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 Often, our data can be represented by an         
m-by-n matrix. 

 And this matrix can be closely approximated by 
the product of two matrices that share a small 
common dimension r. 
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 There are hidden, or latent factors that – to a 
close approximation – explain why the values 
are as they appear in the matrix. 

 Two kinds of data may exhibit this behavior: 

1. Matrices representing a many-many-relationship. 

 “Latent” factors may explain the relationship. 

2. Matrices that are really a relation (as in a relational 
database). 

 The columns may not really be independent. 
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 Our data can be a many-many relationship in 
the form of a matrix. 

 Example: people vs. movies; matrix entries are the 
ratings given to the movies by the people. 

 Example: students vs. courses; entries are the 
grades. 
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 Often, the relationship can be explained closely 
by latent factors. 

 Example: genre of movies or books. 

 I.e., Joe liked Star Wars because Joe likes science-fiction, 
and Star Wars is a science-fiction movie. 

 Example: types of courses. 

 Sue is good at computer science, and CS246 is a CS course. 
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 Another closely related form of data is a 
collection of rows (tuples), each representing 
one entity. 

 Columns represent attributes of these entities. 
 Example: Stars can be represented by their 

mass, brightness in various color bands, 
diameter, and several other properties. 

 But it turns out that there are only two 
independent variables (latent factors): mass 
and age. 
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Star Mass Luminosity Color Age 

Sun 1.0 1.0 Yellow 4.6B 

Alpha Centauri 1.1 1.5 Yellow 5.8B 

Sirius A 2.0 25 White 0.25B 

The matrix 
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 The axes of the subspace can be chosen by: 

 The first dimension is the direction in which the 
points exhibit the greatest variance. 

 The second dimension is the direction, orthogonal to 
the first, in which points show the greatest variance. 

 And so on…, until you have enough dimensions that 
variance is really low. 
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 The simplest form of matrix decomposition is to 
find a pair of matrixes, the first (U) with few 
columns and the second (V) with few rows, 
whose product is close to the given matrix M. 
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 This decomposition works well if r is the 
number of “hidden factors’’ that explain the 
matrix M. 

 Example: mij is the rating person i gives to 
movie j; uik measures how much person i likes 
genre k; vkj measures the extent to which movie 
j belongs to genre k. 

11 



 Common way to evaluate how well P = UV 
approximates M is by RMSE (root-mean-square 
error). 

 Average (mij – pij)
2 over all i and j. 

 Take the square root. 

 Square-rooting changes the scale of error, but 
doesn’t affect which choice of U and V is best. 
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Question for Thought: Are either 
of these the best choice? 



 Pick r, the number of latent factors. 
 Think of U and V as composed of variables, uik 

and vkj. 
 Express the RMSE as (the square root of)            

 E =  ij (mij – kuikvkj)
2. 

 Gradient descent: repeatedly find the derivative 
of E with respect to each variable and move 
each a small amount in the direction that lowers 
the value of E. 
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Important point: Go only a small distance, 
because E is not linear, so following the 
derivative too far gets you off-course. 



 Ignore the error term for mij if that value is 
“unknown.” 

 Example: in a person-movie matrix, most 
movies are not rated by most people, so 
measure the error only for the known ratings. 

 To be covered by Jure in mid-February. 
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 Expressions like this usually have many minima. 
 Seeking the nearest minimum from a starting 

point can trap you in a local minimum, from 
which no small improvement is possible. 
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 Use many different starting points, chosen at 
random, in the hope that one will be close 
enough to the global minimum. 

 Simulated annealing: occasionally try a leap to 
someplace further away in the hope of getting 
out of the local trap. 

 Intuition: the global minimum might have many 
nearby local minima. 

 As Mt. Everest has most of the world’s tallest mountains in 
its vicinity. 
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 Gives a decomposition of any matrix into a 
product of three matrices. 

 There are strong constraints on the form of 
each of these matrices. 

 Results in a decomposition that is essentially unique. 

 From this decomposition, you can choose any 
number r of intermediate concepts (latent 
factors) in a way that minimizes the RMSE error 
given that value of r. 
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 The rank of a matrix is the maximum number of 
rows (or equivalently columns) that are linearly 
independent. 

 I.e., no nontrivial sum is the all-zero vector. 

 Trivial sum = all coefficients are 0. 

 Example: Exist two independent rows. 

 In fact, no row is a multiple of another in this example. 

 But any 3 rows are dependent. 

 Example: First + third – twice the second = [0,0,0]. 

 Similarly, the 3 columns are dependent. 
 Therefore, rank = 2. 
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 If a matrix has rank r, then it can be 
decomposed exactly into matrices whose 
shared dimension is r. 

 Example, in Sect. 11.3 of MMDS, of a 7-by-5 
matrix with rank 2 and an exact decomposition 
into a 7-by-2 and a 2-by-5 matrix. 
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 Vectors are orthogonal if their dot product is 0. 
 Example: [1,2,3].[1,-2,1] = 1*1 + 2*(-2) + 3*1 =      

1-4+3 = 0, so these two vectors are orthogonal. 
 A unit vector is one whose length is 1. 

 Length = square root of sum of squares of 
components. 

 No need to take square root if we are looking for length = 1. 

 Example: [0.8, -0.1, 0.5, -0.3, 0.1] is a unit vector, 
since 0.64 + 0.01 + 0.25 + 0.09 + 0.01 = 1. 

 An orthonormal basis is a set of unit vectors any 
two of which are orthogonal. 
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 is a diagonal matrix 

U and V are column-orthonormal 
(so VT has orthonormal rows) 



 The values of  along the diagonal are called 
the singular values. 

 It is always possible to decompose M exactly, if 
r is the rank of M. 

 But usually, we want to make r much smaller 
than the rank, and we do so by setting to 0 the 
smallest singular values. 

 Which has the effect of making the corresponding 
columns of U and V useless, so they may as well not 
be there. 
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If we set 2 = 0, then the green 
columns may as well not exist. 



 The following is Example 11.9 from MMDS. 
 It modifies the simpler Example 11.8, where a 

rank-2 matrix can be decomposed exactly into a 
7-by-2 U and a 5-by-2 V. 
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 A = U  VT - example: Users to Movies 
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 A = U  VT - example: Users to Movies 
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 A = U  VT - example: 
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 A = U  VT - example: 
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 A = U  VT - example: 
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 Q: How exactly is dimensionality reduction 
done? 

 A: Set smallest singular values to zero 
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 Q: How exactly is dimensionality reduction 
done? 

 A: Set smallest singular values to zero 
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 Q: How exactly is dimensionality reduction 
done? 

 A: Set smallest singular values to zero 
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 Q: How exactly is dimensionality reduction 
done? 

 A: Set smallest singular values to zero 
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 The Frobenius norm of a matrix is the square 
root of the sum of the squares of its elements. 

 The error in an approximation of one matrix by 
another is the Frobenius norm of the 
difference. 

 Same as the RMSE. 

 Important fact:  The error in the approximation 
of a matrix by SVD, subject to picking r singular 
values, is minimized by zeroing all but the 
largest r singular values. 
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 So what’s a good value for r? 
 Let the energy of a set of singular values be the 

sum of their squares. 
 Pick r so the retained singular values have at 

least 90% of the total energy. 
 Example: With singular values 12.4, 9.5, and 

1.3, total energy = 245.7.   
 If we drop 1.3, whose square is only 1.7, we are 

left with energy 244, or over 99% of the total. 
 But also dropping 9.5 leaves us with too little. 
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 We want to describe how the SVD is actually 
computed. 

 Essential is a method for finding the principal 
eigenvalue (the largest one) and the 
corresponding eigenvector of a symmetric matrix. 

 M is symmetric if mij = mji for all i and j. 

 Start with any “guess eigenvector” x0. 
 Construct xk+1 = Mxk /||Mxk||for k = 0, 1,… 

 ||…|| denotes the Frobenius norm. 

 Stop when consecutive xk‘s show little change. 
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 Once you have the principal eigenvector x, you 
find its eigenvalue  by  = xTMx. 

 In proof: we know x = Mx if  is the 
eigenvalue; multiply both sides by xT on the left. 

 Since xTx = 1 we have  = xTMx. 

 Example: If we take xT = [0.53, 0.85], then  = 
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] [ [ ] [0.53 0.85] 
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2     3 

0.53 
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= 4.25 



 Eliminate the portion of the matrix M that can 
be generated by the first eigenpair,  and x. 

 M* := M – x xT. 
 Recursively find the principal eigenpair for M*, 

eliminate the effect of that pair, and so on. 
 Example: 
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M* =  [ ] -0.19 0.09 
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 Start by supposing M = UVT. 
 MT = (UVT)T = (VT)TTUT = VUT. 

 Why? (1) Rule for transpose of a product (2) the 
transpose of the transpose and the transpose of a 
diagonal matrix are both the identity function. 

 MTM = VUTUVT = V2VT. 

 Why? U is orthonormal, so UTU is an identity matrix. 

 Also note that 2 is a diagonal matrix whose i-th 
element is the square of the i-th element of . 

 MTMV = V2VTV = V2. 

 Why? V is also orthonormal. 
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 Starting with (MTM)V = V2, note that therefore 
the i-th column of V is an eigenvector of MTM, 
and its eigenvalue is the i-th element of 2. 

 Thus, we can find V and  by finding the 
eigenpairs for MTM. 

 Once we have the eigenvalues in 2, we can find the 
singular values by taking the square root of these 
eigenvalues. 

 Symmetric argument, starting with MMT, gives 
us U. 
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 It is common for the matrix M that we wish to 
decompose to be very sparse. 

 But U and V from a UV or SVD decomposition 
will not be sparse even so. 

 CUR decomposition solves this problem by 
using only (randomly chosen) rows and columns 
of M. 
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C = randomly chosen columns of M. 

U is tricky – more about this. 

R = randomly chosen rows of M 

r chosen as you like. 



 U is r-by-r, so it is small, and it is OK if it is dense 
and complex to compute. 

 Start with W = intersection of the r columns 
chosen for C and the r rows chosen for R. 

 Compute the SVD of W to be XYT. 
 Compute +, the Moore-Penrose inverse of . 

 Definition, next slide. 

 U = Y(+)2XT. 
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 If  is a diagonal matrix, its More-Penrose 
inverse is another diagonal matrix whose i-th 
entry is: 

 1/ if  is not 0. 

 0 if  is 0. 

 Example: 
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 = 
4 0     0 
0     2     0 
0     0     0 

+ = 
0.25  0     0 
0     0.5     0 
0       0      0 



 To decrease the expected error between M and its 
decomposition, we must pick rows and columns in 
a nonuniform manner. 

 The importance of a row or column of M is the 
square of its Frobinius norm. 

 That is, the sum of the squares of its elements. 

 When picking rows and columns, the probabilities 
must be proportional to importance. 

 Example: [3,4,5] has importance 50, and [3,0,1] 
has importance 10, so pick the first 5 times as 
often as the second. 
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