(1-pD).
 Maximized when pD = ½.
 Question for thought: given pC = 1 and pD = ½,

what graphs could possibly be generated and
what are their probabilities?

45

1

3

2

4

C D

 The general idea is that we maximize a function
of many variables by:

1. Take the partial derivative of the function with
respect to each variable.

2. Evaluate the derivatives at the current point
(values of all the variables).

3. Change the value of each variable by a small
fraction of its partial derivative to get a new
point.

4. Repeat (1) – (3) until convergence.

46

 Suppose we start at the point pC = .7, pD = .6
 The derivative of (pC)2(1 – (1-pC)(1-pD))pD(1-pD),

with pC a variable and pD = .6 is .288pC + .288pC
2.

 Evaluated at pC = .7 is .34272.
 The derivative with pD variable and pC = .7 is

.343 - .392pD - .441pD
2.

 Evaluated at pD = .6 is -.05096.
 We might then add 10% of their derivatives to pC

and pD, yielding pC = .734272 and pD = .594904.

47

 While gradient descent is dandy for finding the
best pC values given an assignment of nodes to
communities, it doesn’t help with optimizing
that assignment.

 Classical approach is to allow incremental
changes to a discrete value such as the node-
community assignment.

 Example: allow changes that add or delete one
node from one community; see if it gives a
higher likelihood for its best pC values.

48

 An alternative is to make membership in
communities a continuous so you can use
gradient descent to optimize them.

 Create a variable FxC for each node x and
community C that represents the “degree” to
which x is a member of community C.

 Probability that community C will cause an edge
between nodes u and v is taken to be
1-exp{-FuCFvC}.

 Probability of an edge is constructed from the
contributions of all the communities as before.

49

