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 Often, our data can be represented by an         
m-by-n matrix. 

 And this matrix can be closely approximated by 
the product of two matrices that share a small 
common dimension r. 
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 There are hidden, or latent factors that – to a 
close approximation – explain why the values 
are as they appear in the matrix. 

 Two kinds of data may exhibit this behavior: 

1. Matrices representing a many-many-relationship. 

 “Latent” factors may explain the relationship. 

2. Matrices that are really a relation (as in a relational 
database). 

 The columns may not really be independent. 
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 Our data can be a many-many relationship in 
the form of a matrix. 

 Example: people vs. movies; matrix entries are the 
ratings given to the movies by the people. 

 Example: students vs. courses; entries are the 
grades. 
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5 
Row for 
Joe 

Column for 
Star Wars 

Joe really liked 
Star Wars 



 Often, the relationship can be explained closely 
by latent factors. 

 Example: genre of movies or books. 

 I.e., Joe liked Star Wars because Joe likes science-fiction, 
and Star Wars is a science-fiction movie. 

 Example: types of courses. 

 Sue is good at computer science, and CS246 is a CS course. 
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 Another closely related form of data is a 
collection of rows (tuples), each representing 
one entity. 

 Columns represent attributes of these entities. 
 Example: Stars can be represented by their 

mass, brightness in various color bands, 
diameter, and several other properties. 

 But it turns out that there are only two 
independent variables (latent factors): mass 
and age. 
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Star Mass Luminosity Color Age 

Sun 1.0 1.0 Yellow 4.6B 

Alpha Centauri 1.1 1.5 Yellow 5.8B 

Sirius A 2.0 25 White 0.25B 

The matrix 
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 The axes of the subspace can be chosen by: 

 The first dimension is the direction in which the 
points exhibit the greatest variance. 

 The second dimension is the direction, orthogonal to 
the first, in which points show the greatest variance. 

 And so on…, until you have enough dimensions that 
variance is really low. 
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 The simplest form of matrix decomposition is to 
find a pair of matrixes, the first (U) with few 
columns and the second (V) with few rows, 
whose product is close to the given matrix M. 
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 This decomposition works well if r is the 
number of “hidden factors’’ that explain the 
matrix M. 

 Example: mij is the rating person i gives to 
movie j; uik measures how much person i likes 
genre k; vkj measures the extent to which movie 
j belongs to genre k. 
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 Common way to evaluate how well P = UV 
approximates M is by RMSE (root-mean-square 
error). 

 Average (mij – pij)
2 over all i and j. 

 Take the square root. 

 Square-rooting changes the scale of error, but 
doesn’t affect which choice of U and V is best. 
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Question for Thought: Are either 
of these the best choice? 



 Pick r, the number of latent factors. 
 Think of U and V as composed of variables, uik 

and vkj. 
 Express the RMSE as (the square root of)            

 E =  ij (mij – kuikvkj)
2. 

 Gradient descent: repeatedly find the derivative 
of E with respect to each variable and move 
each a small amount in the direction that lowers 
the value of E. 
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Important point: Go only a small distance, 
because E is not linear, so following the 
derivative too far gets you off-course. 



 Ignore the error term for mij if that value is 
“unknown.” 

 Example: in a person-movie matrix, most 
movies are not rated by most people, so 
measure the error only for the known ratings. 

 To be covered by Jure in mid-February. 
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 Expressions like this usually have many minima. 
 Seeking the nearest minimum from a starting 

point can trap you in a local minimum, from 
which no small improvement is possible. 
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But you can 
get trapped here 

Global 
minimum 



 Use many different starting points, chosen at 
random, in the hope that one will be close 
enough to the global minimum. 

 Simulated annealing: occasionally try a leap to 
someplace further away in the hope of getting 
out of the local trap. 

 Intuition: the global minimum might have many 
nearby local minima. 

 As Mt. Everest has most of the world’s tallest mountains in 
its vicinity. 
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 Gives a decomposition of any matrix into a 
product of three matrices. 

 There are strong constraints on the form of 
each of these matrices. 

 Results in a decomposition that is essentially unique. 

 From this decomposition, you can choose any 
number r of intermediate concepts (latent 
factors) in a way that minimizes the RMSE error 
given that value of r. 
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 The rank of a matrix is the maximum number of 
rows (or equivalently columns) that are linearly 
independent. 

 I.e., no nontrivial sum is the all-zero vector. 

 Trivial sum = all coefficients are 0. 

 Example: Exist two independent rows. 

 In fact, no row is a multiple of another in this example. 

 But any 3 rows are dependent. 

 Example: First + third – twice the second = [0,0,0]. 

 Similarly, the 3 columns are dependent. 
 Therefore, rank = 2. 
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 If a matrix has rank r, then it can be 
decomposed exactly into matrices whose 
shared dimension is r. 

 Example, in Sect. 11.3 of MMDS, of a 7-by-5 
matrix with rank 2 and an exact decomposition 
into a 7-by-2 and a 2-by-5 matrix. 
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 Vectors are orthogonal if their dot product is 0. 
 Example: [1,2,3].[1,-2,1] = 1*1 + 2*(-2) + 3*1 =      

1-4+3 = 0, so these two vectors are orthogonal. 
 A unit vector is one whose length is 1. 

 Length = square root of sum of squares of 
components. 

 No need to take square root if we are looking for length = 1. 

 Example: [0.8, -0.1, 0.5, -0.3, 0.1] is a unit vector, 
since 0.64 + 0.01 + 0.25 + 0.09 + 0.01 = 1. 

 An orthonormal basis is a set of unit vectors any 
two of which are orthogonal. 
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Special conditions: 

 is a diagonal matrix 

U and V are column-orthonormal 
(so VT has orthonormal rows) 



 The values of  along the diagonal are called 
the singular values. 

 It is always possible to decompose M exactly, if 
r is the rank of M. 

 But usually, we want to make r much smaller 
than the rank, and we do so by setting to 0 the 
smallest singular values. 

 Which has the effect of making the corresponding 
columns of U and V useless, so they may as well not 
be there. 
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σi  … scalar 

ui … vector 

vi … vector 

T 

If we set 2 = 0, then the green 
columns may as well not exist. 



 The following is Example 11.9 from MMDS. 
 It modifies the simpler Example 11.8, where a 

rank-2 matrix can be decomposed exactly into a 
7-by-2 U and a 5-by-2 V. 
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 A = U  VT - example: Users to Movies 
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 A = U  VT - example: Users to Movies 
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 A = U  VT - example: 
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 Q: How exactly is dimensionality reduction 
done? 

 A: Set smallest singular values to zero 
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 Q: How exactly is dimensionality reduction 
done? 

 A: Set smallest singular values to zero 
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 Q: How exactly is dimensionality reduction 
done? 

 A: Set smallest singular values to zero 
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 Q: How exactly is dimensionality reduction 
done? 

 A: Set smallest singular values to zero 
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 The Frobenius norm of a matrix is the square 
root of the sum of the squares of its elements. 

 The error in an approximation of one matrix by 
another is the Frobenius norm of the 
difference. 

 Same as the RMSE. 

 Important fact:  The error in the approximation 
of a matrix by SVD, subject to picking r singular 
values, is minimized by zeroing all but the 
largest r singular values. 
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 So what’s a good value for r? 
 Let the energy of a set of singular values be the 

sum of their squares. 
 Pick r so the retained singular values have at 

least 90% of the total energy. 
 Example: With singular values 12.4, 9.5, and 

1.3, total energy = 245.7.   
 If we drop 1.3, whose square is only 1.7, we are 

left with energy 244, or over 99% of the total. 
 But also dropping 9.5 leaves us with too little. 
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 We want to describe how the SVD is actually 
computed. 

 Essential is a method for finding the principal 
eigenvalue (the largest one) and the 
corresponding eigenvector of a symmetric matrix. 

 M is symmetric if mij = mji for all i and j. 

 Start with any “guess eigenvector” x0. 
 Construct xk+1 = Mxk /||Mxk||for k = 0, 1,… 

 ||…|| denotes the Frobenius norm. 

 Stop when consecutive xk‘s show little change. 
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M = 
1 2 
2     3 
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1 
1 
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/34 =  
0.51 
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=  x1 

Mx1 

||Mx1|| 
=  

2.23 
3.60 

/17.93 =  
0.53 
0.85 

=  x2 



 Once you have the principal eigenvector x, you 
find its eigenvalue  by  = xTMx. 

 In proof: we know x = Mx if  is the 
eigenvalue; multiply both sides by xT on the left. 

 Since xTx = 1 we have  = xTMx. 

 Example: If we take xT = [0.53, 0.85], then  = 
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] [ [ ] [0.53 0.85] 
1 2 
2     3 

0.53 
0.85 

= 4.25 



 Eliminate the portion of the matrix M that can 
be generated by the first eigenpair,  and x. 

 M* := M – x xT. 
 Recursively find the principal eigenpair for M*, 

eliminate the effect of that pair, and so on. 
 Example: 
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M* =  [ ] -0.19 0.09 
0.09  0.07 

– 4.25  [ ] 0.53 
0.85 

[0.53 0.85] 
1 2 
2     3 

= [ ] 



 Start by supposing M = UVT. 
 MT = (UVT)T = (VT)TTUT = VUT. 

 Why? (1) Rule for transpose of a product (2) the 
transpose of the transpose and the transpose of a 
diagonal matrix are both the identity function. 

 MTM = VUTUVT = V2VT. 

 Why? U is orthonormal, so UTU is an identity matrix. 

 Also note that 2 is a diagonal matrix whose i-th 
element is the square of the i-th element of . 

 MTMV = V2VTV = V2. 

 Why? V is also orthonormal. 
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 Starting with (MTM)V = V2, note that therefore 
the i-th column of V is an eigenvector of MTM, 
and its eigenvalue is the i-th element of 2. 

 Thus, we can find V and  by finding the 
eigenpairs for MTM. 

 Once we have the eigenvalues in 2, we can find the 
singular values by taking the square root of these 
eigenvalues. 

 Symmetric argument, starting with MMT, gives 
us U. 
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 It is common for the matrix M that we wish to 
decompose to be very sparse. 

 But U and V from a UV or SVD decomposition 
will not be sparse even so. 

 CUR decomposition solves this problem by 
using only (randomly chosen) rows and columns 
of M. 
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C = randomly chosen columns of M. 

U is tricky – more about this. 

R = randomly chosen rows of M 

r chosen as you like. 



 U is r-by-r, so it is small, and it is OK if it is dense 
and complex to compute. 

 Start with W = intersection of the r columns 
chosen for C and the r rows chosen for R. 

 Compute the SVD of W to be XYT. 
 Compute +, the Moore-Penrose inverse of . 

 Definition, next slide. 

 U = Y(+)2XT. 
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 If  is a diagonal matrix, its More-Penrose 
inverse is another diagonal matrix whose i-th 
entry is: 

 1/ if  is not 0. 

 0 if  is 0. 

 Example: 
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 = 
4 0     0 
0     2     0 
0     0     0 

+ = 
0.25  0     0 
0     0.5     0 
0       0      0 



 To decrease the expected error between M and its 
decomposition, we must pick rows and columns in 
a nonuniform manner. 

 The importance of a row or column of M is the 
square of its Frobinius norm. 

 That is, the sum of the squares of its elements. 

 When picking rows and columns, the probabilities 
must be proportional to importance. 

 Example: [3,4,5] has importance 50, and [3,0,1] 
has importance 10, so pick the first 5 times as 
often as the second. 
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