UV Decomposition
Singular-Value Decomposition
CUR Decomposition




Reducing Matrix Dimension

Often, our data can be represented by an
m-by-n matrix.

And this matrix can be closely approximated by
the product of two matrices that share a small
common dimension r.



Why Is That Even Possible?

There are hidden, or latent factors that —to a

close approximation — explain why the values

are as they appear in the matrix.

Two kinds of data may exhibit this behavior:

1. Matrices representing a many-many-relationship.
“Latent” factors may explain the relationship.

2. Matrices that are really a relation (as in a relational
database).

The columns may not really be independent.



Matrices as Relationships

Our data can be a many-many relationship in
the form of a matrix.

= Example: people vs. movies; matrix entries are the
ratings given to the movies by the people.

= Example: students vs. courses; entries are the

grades. Column for

Star Wars
Row for _
Joe 5 Joe really liked

Star Wars



Matrices as Relationships — (2)

Often, the relationship can be explained closely
by latent factors.

= Example: genre of movies or books.

l.e., Joe liked Star Wars because Joe likes science-fiction,
and Star Wars is a science-fiction movie.

= Example: types of courses.

Sue is good at computer science, and CS5246 is a CS course.



Matrices as Relational Data

Another closely related form of data is a
collection of rows (tuples), each representing
one entity.

Columns represent attributes of these entities.
Example: Stars can be represented by their
mass, brightness in various color bands,
diameter, and several other properties.

But it turns out that there are only two
independent variables (latent factors): mass
and age.



Example: Stars

S N A U

Yellow 4.6B

Alpha Centauri : : Yellow 5.8B

Sirius A : White 0.25B

The matrix



J-Dimensional Data

d-Dimensional Subs
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Intuition

The axes of the subspace can be chosen by:

= The first dimension is the direction in which the
points exhibit the greatest variance.

" The second dimension is the direction, orthogonal to
the first, in which points show the greatest variance.

= And so on..., until you have enough dimensions that
variance is really low.




UV Decomposition

The simplest form of matrix decomposition is to
find a pair of matrixes, the first (U) with few
columns and the second (V) with few rows,
whose product is close to the given matrix M.
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Latent Factors

This decomposition works well if r is the
number of “hidden factors” that explain the
matrix M.

Example: m;; IS the rating person i gives to
movie j; u, measures how much person i likes

genre k; v,; measures the extent to which movie
j belongs to genre k.
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Measuring the Error

Common way to evaluate how well P = UV
approximates M is by RMSE (root-mean-square
error).

Average (m;; — pij)2 over all i and j.

Take the square root.

= Square-rooting changes the scale of error, but
doesn’t affect which choice of U and V is best.
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Example: RMSE

3 4 2 2 4

M

RMSE = sqrt((o+0+1+0)/4) sqrt(0.25) =

)= 3
3 4 3
M

RMSE = sgrt((o+0+0+4)/4) sqrt(1.0) = 1.0

Question for Thought: Are either
of these the best choice?
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Optimizing U and V

Pick r, the number of latent factors.
Think of U and V as composed of variables, u;,
and v,.
Express the RMSE as (the square root of)
E= 2%, (m; — Zuyvy)°.

Gradient descent: repeatedly find the derivative
of E with respect to each variable and move
each a small amount in the direction that lowers
the value of E. \\

: Go only a small distance,

because E is not linear, so following the

derivative too far gets you off-course.
14



What if M is Missing Entries?

Ignore the error term for m;; if that value is
“unknown.”

Example: in a person-movie matrix, most
movies are not rated by most people, so
measure the error only for the known ratings.

= To be covered by Jure in mid-February.
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Local Versus Global Minima

Expressions like this usually have many minima.
Seeking the nearest minimum from a starting
point can trap you in a local minimum, from
which no small improvement is possible.

But you can
get trapped here

Global
minimum
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Avoiding Local Minima

Use many different starting points, chosen at
random, in the hope that one will be close
enough to the global minimum.

Simulated annealing: occasionally try a leap to
someplace further away in the hope of getting
out of the local trap.

" |ntuition: the global minimum might have many
nearby local minima.

As Mt. Everest has most of the world’s tallest mountains in
Its vicinity.
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Singular-Value
Decomposition

Rank of a Matrix

Orthonormal Bases
Eigenvalues/Eigenvectors
Computing the Decomposition
Eliminating Dimensions




Why SVD?

Gives a decomposition of any matrix into a
product of three matrices.

There are strong constraints on the form of
each of these matrices.

= Results in a decomposition that is essentially unique.
From this decomposition, you can choose any
number r of intermediate concepts (latent
factors) in a way that minimizes the RMSE error

given that value of r.
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Rank of a Matrix

The rank of a matrix is the maximum number of

rows (or equivalently columns) that are linearly
independent.

= |.e., no nontrivial sum is the all-zero vector.
Trivial sum = all coefficients are O.

Example: Exist two independent rows.

" |n fact, no row is a multiple of another in this example.
But any 3 rows are dependent.

= Example: First + third — twice the second = [0,0,0].
Similarly, the 3 columns are dependent.
Therefore, rank = 2.
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Important Fact About Rank

If @ matrix has rank r, then it can be
decomposed exactly into matrices whose
shared dimension isr.

Example, in Sect. 11.3 of MMDS, of a 7-by-5
matrix with rank 2 and an exact decomposition
into a 7-by-2 and a 2-by-5 matrix.
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Orthonormal Bases

Vectors are orthogonal if their dot product is O.
Example: [1,2,3].[1,-2,1] = 1*1 + 2*(-2) + 3*1 =
1-443 = 0, so these two vectors are orthogonal.
A unit vector is one whose length is 1.

" [ength = square root of sum of squares of

components.
* No need to take square root if we are looking for length = 1.

Example: [0.8, -0.1, 0.5, -0.3, 0.1] is a unit vector,
since 0.64 + 0.01 + 0.25 +0.09 + 0.01 = 1.
An orthonormal basis is a set of unit vectors any

two of which are orthogonal.
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Example: Columns Are Orthonormal

3116 /2 7/N116 1/2
3116 -1/2  7/N116 1/2
7N116  1/2  -3\116 U2
7N116  -1/2  -3~N116  1/2



Form of SVD

Special conditions:

U andV are column-orthonormal
(so VT has orthonormal rows)

2 is a diagonal matrix
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Facts About SVD

The values of > along the diagonal are called
the singular values.

It is always possible to decompose M exactly, if
ris the rank of M.

But usually, we want to make r much smaller
than the rank, and we do so by setting to O the
smallest singular values.

= Which has the effect of making the corresponding
columns of U and V useless, so they may as well not

be there.
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Linkage Among Components of U, V, X

A~UXV! =% gu;0V]

X A
[/ \ ) E/ \
y VI

n




Each Singular Value Affects One Column of

UandV

A~UXV! =3 gu;0V]

n 6.0
/ \ 17171 GZUZVZ
( H 1 |
m| A | +
\
Gl (XX Scalar
If we set o, = o, then the green Uj ... vector

lumns m well not exist.
columns may as well not exist ... vector
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Jure’s Example Decomposition

The following is Example 11.9 from MMDS.
It modifies the simpler Example 11.8, where a

rank-2 matrix can be decomposed exactly into a
7-by-2 U and a 5-by-2 V.
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Example: Users-to-Movies

A =U X V' -example: Users to Movies
T 1110 0| [0.13 0.02 -0.01
. |3 33 0 0] [0.41 0.07 -0.03 _
. 4 4 4 0 0| 055 0.09 -0.04 1240 0
5550 0|=lo6es 011 -005] x [0 950 X
[ |0 204 4] [015-059 0.65 0o 0 13
romned 0 0 0 5 5] [0.07 -0.73 -0.67
, o102 2] [007-029 032

0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69
0.40 -0.80 0.40 0.09 0.09




Example: Users-to-Movies

A=U

VT - example: Users to Movies

SciFi-concept
Romance-concept

0.13 0.02 -0.01
0.41 0.07 -0.03 —_
0.55 0.09 -0.04
0.68 0.11 -0.05| X
0.15 -0.59 0.65
0.07 -0.73 -0.67
0.07 -0.29 0.32

SciFi

lo o -
O W O
U1

_ O O
b <

3

OO Ul D W Hll\/latrix

Romnc

) L0

N O D O o o o Casablanca M

~ O N Ol » w ~ Alien
O O O Ul W Serenity
||\>cn4>ooooAme|ie

0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69
0.40 -0.80 0.40 0.09 0.09




Example: Users-to-Movies

A=UZV-example: U is “user-to-concept”
3 similarity matrix

% - g i; é SciFi-concept Romance-concept

=3I 80 L S _
[ |t 110 0] Joa)ooz -001
. |3 330 0] [041 0.07 -0.03 —

4 4 40 0| |055 0.09 -0.04 1240 0
" |s 550 0|=[o68 011 -005] x |0 950 | x
[ |0 204 4] [015-059 0.65 0o 0 13
2omned 0 0 0 5 5| [0.07 -0.73 -0.67
, 010 2 2] [007-029 032

0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69
0.40 -0.80 0.40 0.09 0.09




Example: Users-to-Movies

A=U

VT - example:

SciFi-concept

1 “strength” of the SciFi-concept

0.13 0.02 -0.01 /
0.41 0.07 -0.03 . _
0.55 0.09 -0.04 @- 0
0.68 0.11 -0.05| x |O -
0.15 -0.59 0.65 0 0 13

0.07 -0.73 -0.67
0.07 -0.29 0.32

SciFi

O o U0l & w b IMatrix

Romnc

\’ 0

N O D O o o o Casablanca M

— O N Ol w - Alien
O O O Ul W Serenity
N U1 B O O O O |Amelie

0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69
0.40 -0.80 0.40 0.09 0.09




Example: Users-to-Movies

A=U2XV'-example:

. g Vis “movie-to-concept”
= S § B ¢ SciFi-concept similarity matrix
=338 < ! )

T 1 1 0 o] [0.13 0.02 -0.01
|3 0 0| [0.41 0.07 -0.03 _
hi\o\q 0.55 0.09 -0.04 1240 0
" Is 5 50 of<laes 011 005 x |0 950 | x
[ {02044 0.65 0 0 13
om0 0 0 5 5 -0.67
, o102 2] |007-02 0 )

v 1

SciFi-concept

0.12 002 012 069 069
0.40 -0.80 0.40 0.09 0.09




lcocoouv &~ wrl

Lowering the Dimension

R O DN OB~ WPk

O OO Ul b~ WwWehEk

How exactly is dimensionality reduction
done?
A: Set smallest singular values to zero

N OO O O O

|I\)U"I-I>OOOO

Q

0.13 0.02 -0.01]
041 0.07 -0.03
0.55 0.09 -0.04
0.68 0.11 -0.05
0.15 -0.59 0.65
0.07 -0.73 -0.67

0.07 029 0.32

2.4
X

lo o |
o © o

-
50
3
0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69

10.40 -0.80 0.40 0.09 0.09



IOOOCﬂ-bOOH‘

Lowering the Dimension

R O DN OB~ WPk

Q: How exactly is dimensionality reduction
done?
A: Set smallest singular values to zero

O OO Ul b~ WwWehEk

N OO O O O

|I\)U"I-I>OOOO

Q

0.13 0.02 -9Q.0

0.55 0.09 -0\p4
0.68 0.11 -0.05
0.15 -0.59 0/85
0.07 -0.73 -0.6

0.07 -0.29

X

-
50
3
0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69

T 20—=6-86-0-46—6-09—0.09



lcocoouv &~ wrl

Lowering the Dimension

R O DN OB~ WPk

O OO Ul b~ WwWehEk

How exactly is dimensionality reduction
done?
A: Set smallest singular values to zero

N OO O O O

|I\)U"I-I>OOOO

Q

0.13 0.02
0.41 0.07
0.55 0.09
0.68 0.11
0.15 -0.59
0.07 -0.73

0.07 -0.29

12.4 0
0 95 X

0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69
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lcocoouv &~ wrl

Lowering the Dimension

R O DN OB Wk

How exactly is dimensionality reduction

done?

A: Set smallest singular values to zero

O OOk~ WwehEk

N OO O O O

|I\JO'1-I>OOOO,

X

0.92 0.95 0.92 0.01

0.01

291 3.01 291 -0.01 -0.01

3.90 4.04 3.90 0.01
4.82 5.00 4.82 0.03
0.70 0.53 0.70 4.11
-0.69 1.34 -0.69 4.7/8

1032 0.23 0.32 2.01

0.01
0.03
4.11
4.78

2.01
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Frobenius Norm and Approximation

Error

The Frobenius norm of a matrix is the square
root of the sum of the squares of its elements.
The error in an approximation of one matrix by
another is the Frobenius norm of the
difference.

= Same as the RMSE.
Important fact: The error in the approximation
of a matrix by SVD, subject to picking r singular

values, is minimized by zeroing all but the
largest r singular values.
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So what’s a good value for r?

Let the energy of a set of singular values be the
sum of their squares.

Pick r so the retained singular values have at
least 90% of the total energy.

Example: With singular values 12.4, 9.5, and
1.3, total energy = 245.7.

If we drop 1.3, whose square is only 1.7, we are
left with energy 244, or over 99% of the total.
But also dropping 9.5 leaves us with too little.
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Finding Eigenpairs

We want to describe how the SVD is actually
computed.

Essential is a method for finding the principal
eigenvalue (the largest one) and the
corresponding eigenvector of a symmetric matrix.
= Mis symmetric it m; = m; for all i and j.

Start with any “guess eigenvector” x,.

Construct x,,, = Mx, /| |Mx,| |[fork=0, 1,...

= ||...] | denotes the Frobenius norm.

Stop when consecutive x, ‘s show little change.
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Example: Iterative Eigenvector

M = : X, = .
2 3
MXx —

o _ 3 N 0.51 N
xJ © s % T oss T M
Mx, 2.23 0

V17, 03 X,
IMx_|| 3.60 N17.93 0.85
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Finding the Principal Eigenvalue

Once you have the principal eigenvector x, you
find its eigenvalue A by A = x"Mx.

In proof: we know xA = Mx if A is the
eigenvalue; multiply both sides by x™ on the left.
= Since x'x = 1 we have A = x"Mx.

Example: If we take x" = [0.53, 0.85], then A =

[0-53 0-85] [2 3] [0 85] ~%
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Finding More Eigenpairs

Eliminate the portion of the matrix M that can
be generated by the first eigenpair, A and x.
M* := M —Ax X'

Recursively find the principal eigenpair for M*,
eliminate the effect of that pair, and so on.
Example:

* B 0.53 0.19 0.09
M [2 3] 425[ ][053085]—[0_09 0.07
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How to Compute the SVD

Start by supposing M = U2V
MT = (UXVT)T = (VT)TZTUT = VZU"
= Why? (1) Rule for transpose of a product (2) the

transpose of the transpose and the transpose of a
diagonal matrix are both the identity function.

M™™ = VZUTUZVT = VX2V,
= \Why? U is orthonormal, so UTU is an identity matrix.

= Also note that 22 is a diagonal matrix whose i-th
element is the square of the i-th element of 2.
MTMV = VXVTV = VX2,

= Why? Vis also orthonormal.
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Computing the SVD —(2)

Starting with (MTM)V = VX2, note that therefore
the i-th column of V is an eigenvector of MM,
and its eigenvalue is the i-th element of X2
Thus, we can find V and X2 by finding the
eigenpairs for MTM.

= Once we have the eigenvalues in 22, we can find the

singular values by taking the square root of these
eigenvalues.

Symmetric argument, starting with MM, gives
us U.
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CUR Decomposition

The Sparsity Issue
Picking Random Rows and Columns




It is common for the matrix M that we wish to

decompose to be very sparse.

But U and V from a UV or SVD decomposition
will not be sparse even so.

CUR decomposition solves this problem by
using only (randomly chosen) rows and columns

of M.
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Form of CUR Decomposition

N I r

X X

r chosen as you like.

C =randomly chosen columns of M.

R = randomly chosen rows of M

U is tricky — more about this.
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Construction of U

U is r-by-r, so it is small, and it is OK if it is dense
and complex to compute.

Start with W = intersection of the r columns
chosen for C and the r rows chosen for R.
Compute the SVD of W to be XXY'.

Compute 2*, the Moore-Penrose inverse of 2.

= Definition, next slide.

U =Y(Z*)%X.
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Moore-Penrose Inverse

If 2 is a diagonal matrix, its More-Penrose
inverse is another diagonal matrix whose i-th

entry is:
= 1/cif o is not O.
"0ifoisO.
Example:
L O O 0.250 O
2= 0 2 O 2*= 0 0.5 O
O 0 O O 0 ©
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Which Rows and Columns?

To decrease the expected error between M and its
decomposition, we must pick rows and columns in
a nonuniform manner.

The importance of a row or column of M is the
square of its Frobinius norm.

= That is, the sum of the squares of its elements.

When picking rows and columns, the probabilities
must be proportional to importance.

Example: [3,4,5] has importance 50, and [3,0,1]
has importance 10, so pick the first 5 times as
often as the second.
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