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 A large set of items, e.g., things sold in a 
supermarket. 

 A large set of baskets, each of which is a small 
set of the items, e.g., the things one customer 
buys on one day. 
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 Simplest question: find sets of items that 
appear “frequently” in the baskets. 

 Support for itemset I = the number of baskets 
containing all items in I. 

 Sometimes given as a percentage of the baskets.  

 Given a support threshold s, a set of items 
appearing in at least s baskets is called a 
frequent itemset. 
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 Items={milk, coke, pepsi, beer, juice}. 
 Support = 3 baskets. 

 B1 = {m, c, b}  B2 = {m, p, j} 

 B3 = {m, b}  B4 = {c, j} 

 B5 = {m, p, b}  B6 = {m, c, b, j} 

 B7 = {c, b, j}  B8 = {b, c} 

 Frequent itemsets: {m}, {c}, {b}, {j}, 

, {b,c} , {c,j}. {m,b} 



 “Classic” application was analyzing what people 
bought together in a brick-and-mortar store. 

 Apocryphal story of “diapers and beer” discovery. 

 Used to position potato chips between diapers and 
beer to enhance sales of potato chips. 

 Many other applications, including plagiarism 
detection. 

 Items = documents; baskets = sentences. 

 Basket/sentence contains all the items/documents 
that have that sentence. 
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 If-then rules about the contents of baskets. 
 {i1, i2,…, ik} → j  means: “if a basket contains all 

of i1,…, ik  then it is likely to contain j.” 
 Example: {bread, peanut-butter} → jelly. 

 Confidence of this association rule is the 
“probability” of j given i1,…, ik. 

 That is, the fraction of the baskets with i1,…, ik that 
also contain j. 

Subtle point: “probability” implies there is a 
process generating random baskets.  Really 
we’re just computing the fraction of baskets, 
because we’re computer scientists, not statisticians. 
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 B1 = {m, c, b}  B2 = {m, p, j} 

 B3 = {m, b}  B4 = {c, j} 

 B5 = {m, p, b}  B6 = {m, c, b, j} 

 B7 = {c, b, j}  B8 = {b, c} 

 

 An association rule: {m, b} → c. 

 Confidence = 2/4 = 50%. 

 

+ 

 

_ 

 

_                                                    + 



8 

 Typically, data is a file consisting of a list of 
baskets. 

 The true cost of mining disk-resident data is 
usually the number of disk I/O’s. 

 In practice, we read the data in passes –  all 
baskets read in turn. 

 Thus, we measure the cost by the number of passes 
an algorithm takes. 
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 For many frequent-itemset algorithms, main 
memory is the critical resource. 

 As we read baskets, we need to count 
something, e.g., occurrences of pairs of items. 

 The number of different things we can count is 
limited by main memory. 

 Swapping counts in/out is a disaster. 
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 The hardest problem often turns out to be 
finding the frequent pairs. 

 Why? Often frequent pairs are common, frequent 
triples are rare. 

 Why? Support threshold is usually set high enough that 
you don’t get too many frequent itemsets. 

 We’ll concentrate on pairs, then extend to 
larger sets. 



11 

 Read file once, counting in main memory the 
occurrences of each pair. 

 From each basket of n items, generate its n(n-1)/2 
pairs by two nested loops. 

 Fails if (#items)2 exceeds main memory. 

 Example: Walmart sells 100K items, so probably OK. 

 Example: Web has 100B pages, so definitely not OK. 
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1. Count all pairs, using a triangular matrix. 

 I.e., count {i,j} in row i, column j, provided i < j. 

 But use a “ragged array,” so the empty triangle is not there. 

2. Keep a table of triples [i, j, c] = “the count of the pair 
of items {i, j} is c.” 

 (1) requires only 4 bytes/pair. 

 Note: always assume integers are 4 bytes. 

 (2) requires  at least 12 bytes/pair, but only for 
those pairs with count > 0. 

 I.e., (2) beats (1) only when at most 1/3 of all pairs 
have a nonzero count. 
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4 per pair 

Triangular matrix Tabular method 

1212 per point per 
occurring pair 
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 Number items 1, 2,…, n. 

 Requires table of size O(n) to convert item names 
to consecutive integers. 

 Count {i, j} only if i < j.  
 Keep pairs in the order {1,2}, {1,3},…, {1,n}, 

{2,3}, {2,4},…, {2,n}, {3,4},…, {3,n},…, {n -1,n}. 
 Find pair {i, j}, where i<j, at the position: 
                (i – 1)(n – i/2) + j – i 
 Total number of pairs n(n –1)/2; total bytes 

about 2n2. 
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 A two-pass approach called a-priori limits the 
need for main memory. 

 Key idea: monotonicity:  if a set of items 
appears at least s times, so does every subset of 
the set. 

 Contrapositive for pairs: if item i does not 
appear in s baskets, then no pair including i can 
appear in s baskets. 
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 Pass 1: Read baskets and count in main 
memory the occurrences of each item. 

 Requires only memory proportional to #items. 

 Items that appear at least s times are the 
frequent items. 
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 Pass 2: Read baskets again and count in main 
memory only those pairs both of which were 
found in Pass 1 to be frequent. 

 Requires memory proportional to square of 
frequent items only (for counts), plus a table of 
the frequent items (so you know what must be 
counted). 
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Item counts 

Pass 1 Pass 2 

Frequent items 

Counts of 
  pairs of 
 frequent 
   items 
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 You can use the triangular matrix method with 
n = number of frequent items. 

 May save space compared with storing triples. 

 Trick: number frequent items 1, 2,… and keep a 
table relating new numbers to original item 
numbers. 
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Item counts 

Pass 1 Pass 2 

Old #’s  New #’s 
1.         1        
2.         -        
3.        2        

Counts of 
 pairs of 
 frequent 
   items 

For thought: Why would we even 
mention the infrequent items? 
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 For each size of itemsets k, we construct two 
sets of k-sets (sets of size k): 

 Ck  = candidate k-sets = those that might be frequent 
sets (support > s) based on information from the 
pass for itemsets of size k – 1. 

 Lk  = the set of truly frequent k-sets. 
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C1 L1 C2 L2 C3 
Filter Filter Construct Construct 

First 
pass 

Second 
pass 

All 
items 

All pairs 
of items 
from L1 

  Count 
the pairs 

To be 
explained 

  Count 
the items 

Frequent 
items 

Frequent 
pairs 
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 C1 = all items 
 In general, Lk = members of Ck with support ≥ s. 

 Requires one pass. 

 Ck+1 = (k+1)-sets, each k of which is in Lk. 
 For thought: how would you generate Ck+1 from 

Lk? 

 Enumerating all sets of size k+1 and testing each 
seems really dumb. 



 At the kth pass, you need space to count each 
member of Ck. 

 In realistic cases, because you need fairly high 
support, the number of candidates of each size 
drops, once you get beyond pairs. 
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 During Pass 1 of A-priori, most memory is idle. 
 Use that memory to keep counts of buckets into 

which pairs of items are hashed. 

 Just the count, not the pairs themselves. 

 For each basket, enumerate all its pairs, hash 
them, and increment the resulting bucket count 
by 1. 
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 A bucket is frequent if its count is at least the 
support threshold. 

 If a bucket is not frequent, no pair that hashes 
to that bucket could possibly be a frequent pair. 

 On Pass 2, we only count pairs of frequent 
items that also hash to a frequent bucket. 

 A bitmap tells which buckets are frequent, using 
only one bit per bucket (i.e., 1/32 of the space 
used on Pass 1). 
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Hash table 
for pairs 

Item counts 

Bitmap 

Pass 1 Pass 2 

Frequent items 

Counts of 
candidate 
   pairs 
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 Space to count each item. 

 One (typically) 4-byte integer per item. 

 Use the rest of the space for as many 
integers, representing buckets, as we can. 



31 

FOR (each basket) { 

 FOR (each item in the basket) 

  add 1 to item’s count; 

 FOR (each pair of items) { 

  hash the pair to a bucket; 

  add 1 to the count for that bucket 

 } 

} 
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1. A bucket that a frequent pair hashes to is 
surely frequent. 

 We cannot eliminate any member of this bucket. 

2. Even without any frequent pair, a bucket can 
be frequent. 

 Again, nothing in the bucket can be eliminated. 

3. But if the count for a bucket is less than the 
support s, all pairs that hash to this bucket can 
be eliminated, even if the pair consists of two 
frequent items. 
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 Replace the buckets by a bit-vector (the 
“bitmap”): 

 1 means the bucket is frequent; 0 means it is not. 

 Also, decide which items are frequent and list 
them for the second pass. 



34 

 Count all pairs {i, j} that meet the conditions 
for being a candidate pair: 

1. Both i and j are frequent items. 

2. The pair {i, j}, hashes to a bucket number whose bit 
in the bit vector is 1. 
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 Buckets require a few bytes each. 

 Note: we don’t have to count past s. 

 If s < 216, 2 bytes/bucket will do. 

 # buckets is O(main-memory size). 

 On second pass, a table of (item, item, count) 
triples is essential. 

 Thus, hash table on Pass 1 must eliminate 2/3 of the 
candidate pairs for PCY to beat a-priori. 



 The MMDS book covers several other extensions 
beyond the PCY idea: “Multistage” and 
“Multihash.” 

 For reading on your own, Sect. 6.4 of MMDS. 
 Recommended video (starting about 10:10): 

https://www.youtube.com/watch?v=AGAkNiQnbjY 
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 Take a random sample of the market baskets. 

 Do not sneer; “random sample” is often a cure for 
the problem of having too large a dataset. 

 Run a-priori or one of its improvements (for 
sets of all sizes, not just pairs) in main 
memory, so you don’t pay for disk I/O each 
time you increase the size of itemsets. 

 Use as your support threshold a suitable, 
scaled-back number. 

 Example: if your sample is 1/100 of the baskets, 
use  s/100 as your support threshold instead of s. 
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 Optionally, verify that your guesses are 
truly frequent in the entire data set by a 
second pass. 

 But you don’t catch sets frequent in the 
whole but not in the sample. 

 Smaller threshold, e.g., s/125 instead of s/100, 
helps catch more truly frequent itemsets. 

 But requires more space. 
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 Partition the baskets into small subsets. 
 Read each subset into main memory and 

perform the first pass of the simple algorithm 
on each subset. 

 Parallel processing of the subsets a good option. 

 An itemset is a candidate if it is frequent (with 
support threshold suitably scaled down) in at 
least one subset. 
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 On a second pass, count all the candidate 
itemsets and determine which are frequent in 
the entire set. 

 Key “monotonicity” idea: an itemset cannot be 
frequent in the entire set of baskets unless it is 
frequent in at least one subset. 
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 Start as in the simple algorithm, but lower the 
threshold slightly for the sample. 

 Example: if the sample is 1% of the baskets, use 
s/125 as the support threshold rather than s/100. 

 Goal is to avoid missing any itemset that is frequent 
in the full set of baskets. 
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 Add to the itemsets that are frequent in the 
sample the negative border of these itemsets. 

 An itemset is in the negative border if it is not 
deemed frequent in the sample, but all its 
immediate subsets are. 

 Immediate subset = “delete exactly one element.” 
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 {A,B,C,D} is in the negative border if and only if: 

1. It is not frequent in the sample, but 

2. All of {A,B,C}, {B,C,D}, {A,C,D}, and {A,B,D} are. 

  {A} is in the negative border if and only if it is 
not frequent in the sample. 

 Because the empty set is always frequent. 

 Unless there are fewer baskets than the support threshold 
(silly case). 

 Useful trick: When processing the sample by 
A-Priori, each member of Ck is either in Lk or in 
the negative border, never both. 
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    … 
 
tripletons 
 
doubletons 
 
singletons 

Negative Border 

Frequent Itemsets 
from Sample 
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 In a second pass, count all candidate frequent 
itemsets from the first pass, and also count sets 
in their negative border. 

 If no itemset from the negative border turns out 
to be frequent, then the candidates found to be 
frequent in the whole data are exactly the 
frequent itemsets. 
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 What if we find that something in the negative 
border is actually frequent? 

 We must start over again with another sample! 
 Try to choose the support threshold so the 

probability of failure is low, while the number 
of itemsets checked on the second pass fits in 
main-memory. 
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    … 
 
tripletons 
 
doubletons 
 
singletons 

Negative Border 

Frequent Itemsets 
from Sample 

We broke through the 
negative border.  How 
far does the problem 
        go? 
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 If there is an itemset that is frequent in the 
whole, but not frequent in the sample, then 
there is a member of the negative border for 
the sample that is frequent in the whole. 
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 Suppose not; i.e.; 

1. There is an itemset S frequent in the whole but 
not frequent in the sample, and 

2. Nothing in the negative border is frequent in the 
whole. 

 Let T be a smallest subset of S that is not 
frequent in the sample. 

 T is frequent in the whole (S is frequent + 
monotonicity). 

 T is in the negative border (else not 
“smallest”). 


