Dimensionality Reduction

UV Decomposition
Singular-Value Decomposition
CUR Decomposition

Jeffrey D. Ullman

Stanford University

Reducing Matrix Dimension

- Often, our data can be represented by an m-by-n matrix.
- And this matrix can be closely approximated by the product of two matrices that share a small common dimension r.

Why Is That Even Possible?

- There are hidden, or latent factors that - to a close approximation - explain why the values are as they appear in the matrix.
- Two kinds of data may exhibit this behavior:

1. Matrices representing a many-many-relationship.

- "Latent" factors may explain the relationship.

2. Matrices that are really a relation (as in a relational database).

- The columns may not really be independent.

Matrices as Relationships

- Our data can be a many-many relationship in the form of a matrix.
- Example: people vs. movies; matrix entries are the ratings given to the movies by the people.
- Example: students vs. courses; entries are the grades.

Row for Joe

Matrices as Relationships - (2)

- Often, the relationship can be explained closely by latent factors.
- Example: genre of movies or books.
- I.e., Joe liked Star Wars because Joe likes science-fiction, and Star Wars is a science-fiction movie.
- Example: types of courses.
- Sue is good at computer science, and CS246 is a CS course.

Matrices as Relational Data

- Another closely related form of data is a collection of rows (tuples), each representing one entity.
- Columns represent attributes of these entities.
- Example: Stars can be represented by their mass, brightness in various color bands, diameter, and several other properties.
- But it turns out that there are only two independent variables (latent factors): mass and age.

Example: Stars

Star	Mass	Luminosity	Color	Age
Sun	1.0	1.0	Yellow	4.6 B
Alpha Centauri	1.1	1.5	Yellow	5.8 B
Sirius A	2.0	25	White	0.25 B
			Y	

D-Dimensional Data Lying Close to a d-Dimensional Subspace

Intuition

- The axes of the subspace can be chosen by:
- The first dimension is the direction in which the points exhibit the greatest variance.
- The second dimension is the direction, orthogonal to the first, in which points show the greatest variance.
- And so on..., until you have enough dimensions that variance is really low.

UV Decomposition

- The simplest form of matrix decomposition is to find a pair of matrixes, the first (U) with few columns and the second (V) with few rows, whose product is close to the given matrix M .

Latent Factors

- This decomposition works well if r is the number of "hidden factors" that explain the matrix M .
- Example: m_{ij} is the rating person i gives to movie j; $u_{i k}$ measures how much person i likes genre k; v_{kj} measures the extent to which movie j belongs to genre k.

Measuring the Error

- Common way to evaluate how well P = UV approximates M is by RMSE (root-mean-square error).
- Average $\left(m_{\mathrm{ij}}-p_{\mathrm{ij}}\right)^{2}$ over all i and j .
- Take the square root.
- Square-rooting changes the scale of error, but doesn't affect which choice of U and V is best.

Example: RMSE

$\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}$	1	12	$\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}$
M	U	V	P

RMSE $=\operatorname{sqrt}((0+0+1+0) / 4) \operatorname{sqrt}(0.25)=0.5$

1	2
3	4

M

U

P

RMSE $=\operatorname{sqrt}((0+0+0+4) / 4) \operatorname{sqrt}(1.0)=1.0$
Question for Thought: Are either of these the best choice?

Optimizing U and V

- Pick r, the number of latent factors.
- Think of U and V as composed of variables, u_{ik} and v_{kj}.
- Express the RMSE as (the square root of)

$$
\mathrm{E}=\Sigma_{\mathrm{ij}}\left(m_{\mathrm{ij}}-\Sigma_{\mathrm{k}} \mathrm{u}_{\mathrm{ik}} \mathrm{v}_{\mathrm{kj}}\right)^{2} .
$$

- Gradient descent: repeatedly find the derivative of E with respect to each variable and move each a small amount in the direction that lowers the value of E .

Important point: Go only a small distance, because E is not linear, so following the derivative too far gets you off-course.

What if M is Missing Entries?

- Ignore the error term for $m_{i j}$ if that value is "unknown."
- Example: in a person-movie matrix, most movies are not rated by most people, so measure the error only for the known ratings.
- To be covered by Jure in mid-February.

Local Versus Global Minima

- Expressions like this usually have many minima.
- Seeking the nearest minimum from a starting point can trap you in a local minimum, from which no small improvement is possible.

Avoiding Local Minima

- Use many different starting points, chosen at random, in the hope that one will be close enough to the global minimum.
- Simulated annealing: occasionally try a leap to someplace further away in the hope of getting out of the local trap.
- Intuition: the global minimum might have many nearby local minima.
- As Mt. Everest has most of the world's tallest mountains in its vicinity.

Singular-Value

Decomposition

Rank of a Matrix
Orthonormal Bases
Eigenvalues/Eigenvectors
Computing the Decomposition
Eliminating Dimensions

Why SVD?

- Gives a decomposition of any matrix into a product of three matrices.
- There are strong constraints on the form of each of these matrices.
- Results in a decomposition that is essentially unique.
- From this decomposition, you can choose any number r of intermediate concepts (latent factors) in a way that minimizes the RMSE error given that value of r.

Rank of a Matrix

- The rank of a matrix is the maximum number of rows (or equivalently columns) that are linearly independent.
- I.e., no nontrivial sum is the all-zero vector.
- Trivial sum = all coefficients are 0.
- Example: Exist two independent rows.
- In fact, no row is a multiple of another in this example.
- But any 3 rows are dependent.
- Example: First + third - twice the second $=[0,0,0]$.
- Similarly, the 3 columns are dependent.
- Therefore, rank $=2$.

Important Fact About Rank

- If a matrix has rank r, then it can be decomposed exactly into matrices whose shared dimension is r.
- Example, in Sect. 11.3 of MMDS, of a 7-by-5 matrix with rank 2 and an exact decomposition into a 7-by-2 and a 2-by-5 matrix.

Orthonormal Bases

- Vectors are orthogonal if their dot product is 0.
- Example: $[1,2,3] .[1,-2,1]=1 * 1+2 *(-2)+3 * 1=$ $1-4+3=0$, so these two vectors are orthogonal.
- A unit vector is one whose length is 1.
- Length = square root of sum of squares of components.
- No need to take square root if we are looking for length $=1$.
- Example: $[0.8,-0.1,0.5,-0.3,0.1]$ is a unit vector, since $0.64+0.01+0.25+0.09+0.01=1$.
- An orthonormal basis is a set of unit vectors any two of which are orthogonal.

Example: Columns Are Orthonormal

$$
\begin{array}{llll}
3 / \sqrt{116} & 1 / 2 & 7 / \sqrt{116} & 1 / 2 \\
3 / \sqrt{116} & -1 / 2 & 7 / \sqrt{116} & -1 / 2 \\
7 / \sqrt{116} & 1 / 2 & -3 / \sqrt{116} & -1 / 2 \\
7 / \sqrt{116} & -1 / 2 & -3 / \sqrt{116} & 1 / 2
\end{array}
$$

Form of SVD

Special conditions:
U and V are column-orthonormal (so V^{\top} has orthonormal rows)
Σ is a diagonal matrix

Facts About SVD

- The values of Σ along the diagonal are called the singular values.
- It is always possible to decompose M exactly, if r is the rank of M.
- But usually, we want to make r much smaller than the rank, and we do so by setting to 0 the smallest singular values.
- Which has the effect of making the corresponding columns of U and V useless, so they may as well not be there.

Linkage Among Components of $\mathrm{U}, \mathrm{V}, \Sigma$

$\mathbf{A} \approx \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \circ \mathbf{v}_{i}^{\top}$

Each Singular Value Affects One Column of U and V

$$
\mathbf{A} \approx \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \circ \mathbf{v}_{i}^{\top}
$$

If we set $\sigma_{2}=0$, then the green columns may as well not exist.
$\sigma_{i} \ldots$ scalar
$\mathbf{u}_{\mathrm{i}} \ldots$ vector
$\mathbf{v}_{\mathrm{i}} \ldots$ vector

Jure's Example Decomposition

The following is Example 11.9 from MMDS.

- It modifies the simpler Example 11.8, where a rank-2 matrix can be decomposed exactly into a 7-by-2 U and a 5-by-2 V.

Example: Users-to-Movies

- $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ - example: Users to Movies

SciFi
$\stackrel{\downarrow}{\downarrow} \underset{\text { Romnce }}{\downarrow},\left[\begin{array}{lllll}\mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}\end{array}\right]=\left[\begin{array}{ccc}\mathbf{0 . 5 5} & 0.09 & -0.04 \\ \mathbf{0 . 6 8} & 0.11 & -0.05 \\ 0.15 & \mathbf{- 0 . 5 9} & \mathbf{0 . 6 5} \\ 0.07 & \mathbf{- 0 . 7 3} & \mathbf{- 0 . 6 7} \\ 0.07 & \mathbf{- 0 . 2 9} & \mathbf{0 . 3 2}\end{array}\right]$
x

$$
\left[\begin{array}{lll}
\mathbf{1 2 . 4} & 0 & 0 \\
0 & \mathbf{9 . 5} & 0 \\
0 & 0 & \mathbf{1 . 3}
\end{array}\right]
$$

$\left[\begin{array}{lllll}\mathbf{0 . 5 6} & \mathbf{0 . 5 9} & \mathbf{0 . 5 6} & 0.09 & 0.09\end{array}\right]$
$0.12-0.020 .12$-0.69 -0.69
$\left[\begin{array}{lllll}0.40 & \mathbf{- 0 . 8 0} & 0.40 & 0.09 & 0.09\end{array}\right]$

Example: Users-to-Movies

- $\mathbf{A}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ - example: Users to Movies

SciFi

$\left.\stackrel{\downarrow}{\downarrow} \underset{\text { Romance }}{\downarrow} \begin{array}{l}\downarrow \\ \downarrow\end{array} \begin{array}{lllll}\mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ 0 & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}\end{array}\right]=\left[\begin{array}{ccc}\mathbf{0 . 5 5} & 0.09 & -0.04 \\ \mathbf{0 . 6 8} & 0.11 & -0.05 \\ 0.15 & \mathbf{- 0 . 5 9} & \mathbf{0 . 6 5} \\ 0.07 & \mathbf{- 0 . 7 3} & \mathbf{- 0 . 6 7} \\ 0.07 & \mathbf{- 0 . 2 9} & \mathbf{0 . 3 2}\end{array}\right]$
X

$$
\left[\begin{array}{lll}
\mathbf{1 2 . 4} & 0 & 0 \\
0 & \mathbf{9 . 5} & 0 \\
0 & 0 & \mathbf{1 . 3}
\end{array}\right]
$$

$\left[\begin{array}{lllll}\mathbf{0 . 5 6} & \mathbf{0 . 5 9} & 0.56 & 0.09 & 0.09\end{array}\right]$
$\begin{array}{llllll}0.12 & -0.02 & 0.12 & -0.69 & -\mathbf{0 . 6 9}\end{array}$
$\left[\begin{array}{lllll}0.40 & \mathbf{- 0 . 8 0} & 0.40 & 0.09 & 0.09\end{array}\right]$

Example: Users-to-Movies

- $\mathrm{A}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ - example:

SciFi

x

$$
\left[\begin{array}{lll}
\mathbf{1 2 . 4} & 0 & 0 \\
0 & \mathbf{9 . 5} & 0 \\
0 & 0 & \mathbf{1 . 3}
\end{array}\right]
$$

Example: Users-to-Movies

- $A=U \Sigma V^{\top}$ - example:

SciFi

"strength" of the SciFi-concept
$\left[\begin{array}{lllll}\mathbf{0 . 5 6} & \mathbf{0 . 5 9} & \mathbf{0 . 5 6} & 0.09 & 0.09 \\ 0.12 & -0.0 & 0.2 & \mathbf{0 .}\end{array}\right.$
$\begin{array}{llllll}0.12 & -0.02 & 0.12 & -0.69 & -0.69\end{array}$
$\left[\begin{array}{lllll}0.40 & \mathbf{- 0 . 8 0} & 0.40 & 0.09 & 0.09\end{array}\right]$

Example: Users-to-Movies

- $A=U \Sigma V^{\top}$ - example:

			V is "movie-to-concept" similarity matrix				
	$\left[\begin{array}{lllll}1 & \mathbf{1} & 1 & 0 & 0 \\ 3\end{array}\right.$	$\left[\begin{array}{llll}\mathbf{0} .13 & 0.02 & -0.01\end{array}\right]$					
	$\begin{array}{lllll}3 & 3 & 3 & 0 & 0\end{array}$	$\mathbf{0 . 4 1} 0.07-0.03$					
	44400	$\mathbf{0 . 5 5}$					
	$\begin{array}{llllll}5 & 5 & 5 & 0 & 0\end{array}$	0.68	x	0			X
	$\begin{array}{llllll}0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5\end{array}$	$\begin{array}{lll}0.15 & \mathbf{0 . 5 9} & 0.65\end{array}$					
	$0 \begin{array}{lllll}0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & 1 & 0 & \mathbf{2} & \end{array}$	0.07-0.73-0.67					
	0	$\left.\begin{array}{llll}0.07 & -0.29 & 0.32\end{array}\right]$					
				.		0.09	
		SciFi-concept		-0.02	0.12	-0.69	-0.69
				-0.8	0.40	0.09	0.09

Lowering the Dimension

- Q: How exactly is dimensionality reduction done?
- A: Set smallest singular values to zero

$\left[\begin{array}{llllll}1 & 1 & 1 & 0 & 0\end{array}\right.$	$\left[\begin{array}{llll}\mathbf{0} .13 & 0.02 & -0.01\end{array}\right]$			
$\begin{array}{llllll}3 & 3 & 3 & 0 & 0\end{array}$	$\begin{array}{llll}0.41 & 0.07 & -0.03\end{array}$			
$\begin{array}{lllllll}4 & 4 & 4 & 0 & 0\end{array}$	0.55 0.09 -0.04 0.05		$\left[\begin{array}{lll}12.4 & 0 & 0 \\ 0 & 9 & 5\end{array}\right]$	
$\begin{array}{llllll}5 & 5 & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \approx\end{array}$	0.68 0.11 -0.05 0.15	x	$\left[\begin{array}{llll}120 & 0.5 & \\ 0 & 0 & \\ 0 & 0 & \times 3\end{array}\right]$	x
$\begin{array}{lllllll}0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5\end{array}$	$\begin{array}{cccc}0.15 & -\mathbf{0 . 5 9} & \mathbf{0 . 6 5} \\ 0.07\end{array}$			
$\left[\begin{array}{llllll}0 & 0 & 0 & 5 & \mathbf{5} \\ 0 & 1 & 0 & \mathbf{2} & \mathbf{2}\end{array}\right.$	$\left[\begin{array}{ccc}0.07 & \mathbf{- 0 . 7 3} & \mathbf{0 . 0 . 6 7} \\ 0.07 & -\mathbf{0 . 2 9} & \mathbf{0 . 3 2}\end{array}\right.$		$\left[\begin{array}{ccc}0.56 & 0.59 & 0.56\end{array}\right.$	0.09
02	$\left.\begin{array}{llll}0.07 & -0.29 & 0.32\end{array}\right]$		[$\begin{array}{lll}0.56 \\ 0.12 & 0.59 & 0.56\end{array}$	-0.69
			0.40-0.80 0.40	. 0

Lowering the Dimension

- Q: How exactly is dimensionality reduction done?
- A: Set smallest singular values to zero

$$
\begin{aligned}
& {\left[\begin{array}{lll}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & \times 3
\end{array}\right] \times}
\end{aligned}
$$

Lowering the Dimension

- Q: How exactly is dimensionality reduction done?
- A: Set smallest singular values to zero
$\left[\begin{array}{lllll}\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}\end{array}\right] \approx\left[\begin{array}{cc}\mathbf{0} .13 & 0.02 \\ \mathbf{0 . 4 1} & 0.07 \\ \mathbf{0 . 5 5} & 0.09 \\ \mathbf{0 . 6 8} & 0.11 \\ 0.15 & \mathbf{- 0 . 5 9} \\ 0.07 & \mathbf{- 0 . 7 3} \\ 0.07 & \mathbf{- 0 . 2 9}\end{array}\right] \times\left[\begin{array}{lll}\mathbf{1 2 . 4} & 0 & \\ 0 & \mathbf{9 . 5} \\ & & \end{array}\right] \times \mathrm{x}$

Lowering the Dimension

- Q: How exactly is dimensionality reduction done?
- A: Set smallest singular values to zero
$\left[\begin{array}{lllll}\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\ \mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\ \mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\ \mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\ 0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\ 0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\ 0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}\end{array}\right] \approx\left[\begin{array}{ccccc}\mathbf{0 . 9 2} & \mathbf{0 . 9 5} & \mathbf{0 . 9 2} & 0.01 & 0.01 \\ \mathbf{2 . 9 1} & \mathbf{3 . 0 1} & \mathbf{2 . 9 1} & -0.01 & -0.01 \\ \mathbf{3 . 9 0} & \mathbf{4 . 0 4} & \mathbf{3 . 9 0} & 0.01 & 0.01 \\ \mathbf{4 . 8 2} & \mathbf{5 . 0 0} & \mathbf{4 . 8 2} & 0.03 & 0.03 \\ 0.70 & \mathbf{0 . 5 3} & 0.70 & \mathbf{4 . 1 1} & \mathbf{4 . 1 1} \\ -0.69 & 1.34 & -0.69 & \mathbf{4 . 7 8} & \mathbf{4 . 7 8} \\ 0.32 & \mathbf{0 . 2 3} & 0.32 & \mathbf{2 . 0 1} & \mathbf{2 . 0 1}\end{array}\right]$

Frobenius Norm and Approximation

Error

- The Frobenius norm of a matrix is the square root of the sum of the squares of its elements.
- The error in an approximation of one matrix by another is the Frobenius norm of the difference.
- Same as the RMSE.
- Important fact: The error in the approximation of a matrix by SVD, subject to picking r singular values, is minimized by zeroing all but the largest r singular values.

Energy

- So what's a good value for r?
- Let the energy of a set of singular values be the sum of their squares.
- Pick r so the retained singular values have at least 90\% of the total energy.
- Example: With singular values 12.4, 9.5, and 1.3, total energy = 245.7.
- If we drop 1.3, whose square is only 1.7, we are left with energy 244 , or over 99% of the total.
- But also dropping 9.5 leaves us with too little.

Finding Eigenpairs

- We want to describe how the SVD is actually computed.
- Essential is a method for finding the principal eigenvalue (the largest one) and the corresponding eigenvector of a symmetric matrix.
- M is symmetric if $m_{i j}=m_{j i}$ for all i and j.
- Start with any "guess eigenvector" \mathbf{x}_{0}.
- Construct $\mathbf{x}_{\mathrm{k}+1}=\mathrm{M} \mathbf{x}_{\mathrm{k}} /\left|\left|\mathrm{M} \mathbf{x}_{\mathrm{k}}\right|\right|$ for $\mathrm{k}=0,1, \ldots$
- ||...|| denotes the Frobenius norm.
- Stop when consecutive \mathbf{x}_{k} 's show little change.

Example: Iterative Eigenvector

$$
M=\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array} \quad x_{0}=\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$

$$
\frac{\mathrm{M} \mathrm{x}_{0}}{\left\|\mathrm{M} \mathrm{x}_{0}\right\|}=\frac{3}{5} / \sqrt{34}=\begin{aligned}
& 0.51 \\
& 0.86
\end{aligned}=\mathrm{x}_{1}
$$

$\frac{\mathrm{Mx}_{1}}{\left\|\mathrm{Mx}_{1}\right\|}=\begin{aligned} & 2.23 \\ & 3.60\end{aligned} / \sqrt{17.93}=\begin{aligned} & 0.53 \\ & 0.85\end{aligned}=\mathbf{x}_{2}$

Finding the Principal Eigenvalue

- Once you have the principal eigenvector \mathbf{x}, you find its eigenvalue λ by $\lambda=\mathbf{x}^{\top} \mathbf{M} \mathbf{x}$.
- In proof: we know $\mathbf{x} \lambda=\mathrm{Mx}$ if λ is the eigenvalue; multiply both sides by \mathbf{x}^{\top} on the left.
- Since $\mathbf{x}^{\top} \mathbf{x}=1$ we have $\lambda=\mathbf{x}^{\top} \mathbf{M} \mathbf{x}$.
- Example: If we take $\mathbf{x}^{\top}=[0.53,0.85]$, then $\lambda=$

$$
[0.530 .85]\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
0.53 \\
0.85
\end{array}\right]=4.25
$$

Finding More Eigenpairs

- Eliminate the portion of the matrix M that can be generated by the first eigenpair, λ and \mathbf{x}.
- $\mathrm{M}^{*}:=\mathrm{M}-\lambda \mathbf{x} \mathbf{x}^{\top}$.
- Recursively find the principal eigenpair for M*, eliminate the effect of that pair, and so on.
- Example:

$$
M^{*}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]-4.25\left[\begin{array}{l}
0.53 \\
0.85
\end{array}\right][0.530 .85]=\left[\begin{array}{cc}
-0.19 & 0.09 \\
0.09 & 0.07
\end{array}\right]
$$

How to Compute the SVD

- Start by supposing $\mathrm{M}=\mathrm{U} \mathrm{\Sigma} \mathrm{~V}^{\top}$.
- $M^{\top}=\left(U \Sigma V^{\top}\right)^{\top}=\left(V^{\top}\right)^{\top} \Sigma^{\top} U^{\top}=V \Sigma U^{\top}$.
- Why? (1) Rule for transpose of a product (2) the transpose of the transpose and the transpose of a diagonal matrix are both the identity function.
- $\mathrm{M}^{\top} \mathrm{M}=\mathrm{V} \Sigma \mathrm{U}^{\top} U \Sigma \mathrm{~V}^{\top}=\mathrm{V} \Sigma^{2} \mathrm{~V}^{\top}$.
- Why? U is orthonormal, so $U^{\top} U$ is an identity matrix.
- Also note that Σ^{2} is a diagonal matrix whose i-th element is the square of the i-th element of Σ.
$-M^{\top} \mathrm{MV}=\mathrm{V} \Sigma^{2} \mathrm{~V}^{\top} \mathrm{V}=\mathrm{V} \Sigma^{2}$.
- Why? V is also orthonormal.

Computing the SVD -(2)

- Starting with $\left(\mathrm{M}^{\top} \mathrm{M}\right) \mathrm{V}=\mathrm{V} \Sigma^{2}$, note that therefore the i-th column of V is an eigenvector of $M^{\top} M$, and its eigenvalue is the i-th element of Σ^{2}.
- Thus, we can find V and Σ by finding the eigenpairs for $\mathrm{M}^{\top} \mathrm{M}$.
- Once we have the eigenvalues in Σ^{2}, we can find the singular values by taking the square root of these eigenvalues.
- Symmetric argument, starting with MM^{\top}, gives us U.

CUR Decomposition

The Sparsity Issue
Picking Random Rows and Columns

Sparsity

- It is common for the matrix M that we wish to decompose to be very sparse.
- But U and V from a UV or SVD decomposition will not be sparse even so.
- CUR decomposition solves this problem by using only (randomly chosen) rows and columns of M.

Form of CUR Decomposition

r chosen as you like.
$\mathrm{C}=$ randomly chosen columns of M .
$\mathrm{R}=$ randomly chosen rows of M
U is tricky - more about this.

Construction of U

- U is r-by-r, so it is small, and it is OK if it is dense and complex to compute.
- Start with W = intersection of the r columns chosen for C and the r rows chosen for R .
- Compute the SVD of W to be $X \Sigma \mathrm{Y}^{\top}$.
- Compute Σ^{+}, the Moore-Penrose inverse of Σ.
- Definition, next slide.
- $\mathrm{U}=\mathrm{Y}\left(\Sigma^{+}\right)^{2} \mathrm{X}^{\top}$.

Moore-Penrose Inverse

- If Σ is a diagonal matrix, its More-Penrose inverse is another diagonal matrix whose i-th entry is:
- $1 / \sigma$ if σ is not 0 .
- 0 if σ is 0 .
- Example:

$$
\Sigma=\begin{array}{cccc}
4 & 0 & 0 & \Sigma^{+}= \\
0 & 2 & 0 \\
0 & 0 & 0 & 0.250 \\
0 & 0.5 & 0 \\
0 & 0 & 0
\end{array}
$$

Which Rows and Columns?

- To decrease the expected error between M and its decomposition, we must pick rows and columns in a nonuniform manner.
- The importance of a row or column of M is the square of its Frobinius norm.
- That is, the sum of the squares of its elements.
- When picking rows and columns, the probabilities must be proportional to importance.
- Example: $[3,4,5]$ has importance 50, and $[3,0,1]$ has importance 10, so pick the first 5 times as often as the second.

