
Jeffrey D. Ullman
Stanford University

2

 Given a set of points, with a notion of distance
between points, group the points into some
number of clusters, so that members of a
cluster are “close” to each other, while
members of different clusters are “far.”

3

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

 x x

x x x x

 x x x

x

x

x

4

 Clustering in two dimensions looks easy.
 Clustering small amounts of data looks easy.
 And in most cases, looks are not deceiving.

5

 Many applications involve not 2, but 10 or
10,000 dimensions.

 Example: clustering documents by the vector of
word counts (one dimension for each word).

 High-dimensional spaces look different: almost
all pairs of points are at about the same
distance.

6

 Assume random points between 0 and 1 in each
dimension.

 In 2 dimensions: a variety of distances between
0 and 1.41.

 In any number of dimensions, the distance
between two random points in any one
dimension is distributed as a triangle.

Any point is distance
zero from itself.

Half the points are the first
of points at distance ½.

Only points 0 and
1 are distance 1.

7

 The distance between two random points in n
dimensions, with each dimension distributed as
a triangle, becomes normally distributed as n
gets large.

 And the standard deviation grows as the square
root of the average distance.

 I.e., “all points are the same distance apart.”

 Euclidean spaces have dimensions, and points
have coordinates in each dimension.

 Distance between points is usually the square-
root of the sum of the squares of the distances
in each dimension.

 Non-Euclidean spaces have a distance measure,
but points do not really have a position in the
space.

 Big problem: cannot “average” points.

8

9

 Objects are sequences of {C,A,T,G}.
 Distance between sequences = edit distance =

the minimum number of inserts and deletes
needed to turn one into the other.

 Notice: no way to “average” two strings.

 Question for thought: why not make half the
changes and call that the “average”?

 In practice, the distance for DNA sequences is
more complicated: allows other operations like
mutations (change of a symbol into another) or
reversal of substrings.

10

 Hierarchical (Agglomerative):

 Initially, each point in cluster by itself.

 Repeatedly combine the two “nearest” clusters into
one.

 Point Assignment:

 Maintain a set of clusters.

 Place points into their nearest cluster.

 Possibly split clusters or combine clusters as we go.

 Point assignment good
when clusters are nice,
convex shapes.

 Hierarchical can win when
shapes are weird.

 Note both clusters have
essentially the same centroid.

11

Aside: if you realized you had concentric
clusters, you could map points based on
distance from center, and turn the problem
into a simple, one-dimensional case.

12

 Two important questions:

1. How do you determine the “nearness” of clusters?

2. How do you represent a cluster of more than one
point?

13

 Euclidean case: each cluster has a centroid =
average of its points.

 Represent cluster by centroid + count of points.

 Measure intercluster distances by distances of
centroids.

 That is only one of several options.

14

 (5,3)

 o

 (1,2)

 o

 o (2,1) o (4,1)

o (0,0) o

 (5,0)

x (1.5,1.5)

x (4.5,0.5)

x (1,1)
x (4.7,1.3)

15

(0,0) (1,2) (2,1) (4,1) (5,0) (5,3)

16

 The only “locations” we can talk about are the
points themselves.

 I.e., there is no “average” of two points.

 Approach 1: clustroid = point “closest” to other
points.

 Treat clustroid as if it were centroid, when
computing intercluster distances.

17

 Possible meanings:

1. Smallest maximum distance to the other points.

2. Smallest average distance to other points.

3. Smallest sum of squares of distances to other
points.

4. Etc., etc.

18

1 2

3

4

5

6

intercluster
distance

clustroid

clustroid

19

 Approach 2: intercluster distance = minimum
of the distances between any two points, one
from each cluster.

 Approach 3: Pick a notion of “cohesion” of
clusters, e.g., maximum distance from the
centroid or clustroid.

 Merge clusters whose union is most cohesive.

20

 Approach 1: Use the diameter of the merged
cluster = maximum distance between points in
the cluster.

 Approach 2: Use the average distance between
points in the cluster.

21

 Approach 3: Density-based approach: take the
diameter or average distance, e.g., and divide
by the number of points in the cluster.

 Perhaps raise the number of points to a power first,
e.g., square-root.

 It really depends on the shape of clusters.

 Which you may not know in advance.

 Example: we’ll compare two approaches:

1. Merge clusters with smallest distance between
centroids (or clustroids for non-Euclidean).

2. Merge clusters with the smallest distance between
two points, one from each cluster.

22

 Centroid-based
merging works well.

 But merger based on
closest members
might accidentally
merge incorrectly.

23

A and B have closer centroids
than A and C, but closest points
are from A and C.

A

B

C

 Linking based on
closest members
works well.

 But Centroid-based
linking might cause
errors.

24

25

 An example of point-assignment.
 Assumes Euclidean space.
 Start by picking k, the number of clusters.
 Initialize clusters with a seed (= one point per

cluster).

 Example: pick one point at random, then k-1 other
points, each as far away as possible from the
previous points.

 OK, as long as there are no outliers (points that are far from
any reasonable cluster).

 Basic idea: pick a small sample of points, cluster
them by any algorithm, and use the centroids as
a seed.

 In k-means++, sample size = k times a factor
that is logarithmic in the total number of points.

 How to pick sample points: Visit points in
random order, but the probability of adding a
point p to the sample is proportional to D(p)2.

 D(p) = distance between p and the nearest picked
point.

26

 k-means++, like other seed methods, is
sequential.

 You need to update D(p) for each unpicked p due to
new point.

 Parallel approach: compute nodes can each
handle a small set of points.

 Each picks a few new sample points using same D(p).

 Really important and common trick: don’t
update after every selection; rather make many
selections at one round.

 Suboptimal picks don’t really matter.
27

28

1. For each point, place it in the cluster whose
current centroid it is nearest.

2. After all points are assigned, fix the centroids
of the k clusters.

3. Optional: reassign all points to their closest
centroid.
 Sometimes moves points between clusters.

 You could then iterate, since new clusters have
new centroids, which could change the assignment
of some points.

29

1

2

3

4

5

6

7 8 x

x

Clusters after first round

Reassigned
points

30

 Try different k, looking at the change in the
average distance to centroid, as k increases.

 Average falls rapidly until right k, then changes
little.

k

Average
distance to
centroid Best value

of k

Note: binary search
for k is possible.

31

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

 x x

x x x x

 x x x

x

x

x

Too few clusters;
many long
distances
to centroid.

32

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

 x x

x x x x

 x x x

x

x

x

Just right;
distances
rather short.

33

x x

x x x x

x x x x

x x x

x x

x

xx x

x x

x x x

x

x x x

x

 x x

x x x x

 x x x

x

x

x

Too many clusters;
little improvement
in average distance.

34

 BFR (Bradley-Fayyad-Reina) is a variant of k-
means designed to handle very large (disk-
resident) data sets.

 It assumes that clusters are normally distributed
around a centroid in a Euclidean space.

 Standard deviations in different dimensions may be
different.

 E.g., cigar-shaped clusters.

 Goal is to find cluster centroids; point assignment
can be done in a second pass through the data.

35

 Points are read one main-memory-full at a
time.

 Most points from previous memory loads are
summarized by simple statistics.

 Also kept in main memory, which limits how many
points can be read in one “memory full.”

 To begin, from the initial load we select the
initial k centroids by some sensible approach.

36

1. The discard set (DS): points close enough to a
centroid to be summarized.

2. The compression set (CS): groups of points that
are close together but not close to any
centroid. They are summarized, but not
assigned to a cluster.

3. The retained set (RS): isolated points.

37

A cluster. Its points
are in DS.

The centroid

Compression sets.
Their points are in CS.

Points in RS

38

 Each cluster in the discard set and each
compression set is summarized by:

1. The number of points, N.

2. The vector SUM, whose i th component is the sum
of the coordinates of the points in the i th
dimension.

3. The vector SUMSQ: i th component = sum of
squares of coordinates in i th dimension.

39

 2d + 1 values represent any number of points.

 d = number of dimensions.

 Averages in each dimension (centroid
coordinates) can be calculated easily as SUMi/N.

 SUMi = i th component of SUM.

 Variance in dimension i can be computed by:
(SUMSQi /N) – (SUMi /N)2

 And the standard deviation is the square root of
that.

40

1. Find those points that are “sufficiently close” to
a cluster centroid; add those points to that
cluster and the DS.

2. Use any main-memory clustering algorithm to
cluster the remaining points and the old RS.

 Clusters go to the CS; outlying points to the RS.

 These are not “clusters” in the sense of being one of the k
clusters of the final answer.

41

3. Adjust statistics of the clusters to account for
the new points.

 Consider merging compressed sets in the CS.
4. If this is the last round, merge all compressed

sets in the CS and all RS points into their
nearest cluster.

42

 How do we decide if a point is “close enough”
to a cluster that we will add the point to that
cluster?

 How do we decide whether two compressed
sets deserve to be combined into one?

43

 We need a way to decide whether to put a
new point into a cluster.

 BFR suggest two ways:

1. The Mahalanobis distance is less than a threshold.

2. Low likelihood of the currently nearest centroid
changing.

44

 Normalized Euclidean distance from centroid.
 For point (x1,…, xd) and centroid (c1,…, cd):

1. Normalize in each dimension: yi = (xi -ci)/i

 i = standard deviation in i th dimension for this cluster.

2. Take sum of the squares of the yi ’s.

3. Take the square root.

45

 If clusters are normally distributed in d
dimensions, then after transformation, one
standard deviation = d.

 I.e., 70% of the points of the cluster will have a
Mahalanobis distance < d.

 Accept a point for a cluster if its M.D. is < some
threshold, e.g. 4 standard deviations.

46

2

47

 Similar to measuring cohesion. For example:
 Compute the variance of the combined

subcluster, in each dimension.

 N, SUM, and SUMSQ allow us to make that
calculation quickly.

 Combine if the sum of the variances is below
some threshold.

 Many alternatives: treat dimensions differently,
consider density.

48

 Problem with BFR/k-means:

 Assumes clusters are normally distributed in each
dimension.

 And axes are fixed – ellipses at an angle are not OK.

 CURE:

 Assumes a Euclidean distance.

 Allows clusters to assume any shape.

49

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

50

1. Pick a random sample of points that fit in main
memory.

2. Cluster these points hierarchically.
3. For each cluster, pick a sample of points, as

dispersed as possible.
4. Pick representatives for the cluster by moving

the sample points (say) 20% toward the
centroid of the cluster.

51

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

52

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

Pick (say) 4
remote points
for each
cluster.

53

e e

e

e

e e

e

e e

e

e

h

h

h

h

h

h

h h

h

h

h

h h

salary

age

Move points
(say) 20%
toward the
centroid.

 A large, dispersed cluster will have large moves
from its boundary.

 A small, dense cluster will have little move.
 Favors a small, dense cluster that is near a

larger dispersed cluster.

54

55

 Now, visit each point p in the data set.
 Place it in the “closest cluster.”

 CURE definition of “closest”: that cluster with the
closest (to p) among all the representative points of
all the clusters.

