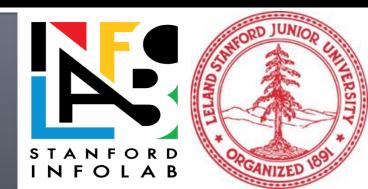
Graphs and Social Networks

Why Social Graphs Are Different Communities Community-Detection Methods

Jeffrey D. Ullman Stanford University/Infolab



Social Graphs

- Graphs can be either directed or undirected.
- Example: The Facebook "friends" graph (undirected).
 - Nodes = people; edges between friends.
- Example: Twitter followers (directed).
 - Nodes = people; arcs from a person to one they follow.
- Example: Phonecalls (directed, but could be considered undirected as well).
 - Nodes = phone numbers; arc from caller to callee, or edge between both.

Properties of Social Graphs

- 1. Locality (edges are not randomly chosen, but tend to cluster in "communities").
- Small-world property (low diameter = maximum distance from any node to any other).

Locality

- A graph exhibits *locality* if when there is an edge from x to y and an edge from y to z, then the probability of an edge from x to z is higher than one would expect given the number of nodes and edges in the graph.
- Example: On Facebook, if y is friends with x and z, then there is a good chance x and z are friends.
- Community = set of nodes with an unusually high density of edges.

It's a Small World After All

- Many very large graphs have small *diameter* (maximum distance between two nodes).
 - Called the *small world* property.
- Example: 6 degrees of Kevin Bacon.
- Example: "Erdos numbers."
- Example: Most pairs of Web pages are within 12 links of one another.
 - But study at Google found pairs of pages whose shortest path has a length about a thousand.

Finding Communities

Betweenness Cliques and Bi-Cliques Laplacian Matrices Association-Graph Model

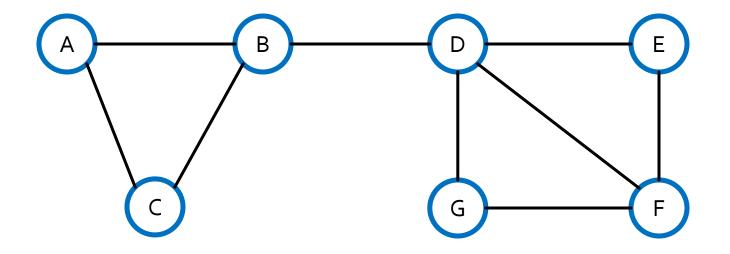
Two Approaches to Communities

- Partition the graph into disjoint communities such that the number of edges that cross between two communities is minimized (subject to some constraints).
 - Question for thought: what would you do if you only wanted to minimize edges between communities?
- 2. Construct *overlapping communities*: a node can be in 0, 1, or more communities, but each community has many internal edges.

Betweenness

- Used to partition a graph into reasonable communities.
- Roughly: the betweenness of an edge e is the number of pairs of nodes (A,B) for which the edge e lies on the shortest path between A and B.
- More precisely: if there are several shortest paths between A and B, then e is credited with the fraction of those paths on which it appears.
- Edges of high betweenness separate communities.

Example: Betweenness



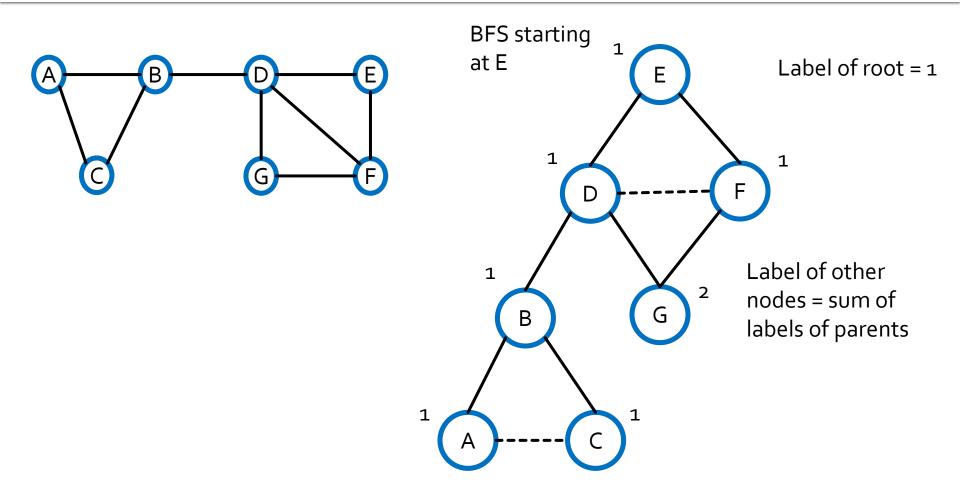
Edge (B,D) has betweenness = 12, since it is on the shortest path from each of {A,B,C} to each of {D,E,F,G}.

Edge (G,F) has betweenness = 1.5, since it is on no shortest path other than that for its endpoints and half the shortest paths between E and G.

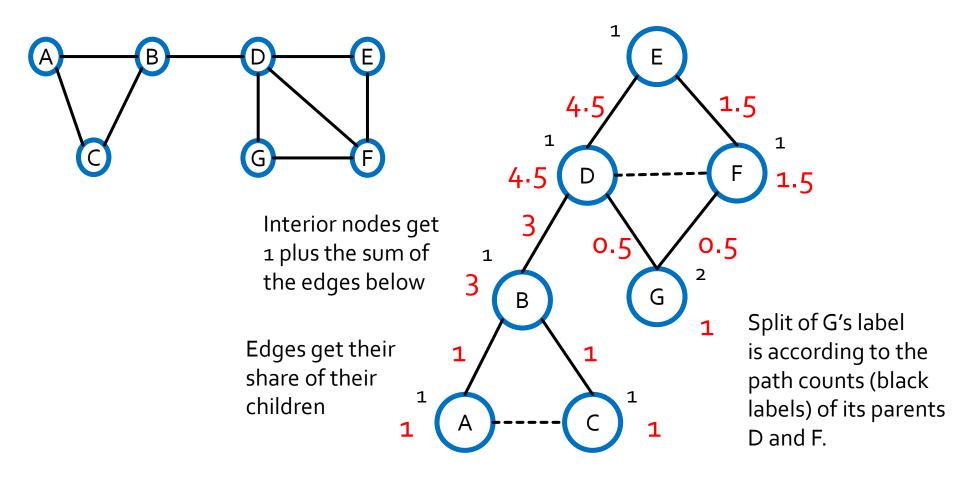
Girvan-Newman Algorithm

- 1. Perform a breadth-first search from each node of the graph.
- 2. Label nodes top-down (root to leaves) to count the shortest paths from the root to that node.
- 3. Label both nodes and edges bottom-up with sum, over all nodes N at or below, of the fraction of shortest paths from the root to N, passing through this node or edge.
- 4. The betweenness of an edge is half the sum of its labels, starting with each node as root.
 - Half to avoid double-counting each path.

Example: Steps 1 and 2

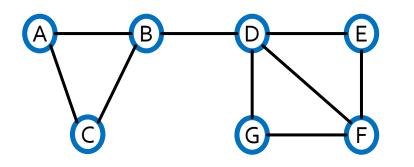


Example: Step 3



Leaves get label 1

Sanity Check



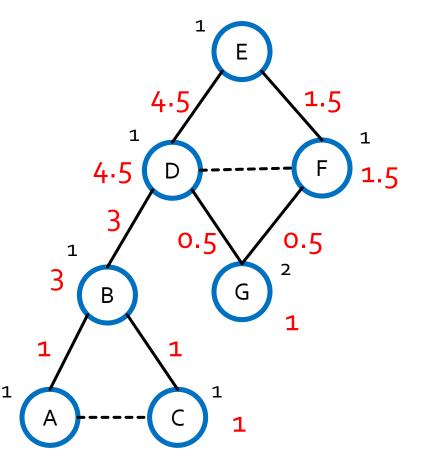
Edge (D,E) has label 4.5.

This edge is on all shortest paths from E to A, B, C, and D.

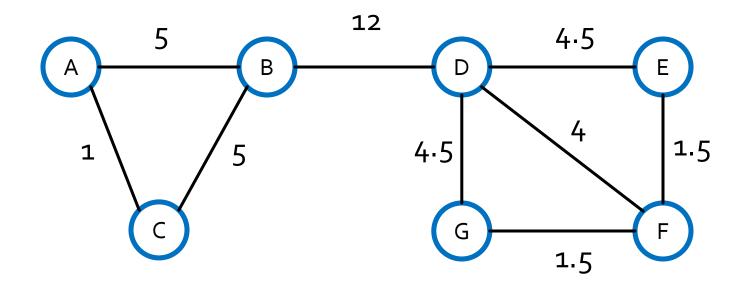
It is also on half the shortest paths from E to G.

1

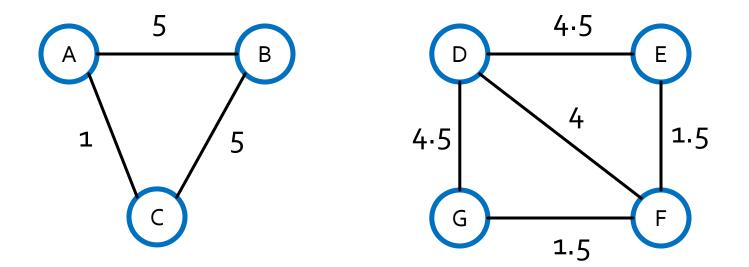
But on none of the shortest paths from E to F.



Result of G-N Algorithm

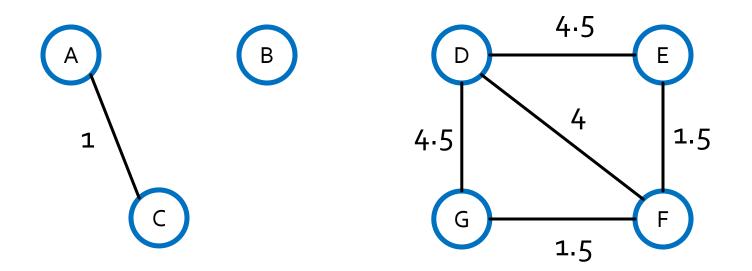


Remove Edge of Highest Betweenness



A sensible partition into communities

Remove Next-Highest Edge(s)



Why are A and C closer than B? B is a "traitor" to the community, being connected to D outside the group.

Paralllelizing G-N Algorithm

- 1. Algorithm can be done with each node as root, in parallel.
- Depth of a breadth-first tree is no greater than the diameter of the graph.
- 3. One MapReduce round per level suffices for each part.

Communities Via Complete Bipartite Graphs

Growing Communities Existence of Large Bi-Cliques

Growing Communities

- Recall a *community* in a social graph is a set of nodes that have an unusually high number of edges among those nodes.
- Example: A family (mom+dad+kids) might form a complete subgraph on Facebook.
 - In addition, more distant relations (e.g., cousins) might be connected to many if not all of the family members and frequently connected to each other.

Cliques

- One approach to finding communities is to start by finding *cliques* = sets of nodes that are fully connected.
- Grow a community from a clique by adding nodes that connect to many of the nodes chosen so far.
 - Prefer nodes that add more edges.
 - Keep the fraction of possible edges that are present suitably high.
 - May not yield a unique result.
 - May produce overlapping communities.

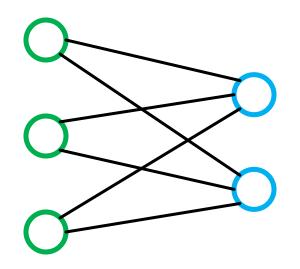
Example: Growing Communities

- A B D E G F G
 Start with 3-clique {D, F, G}.
- Can add E, and the fraction of edges present becomes 5/6.
- Better than adding B to {D, F, G}, because that would result in an edge fraction of only 4/6.
- And adding B to {D, E, F, G} would give a fraction 6/10, perhaps too low.

Problems with Cliques

- 1. Finding largest cliques is highly intractable.
- Large cliques may not exist, even if the graph is very *dense* (most pairs of nodes are connected by an edge).
- Strangely, a similar approach based on *bi-cliques* (two sets of nodes S and T with an edge from every member of S to every member of T) works.
 - We can grow a bi-clique by adding more nodes, just as we suggested for cliques.

Example: A Bi-Clique



Finding Bi-Cliques

- It's an application of "frequent itemsets."
- Think of the nodes on the left as "items" and the nodes on the right as "baskets."
- If we want bi-cliques with t nodes on the left and s nodes on the right, then look for itemsets of size t with support s.
- Note: We find frequent itemsets for the whole graph, but we'll argue that if there is a dense community, then the nodes of that community have a large bi-clique.

Finding Bi-Cliques –(2)

- Divide the nodes of the graph randomly into two equal-sized sets ("left" and "right").
- For each node on the right, make a basket.
- For each node on the left make an item.
- The basket for node N contains the item for node M iff there is an edge between N and M.
- Key points: A large community is very likely to have about half its nodes on each side.
 - And there is a good chance it will have a fairly large bi-clique.
 - Question for thought: Why?

Dense Communities Have Big Bi-Cliques

- Suppose we have a community with 2n nodes, divided into left and right sides of size n.
- Suppose the average degree of a node within the community is 2d, so the average node has d edges connecting to the other side.
- Then a "basket" (right-side node) with d_i items generates about (^{d_i}_t) itemsets of size t.
- Minimum number of itemsets of size t is generated when all d_i's are the same and therefore = d.
- That number is n(^d_t).

Bi-Cliques Exist – (2)

- Total number of itemsets of size t is(ⁿ_t).
- Average number of baskets per itemset is at least n (^d_t)/(ⁿ_t).
- Assume n > d >> t, and we can approximate the average by n(d/n)^t.
- At least one itemset of size t must appear in an average number of baskets, so there will be an itemset of size t with support s as long as n(d/n)^t ≥ s.

Example: Bi-Cliques Exist

- Suppose there is a community of 200 nodes, which we divide into the two sides with n = 100 each.
- Suppose that within the community, half of all possible edges exist, so d = 50.
- Then there is a bi-clique with t nodes on the left and s nodes on the right as long as 100(1/2)^t ≥ s.
- For instance, (t, s) could be (2, 25), (3,13), or (4, 6).

Communities Via Laplacian Matrices

Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

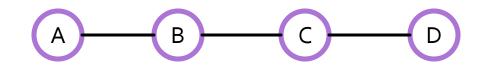
The Laplacian Approach

- As with "betweenness" approach, we want to divide a social graph into communities with most edges contained within a community.
- A surprising technique involving the eigenvector with the second-smallest eigenvalue serves as a good heuristic for breaking a graph into two parts that have the smallest number of edges between them.
- Can iterate to divide into as many parts as we like.

Three Matrices That Describe Graphs

- Degree matrix: entry (i, i) is the degree of node i; off-diagonal entries are 0.
- 2. Adjacency matrix: entry (i, j) is 1 if there is an edge between node i and node j, otherwise 0.
- 3. Laplacian matrix = degree matrix minus adjacency matrix.

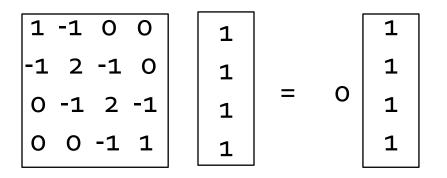
Example: Matrices



1	0	0	0	0	1	0	0	1-100
0	2	0	0	1	0	1	0	-1 2 -1 0
0	0	2	0	0	1	0	1	0 -1 2 -1
0	0	0	1	0	0	1	0	0 0 -1 1
Degree matrix					Adjacency matrix			Laplacian matrix
IIIdliiX				[]]	dl	IX		IIIdliX

Every Laplacian Has Zero as an Eigenvalue

- Proof: Each row has a sum of 0, so Laplacian L multiplying an all-1's vector is all 0's, which is also 0 times the all-1's vector.
- Example:



The Second-Smallest Eigenvalue

- Let L be a Laplacian matrix, so L = D A, where D and A are the degree matrix and adjacency matrix for some graph.
- The second eigenvector x can be found by minimizing x^TLx subject to the constraints:
 - 1. The length of **x** is 1.
 - 2. **x** is orthogonal to the eigenvector associated with the smallest eigenvalue.
 - The all-1's vector for Laplacian matrices L.
- And the minimum of **x**^TL**x** is the eigenvalue.

Meaning of Second Eigenvector

- Let the i-th component of x be x_i.
- Aside: Constraint that x is orthogonal to all-1's vector says sum of x_i's = 0.
- Break up $\mathbf{x}^T \mathbf{L} \mathbf{x}$ as $\mathbf{x}^T \mathbf{L} \mathbf{x} = \mathbf{x}^T \mathbf{D} \mathbf{x} \mathbf{x}^T \mathbf{A} \mathbf{x}$.
- Since D is diagonal, with degree d_i as i-th diagonal entry, Dx = vector with i-th element d_ix_i.
- Therefore, $\mathbf{x}^T \mathbf{D} \mathbf{x} = \text{sum of } \mathbf{d}_i \mathbf{x}_i^2$.
- i-th component of Ax = sum of x_j's where node j is adjacent to node i.
- $\mathbf{x}^T A \mathbf{x}$ = sum of $-2x_i x_j$ over all adjacent i and j.

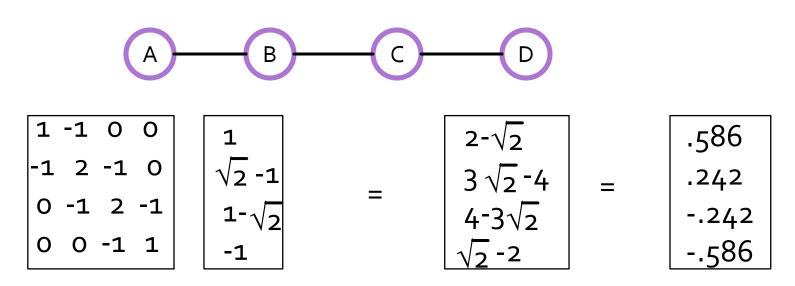
Second Eigenvector – (2)

- Now we know $\mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_i d_i x_i^2 \sum_{i,j \text{ adjacent}} 2x_i x_j$.
- Distribute d_ix_i² over all nodes adjacent to node i.
- Gives us $\mathbf{x}^{T} \mathbf{L} \mathbf{x} = \Sigma_{i,j \text{ adjacent}} \mathbf{x}_{i}^{2} 2\mathbf{x}_{i}\mathbf{x}_{j} + \mathbf{x}_{j}^{2} = \Sigma_{i,j \text{ adjacent}} (\mathbf{x}_{i} \mathbf{x}_{j})^{2}$.
- Remember: we're minimizing x^TLx.
- The minimum will tend to make x_i and x_j close when there is an edge between i and j.
- Also, constraint that sum of x_i's = 0 means there will be roughly the same number of positive and negative x_i's.

Second Eigenvector – (3)

- Put another way: if there is an edge between i and j, then there is a good chance that both x_i and x_i will be positive or both negative.
- So partition the graph according to the sign of x_i.
- Likely to minimize the number of edges with one end in either side.

Example: Second Eigenvector.



Laplacian matrix

Eigenvalues: 0, $2\sqrt{2}$, 2, $2+\sqrt{2}$

Puts A and B in the positive group, C and D in the negative group.

The Affiliation-Graph Model

Overlapping Communities Maximum-Likelihood Estimation

Elements of the AGM

- We are given a graph and a set of communities.
- We want to find a model that best explains the edges in the graph, assuming:
 - 1. Nodes (people) can be in any subset of the communities.
 - For each community C, there is a probability p_c that this community will cause there to be an edge between two members.
 - 3. Each community independently "inspires" edges.

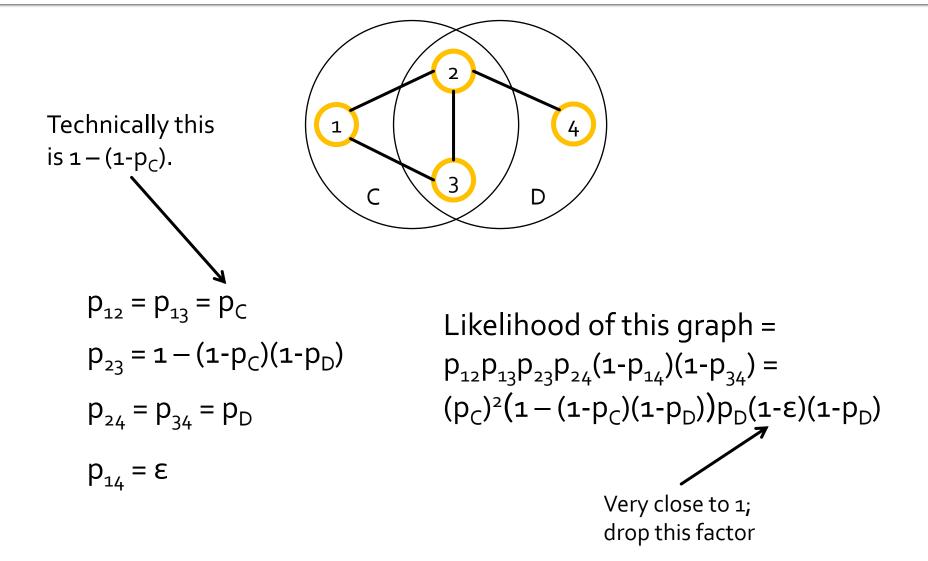
Computing Probabilities of Edges

- Consider two nodes i and j, both members of communities C and D, and no others.
- The probability that there is no edge between i and j is (1-p_c)(1-p_D).
- Thus, the probability of an edge (i, j) is 1 - (1-p_c)(1-p_D).
- Generalizes to 1 minus the product of 1-p_c over all communities C containing both i and j.
- Tiny ε if i and j do not share any communities.
 - Else there is no way to explain an edge not contained in any community.

Likelihood of a Community Assignment

- Given a graph and a tentative assignment of nodes to sets of communities, we can compute the likelihood of the graph by taking the product of:
 - 1. For each edge in the graph, the probability this assignment would cause this edge.
 - 2. For each pair of nodes not connected by an edge, 1 minus the probability that the assignment would cause an edge between these nodes.

Example: Likelihood of a Graph



Maximum-Likelihood Probabilities

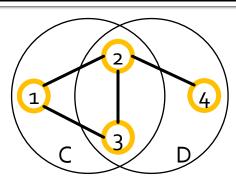
- Given our assignment to communities, we can find the probability p_c associated with each community C that maximizes the probability of seeing this graph.
- Find maximum by gradient descent; i.e., change each p_c slightly in the direction that the partial derivative wrt this variable says will increase the likelihood expression.
 - Iterate to convergence.

Example: Optimizing Probabilities

For this likelihood expression

 $(p_{c})^{2}(1 - (1-p_{c})(1-p_{D}))p_{D}(1-p_{D})$ first notice that increasing p_c can only increase the expression.

- Thus, choose $p_c = 1$.
- Expression becomes $p_D(1-p_D)$.
- Maximized when $p_D = \frac{1}{2}$.
- Question for thought: given $p_c = 1$ and $p_p = \frac{1}{2}$, what graphs could possibly be generated and what are their probabilities?



Gradient Descent

- The general idea is that we maximize a function of many variables by:
- 1. Take the partial derivative of the function with respect to each variable.
- Evaluate the derivatives at the current point (values of all the variables).
- 3. Change the value of each variable by a small fraction of its partial derivative to get a new point.
- 4. Repeat (1) (3) until convergence.

Example: Gradient Descent

- Suppose we start at the point $p_c = .7$, $p_D = .6$
- The derivative of $(p_C)^2(1 (1-p_C)(1-p_D))p_D(1-p_D)$, with p_C a variable and $p_D = .6$ is $.288p_C + .288p_C^2$.
- Evaluated at $p_c = .7$ is .34272.
- The derivative with p_D variable and p_C = .7 is .343 - .392p_D - .441p_D².
- Evaluated at $p_D = .6$ is -.05096.
- We might then add 10% of their derivatives to p_c and p_D , yielding $p_c = .734272$ and $p_D = .594904$.

Changing the Node-Community Assignment

- While gradient descent is dandy for finding the best p_c values given an assignment of nodes to communities, it doesn't help with optimizing that assignment.
- Classical approach is to allow incremental changes to a discrete value such as the nodecommunity assignment.
- Example: allow changes that add or delete one node from one community; see if it gives a higher likelihood for its best p_c values.

Making Membership Continuous

- An alternative is to make membership in communities a continuous so you can use gradient descent to optimize them.
- Create a variable F_{xC} for each node x and community C that represents the "degree" to which x is a member of community C.
- Probability that community C will cause an edge between nodes u and v is taken to be 1-exp{-F_{uC}F_{vC}}.
- Probability of an edge is constructed from the contributions of all the communities as before.