
Jeffrey D. Ullman
Stanford University

2

 A large set of items, e.g., things sold in a
supermarket.

 A large set of baskets, each of which is a small
set of the items, e.g., the things one customer
buys on one day.

3

 Simplest question: find sets of items that
appear “frequently” in the baskets.

 Support for itemset I = the number of baskets
containing all items in I.

 Sometimes given as a percentage of the baskets.

 Given a support threshold s, a set of items
appearing in at least s baskets is called a
frequent itemset.

4

 Items={milk, coke, pepsi, beer, juice}.
 Support = 3 baskets.

 B1 = {m, c, b} B2 = {m, p, j}

 B3 = {m, b} B4 = {c, j}

 B5 = {m, p, b} B6 = {m, c, b, j}

 B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},

, {b,c} , {c,j}. {m,b}

 “Classic” application was analyzing what people
bought together in a brick-and-mortar store.

 Apocryphal story of “diapers and beer” discovery.

 Used to position potato chips between diapers and
beer to enhance sales of potato chips.

 Many other applications, including plagiarism
detection.

 Items = documents; baskets = sentences.

 Basket/sentence contains all the items/documents
that have that sentence.

5

6

 If-then rules about the contents of baskets.
 {i1, i2,…, ik} → j means: “if a basket contains all

of i1,…, ik then it is likely to contain j.”
 Example: {bread, peanut-butter} → jelly.

 Confidence of this association rule is the
“probability” of j given i1,…, ik.

 That is, the fraction of the baskets with i1,…, ik that
also contain j.

Subtle point: “probability” implies there is a
process generating random baskets. Really
we’re just computing the fraction of baskets,
because we’re computer scientists, not statisticians.

7

 B1 = {m, c, b} B2 = {m, p, j}

 B3 = {m, b} B4 = {c, j}

 B5 = {m, p, b} B6 = {m, c, b, j}

 B7 = {c, b, j} B8 = {b, c}

 An association rule: {m, b} → c.

 Confidence = 2/4 = 50%.

+

_

_ +

8

 Typically, data is a file consisting of a list of
baskets.

 The true cost of mining disk-resident data is
usually the number of disk I/O’s.

 In practice, we read the data in passes – all
baskets read in turn.

 Thus, we measure the cost by the number of passes
an algorithm takes.

9

 For many frequent-itemset algorithms, main
memory is the critical resource.

 As we read baskets, we need to count
something, e.g., occurrences of pairs of items.

 The number of different things we can count is
limited by main memory.

 Swapping counts in/out is a disaster.

10

 The hardest problem often turns out to be
finding the frequent pairs.

 Why? Often frequent pairs are common, frequent
triples are rare.

 Why? Support threshold is usually set high enough that
you don’t get too many frequent itemsets.

 We’ll concentrate on pairs, then extend to
larger sets.

11

 Read file once, counting in main memory the
occurrences of each pair.

 From each basket of n items, generate its n(n-1)/2
pairs by two nested loops.

 Fails if (#items)2 exceeds main memory.

 Example: Walmart sells 100K items, so probably OK.

 Example: Web has 100B pages, so definitely not OK.

12

1. Count all pairs, using a triangular matrix.

 I.e., count {i,j} in row i, column j, provided i < j.

 But use a “ragged array,” so the empty triangle is not there.

2. Keep a table of triples [i, j, c] = “the count of the pair
of items {i, j} is c.”

 (1) requires only 4 bytes/pair.

 Note: always assume integers are 4 bytes.

 (2) requires at least 12 bytes/pair, but only for
those pairs with count > 0.

 I.e., (2) beats (1) only when at most 1/3 of all pairs
have a nonzero count.

13

4 per pair

Triangular matrix Tabular method

1212 per point per
occurring pair

14

 Number items 1, 2,…, n.

 Requires table of size O(n) to convert item names
to consecutive integers.

 Count {i, j} only if i < j.
 Keep pairs in the order {1,2}, {1,3},…, {1,n},

{2,3}, {2,4},…, {2,n}, {3,4},…, {3,n},…, {n -1,n}.
 Find pair {i, j}, where i<j, at the position:
 (i – 1)(n – i/2) + j – i
 Total number of pairs n(n –1)/2; total bytes

about 2n2.

16

 A two-pass approach called a-priori limits the
need for main memory.

 Key idea: monotonicity: if a set of items
appears at least s times, so does every subset of
the set.

 Contrapositive for pairs: if item i does not
appear in s baskets, then no pair including i can
appear in s baskets.

17

 Pass 1: Read baskets and count in main
memory the occurrences of each item.

 Requires only memory proportional to #items.

 Items that appear at least s times are the
frequent items.

18

 Pass 2: Read baskets again and count in main
memory only those pairs both of which were
found in Pass 1 to be frequent.

 Requires memory proportional to square of
frequent items only (for counts), plus a table of
the frequent items (so you know what must be
counted).

19

Item counts

Pass 1 Pass 2

Frequent items

Counts of
 pairs of
 frequent
 items

20

 You can use the triangular matrix method with
n = number of frequent items.

 May save space compared with storing triples.

 Trick: number frequent items 1, 2,… and keep a
table relating new numbers to original item
numbers.

21

Item counts

Pass 1 Pass 2

Old #’s New #’s
1. 1
2. -
3. 2

Counts of
 pairs of
 frequent
 items

For thought: Why would we even
mention the infrequent items?

22

 For each size of itemsets k, we construct two
sets of k-sets (sets of size k):

 Ck = candidate k-sets = those that might be frequent
sets (support > s) based on information from the
pass for itemsets of size k – 1.

 Lk = the set of truly frequent k-sets.

23

C1 L1 C2 L2 C3
Filter Filter Construct Construct

First
pass

Second
pass

All
items

All pairs
of items
from L1

 Count
the pairs

To be
explained

 Count
the items

Frequent
items

Frequent
pairs

24

 C1 = all items
 In general, Lk = members of Ck with support ≥ s.

 Requires one pass.

 Ck+1 = (k+1)-sets, each k of which is in Lk.
 For thought: how would you generate Ck+1 from

Lk?

 Enumerating all sets of size k+1 and testing each
seems really dumb.

 At the kth pass, you need space to count each
member of Ck.

 In realistic cases, because you need fairly high
support, the number of candidates of each size
drops, once you get beyond pairs.

25

27

 During Pass 1 of A-priori, most memory is idle.
 Use that memory to keep counts of buckets into

which pairs of items are hashed.

 Just the count, not the pairs themselves.

 For each basket, enumerate all its pairs, hash
them, and increment the resulting bucket count
by 1.

28

 A bucket is frequent if its count is at least the
support threshold.

 If a bucket is not frequent, no pair that hashes
to that bucket could possibly be a frequent pair.

 On Pass 2, we only count pairs of frequent
items that also hash to a frequent bucket.

 A bitmap tells which buckets are frequent, using
only one bit per bucket (i.e., 1/32 of the space
used on Pass 1).

29

Hash table
for pairs

Item counts

Bitmap

Pass 1 Pass 2

Frequent items

Counts of
candidate
 pairs

30

 Space to count each item.

 One (typically) 4-byte integer per item.

 Use the rest of the space for as many
integers, representing buckets, as we can.

31

FOR (each basket) {

 FOR (each item in the basket)

 add 1 to item’s count;

 FOR (each pair of items) {

 hash the pair to a bucket;

 add 1 to the count for that bucket

 }

}

32

1. A bucket that a frequent pair hashes to is
surely frequent.

 We cannot eliminate any member of this bucket.

2. Even without any frequent pair, a bucket can
be frequent.

 Again, nothing in the bucket can be eliminated.

3. But if the count for a bucket is less than the
support s, all pairs that hash to this bucket can
be eliminated, even if the pair consists of two
frequent items.

33

 Replace the buckets by a bit-vector (the
“bitmap”):

 1 means the bucket is frequent; 0 means it is not.

 Also, decide which items are frequent and list
them for the second pass.

34

 Count all pairs {i, j} that meet the conditions
for being a candidate pair:

1. Both i and j are frequent items.

2. The pair {i, j}, hashes to a bucket number whose bit
in the bit vector is 1.

35

 Buckets require a few bytes each.

 Note: we don’t have to count past s.

 If s < 216, 2 bytes/bucket will do.

 # buckets is O(main-memory size).

 On second pass, a table of (item, item, count)
triples is essential.

 Thus, hash table on Pass 1 must eliminate 2/3 of the
candidate pairs for PCY to beat a-priori.

 The MMDS book covers several other extensions
beyond the PCY idea: “Multistage” and
“Multihash.”

 For reading on your own, Sect. 6.4 of MMDS.
 Recommended video (starting about 10:10):

https://www.youtube.com/watch?v=AGAkNiQnbjY

36

38

 Take a random sample of the market baskets.

 Do not sneer; “random sample” is often a cure for
the problem of having too large a dataset.

 Run a-priori or one of its improvements (for
sets of all sizes, not just pairs) in main
memory, so you don’t pay for disk I/O each
time you increase the size of itemsets.

 Use as your support threshold a suitable,
scaled-back number.

 Example: if your sample is 1/100 of the baskets,
use s/100 as your support threshold instead of s.

39

 Optionally, verify that your guesses are
truly frequent in the entire data set by a
second pass.

 But you don’t catch sets frequent in the
whole but not in the sample.

 Smaller threshold, e.g., s/125 instead of s/100,
helps catch more truly frequent itemsets.

 But requires more space.

40

 Partition the baskets into small subsets.
 Read each subset into main memory and

perform the first pass of the simple algorithm
on each subset.

 Parallel processing of the subsets a good option.

 An itemset is a candidate if it is frequent (with
support threshold suitably scaled down) in at
least one subset.

41

 On a second pass, count all the candidate
itemsets and determine which are frequent in
the entire set.

 Key “monotonicity” idea: an itemset cannot be
frequent in the entire set of baskets unless it is
frequent in at least one subset.

42

 Start as in the simple algorithm, but lower the
threshold slightly for the sample.

 Example: if the sample is 1% of the baskets, use
s/125 as the support threshold rather than s/100.

 Goal is to avoid missing any itemset that is frequent
in the full set of baskets.

43

 Add to the itemsets that are frequent in the
sample the negative border of these itemsets.

 An itemset is in the negative border if it is not
deemed frequent in the sample, but all its
immediate subsets are.

 Immediate subset = “delete exactly one element.”

44

 {A,B,C,D} is in the negative border if and only if:

1. It is not frequent in the sample, but

2. All of {A,B,C}, {B,C,D}, {A,C,D}, and {A,B,D} are.

 {A} is in the negative border if and only if it is
not frequent in the sample.

 Because the empty set is always frequent.

 Unless there are fewer baskets than the support threshold
(silly case).

 Useful trick: When processing the sample by
A-Priori, each member of Ck is either in Lk or in
the negative border, never both.

45

 …

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

46

 In a second pass, count all candidate frequent
itemsets from the first pass, and also count sets
in their negative border.

 If no itemset from the negative border turns out
to be frequent, then the candidates found to be
frequent in the whole data are exactly the
frequent itemsets.

47

 What if we find that something in the negative
border is actually frequent?

 We must start over again with another sample!
 Try to choose the support threshold so the

probability of failure is low, while the number
of itemsets checked on the second pass fits in
main-memory.

48

 …

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

We broke through the
negative border. How
far does the problem
 go?

49

 If there is an itemset that is frequent in the
whole, but not frequent in the sample, then
there is a member of the negative border for
the sample that is frequent in the whole.

50

 Suppose not; i.e.;

1. There is an itemset S frequent in the whole but
not frequent in the sample, and

2. Nothing in the negative border is frequent in the
whole.

 Let T be a smallest subset of S that is not
frequent in the sample.

 T is frequent in the whole (S is frequent +
monotonicity).

 T is in the negative border (else not
“smallest”).

