Frequent Itemsets

The Market-Basket Model
Association Rules
A-Priori Algorithm
Other Algorithms

Jeffrey D. Ullman Stanford University

The Market-Basket Model

- A large set of *items*, e.g., things sold in a supermarket.
- A large set of baskets, each of which is a small set of the items, e.g., the things one customer buys on one day.

Support

- Simplest question: find sets of items that appear "frequently" in the baskets.
- Support for itemset I = the number of baskets containing all items in I.
 - Sometimes given as a percentage of the baskets.
- Given a support threshold s, a set of items appearing in at least s baskets is called a frequent itemset.

Example: Frequent Itemsets

- Items={milk, coke, pepsi, beer, juice}.
- Support = 3 baskets.

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 \neq \{m, p, b\}$ $B_6 \neq \{m, c, b, j\}$
 $B_7 \neq \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent/itemsets: {m}, {c}, {b}, {j}, {m,b}, {b,c}, {c,j}.

Applications

- "Classic" application was analyzing what people bought together in a brick-and-mortar store.
 - Apocryphal story of "diapers and beer" discovery.
 - Used to position potato chips between diapers and beer to enhance sales of potato chips.
- Many other applications, including plagiarism detection.
 - Items = documents; baskets = sentences.
 - Basket/sentence contains all the items/documents that have that sentence.

Association Rules

- If-then rules about the contents of baskets.
- $\{i_1, i_2, ..., i_k\} \rightarrow j$ means: "if a basket contains all of $i_1, ..., i_k$ then it is *likely* to contain j."
 - Example: {bread, peanut-butter} → jelly.
- Confidence of this association rule is the "probability" of j given i₁,..., i_k.
 - That is, the fraction of the baskets with $i_1,...,i_k$ that also contain j.

Subtle point: "probability" implies there is a process generating random baskets. Really we're just computing the fraction of baskets, because we're computer scientists, not statisticians.

Example: Confidence

$$B_{1} = \{m, c, b\}$$
 $B_{2} = \{m, p, j\}$ $B_{3} = \{m, b\}$ $B_{4} = \{c, j\}$ $B_{5} = \{m, p, b\}$ $B_{6} = \{m, c, b, j\}$ $B_{7} = \{c, b, j\}$ $B_{8} = \{b, c\}$

- An association rule: $\{m, b\} \rightarrow c$.
 - Confidence = 2/4 = 50%.

Computation Model

- Typically, data is a file consisting of a list of baskets.
- The true cost of mining disk-resident data is usually the number of disk I/O's.
- In practice, we read the data in passes all baskets read in turn.
 - Thus, we measure the cost by the number of passes an algorithm takes.

Main-Memory Bottleneck

- For many frequent-itemset algorithms, main memory is the critical resource.
- As we read baskets, we need to count something, e.g., occurrences of pairs of items.
- The number of different things we can count is limited by main memory.
 - Swapping counts in/out is a disaster.

Finding Frequent Pairs

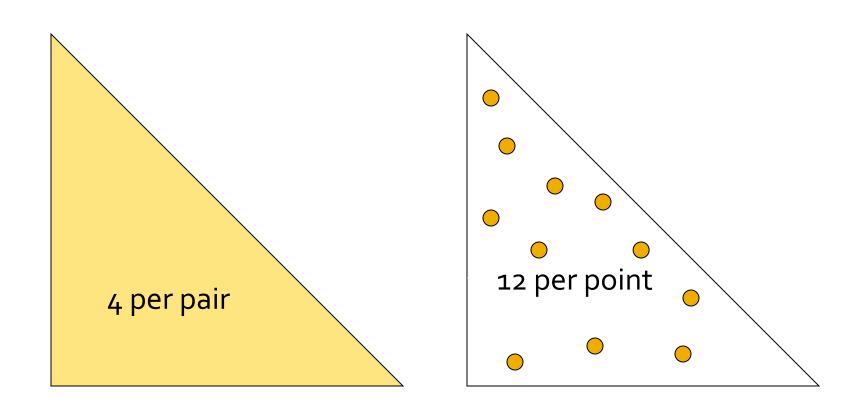
- The hardest problem often turns out to be finding the frequent pairs.
 - Why? Often frequent pairs are common, frequent triples are rare.
 - Why? Support threshold is usually set high enough that you don't get too many frequent itemsets.
- We'll concentrate on pairs, then extend to larger sets.

Naïve Algorithm

- Read file once, counting in main memory the occurrences of each pair.
 - From each basket of n items, generate its n(n-1)/2 pairs by two nested loops.
- Fails if (#items)² exceeds main memory.
 - Example: Walmart sells 100K items, so probably OK.
 - Example: Web has 100B pages, so definitely not OK.

2 Approaches to Main-Memory Counting

- 1. Count all pairs, using a triangular matrix.
 - I.e., count {i,j} in row i, column j, provided i < j.</p>
 - But use a "ragged array," so the empty triangle is not there.
- 2. Keep a table of triples [i, j, c] = "the count of the pair of items $\{i, j\}$ is c."
- (1) requires only 4 bytes/pair.
 - Note: always assume integers are 4 bytes.
- (2) requires at least 12 bytes/pair, but only for those pairs with count > 0.
 - I.e., (2) beats (1) only when at most 1/3 of all pairs have a nonzero count.



Triangular matrix

Tabular method

One-Dimensional Representation of a Triangular Array

- Number items 1, 2,..., n.
 - Requires table of size O(n) to convert item names to consecutive integers.
- Count {*i*, *j*} only if *i* < *j*.
- Keep pairs in the order {1,2}, {1,3},..., {1,n},
 {2,3}, {2,4},..., {2,n}, {3,4},..., {3,n},..., {n-1,n}.
- Find pair $\{i, j\}$, where i<j, at the position: (i-1)(n-i/2) + j i
- Total number of pairs n(n-1)/2; total bytes about $2n^2$.

The A-Priori Algorithm

Monotonicity of "Frequent"
Candidate Pairs
Extension to Larger Itemsets

A-Priori Algorithm

- A two-pass approach called a-priori limits the need for main memory.
- Key idea: monotonicity: if a set of items appears at least s times, so does every subset of the set.
- Contrapositive for pairs: if item i does not appear in s baskets, then no pair including i can appear in s baskets.

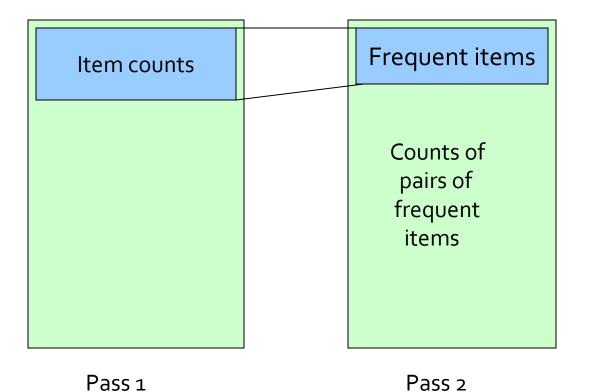
A-Priori Algorithm – (2)

- Pass 1: Read baskets and count in main memory the occurrences of each item.
 - Requires only memory proportional to #items.
- Items that appear at least s times are the frequent items.

A-Priori Algorithm – (3)

- Pass 2: Read baskets again and count in main memory only those pairs both of which were found in Pass 1 to be frequent.
- Requires memory proportional to square of frequent items only (for counts), plus a table of the frequent items (so you know what must be counted).

Picture of A-Priori

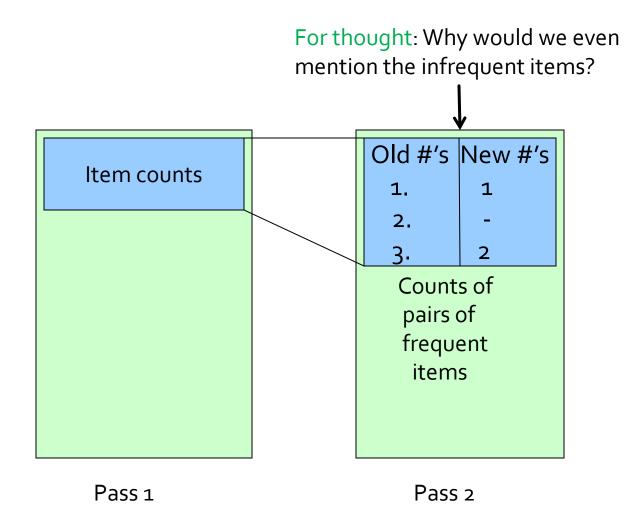


19

Detail for A-Priori

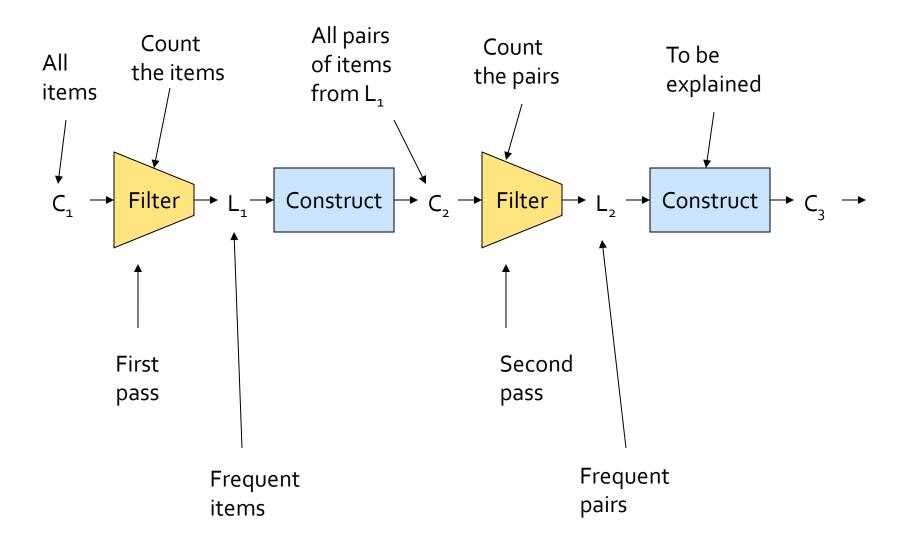
- You can use the triangular matrix method with n = number of frequent items.
 - May save space compared with storing triples.
- Trick: number frequent items 1, 2,... and keep a table relating new numbers to original item numbers.

A-Priori Using Triangular Matrix



Frequent Triples, Etc.

- For each size of itemsets k, we construct two sets of k-sets (sets of size k):
 - $C_k = candidate \ k$ -sets = those that might be frequent sets (support $\geq s$) based on information from the pass for itemsets of size k-1.
 - L_k = the set of truly frequent k-sets.



Passes Beyond Two

- C_1 = all items
- In general, L_k = members of C_k with support $\geq s$.
 - Requires one pass.
- $C_{k+1} = (k+1)$ -sets, each k of which is in L_k .
- For thought: how would you generate C_{k+1} from L_k ?
 - Enumerating all sets of size k+1 and testing each seems really dumb.

Memory Requirements

- At the k^{th} pass, you need space to count each member of C_k .
- In realistic cases, because you need fairly high support, the number of candidates of each size drops, once you get beyond pairs.

The PCY (Park-Chen-Yu) Algorithm

Improvement to A-Priori
Exploits Empty Memory on First Pass
Frequent Buckets

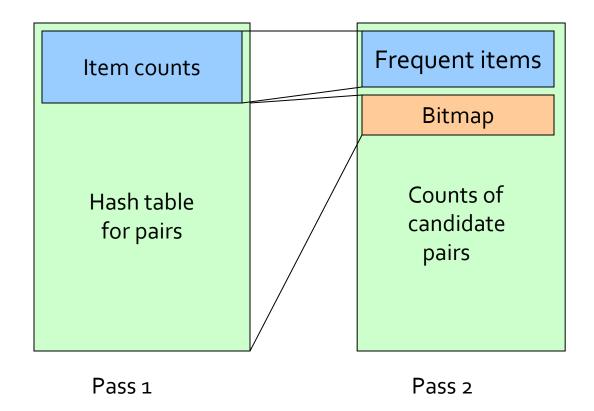
PCY Algorithm

- During Pass 1 of A-priori, most memory is idle.
- Use that memory to keep counts of buckets into which pairs of items are hashed.
 - Just the count, not the pairs themselves.
- For each basket, enumerate all its pairs, hash them, and increment the resulting bucket count by 1.

PCY Algorithm – (2)

- A bucket is *frequent* if its count is at least the support threshold.
- If a bucket is not frequent, no pair that hashes to that bucket could possibly be a frequent pair.
- On Pass 2, we only count pairs of frequent items that also hash to a frequent bucket.
- A bitmap tells which buckets are frequent, using only one bit per bucket (i.e., 1/32 of the space used on Pass 1).

Picture of PCY



Pass 1: Memory Organization

- Space to count each item.
 - One (typically) 4-byte integer per item.
- Use the rest of the space for as many integers, representing buckets, as we can.

PCY Algorithm – Pass 1

```
FOR (each basket) {
   FOR (each item in the basket)
    add 1 to item's count;
   FOR (each pair of items) {
     hash the pair to a bucket;
     add 1 to the count for that bucket
   }
}
```

Observations About Buckets

- 1. A bucket that a frequent pair hashes to is surely frequent.
 - We cannot eliminate any member of this bucket.
- 2. Even without any frequent pair, a bucket can be frequent.
 - Again, nothing in the bucket can be eliminated.
 - 3. But if the count for a bucket is less than the support s, all pairs that hash to this bucket can be eliminated, even if the pair consists of two frequent items.

PCY Algorithm – Between Passes

- Replace the buckets by a bit-vector (the "bitmap"):
 - 1 means the bucket is frequent; 0 means it is not.
- Also, decide which items are frequent and list them for the second pass.

PCY Algorithm – Pass 2

- Count all pairs {i, j} that meet the conditions for being a candidate pair:
 - 1. Both *i* and *j* are frequent items.
 - The pair {i, j}, hashes to a bucket number whose bit in the bit vector is 1.

Memory Details

- Buckets require a few bytes each.
 - Note: we don't have to count past s.
 - If $s < 2^{16}$, 2 bytes/bucket will do.
 - # buckets is O(main-memory size).
- On second pass, a table of (item, item, count) triples is essential.
 - Thus, hash table on Pass 1 must eliminate 2/3 of the candidate pairs for PCY to beat a-priori.

More Extensions to A-Priori

- The MMDS book covers several other extensions beyond the PCY idea: "Multistage" and "Multihash."
- For reading on your own, Sect. 6.4 of MMDS.
- Recommended video (starting about 10:10): https://www.youtube.com/watch?v=AGAkNiQnbjY

All (Or Most) Frequent Itemsets In ≤ 2 Passes

Simple Algorithm
Savasere-Omiecinski- Navathe
(SON) Algorithm
Toivonen's Algorithm

Simple Algorithm

- Take a random sample of the market baskets.
 - Do not sneer; "random sample" is often a cure for the problem of having too large a dataset.
- Run a-priori or one of its improvements (for sets of all sizes, not just pairs) in main memory, so you don't pay for disk I/O each time you increase the size of itemsets.
- Use as your support threshold a suitable, scaled-back number.
 - Example: if your sample is 1/100 of the baskets, use s/100 as your support threshold instead of s.

Simple Algorithm – Option

- Optionally, verify that your guesses are truly frequent in the entire data set by a second pass.
- But you don't catch sets frequent in the whole but not in the sample.
 - Smaller threshold, e.g., s/125 instead of s/100, helps catch more truly frequent itemsets.
 - But requires more space.

SON Algorithm

- Partition the baskets into small subsets.
- Read each subset into main memory and perform the first pass of the simple algorithm on each subset.
 - Parallel processing of the subsets a good option.
- An itemset is a candidate if it is frequent (with support threshold suitably scaled down) in at least one subset.

SON Algorithm – Pass 2

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.
- Key "monotonicity" idea: an itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.

Toivonen's Algorithm

- Start as in the simple algorithm, but lower the threshold slightly for the sample.
 - Example: if the sample is 1% of the baskets, use s/125 as the support threshold rather than s/100.
 - Goal is to avoid missing any itemset that is frequent in the full set of baskets.

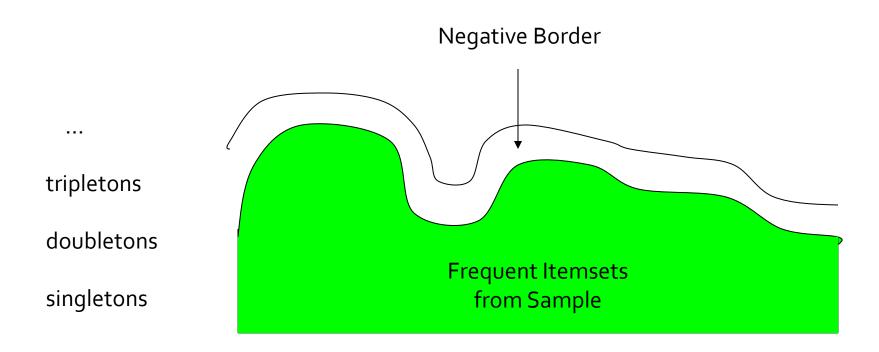
Toivonen's Algorithm — (2)

- Add to the itemsets that are frequent in the sample the *negative border* of these itemsets.
- An itemset is in the negative border if it is not deemed frequent in the sample, but all its immediate subsets are.
 - Immediate subset = "delete exactly one element."

Example: Negative Border

- {A,B,C,D} is in the negative border if and only if:
 - 1. It is not frequent in the sample, but
 - 2. All of {*A*,*B*,*C*}, {*B*,*C*,*D*}, {*A*,*C*,*D*}, and {*A*,*B*,*D*} are.
- {A} is in the negative border if and only if it is not frequent in the sample.
 - Because the empty set is always frequent.
 - Unless there are fewer baskets than the support threshold (silly case).
 - Useful trick: When processing the sample by A-Priori, each member of C_k is either in L_k or in the negative border, never both.

Picture of Negative Border



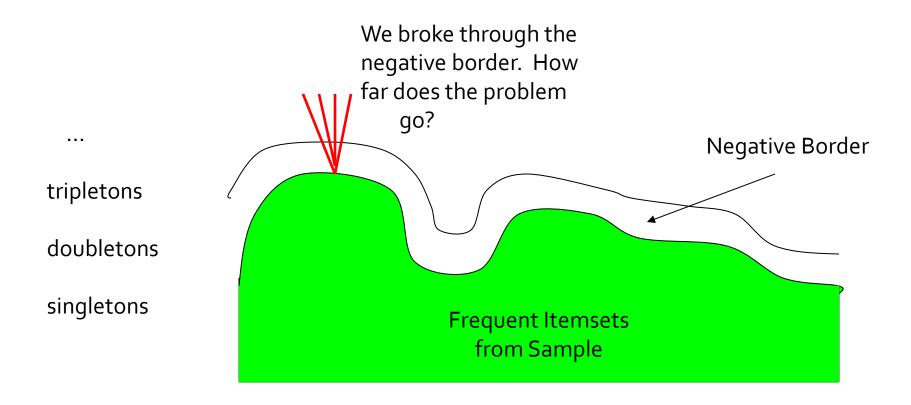
Toivonen's Algorithm – (3)

- In a second pass, count all candidate frequent itemsets from the first pass, and also count sets in their negative border.
- If no itemset from the negative border turns out to be frequent, then the candidates found to be frequent in the whole data are *exactly* the frequent itemsets.

Toivonen's Algorithm – (4)

- What if we find that something in the negative border is actually frequent?
- We must start over again with another sample!
- Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.

If Something in the Negative Border Is Frequent . . .



Theorem:

If there is an itemset that is frequent in the whole, but not frequent in the sample, then there is a member of the negative border for the sample that is frequent in the whole.

Proof:

- Suppose not; i.e.;
 - 1. There is an itemset *S* frequent in the whole but not frequent in the sample, and
 - 2. Nothing in the negative border is frequent in the whole.
- Let T be a smallest subset of S that is not frequent in the sample.
- T is frequent in the whole (S is frequent + monotonicity).
- T is in the negative border (else not "smallest").