Clustering

Hierarchical /Agglomerative and Point-Assignment Approaches Measures of "Goodness" for Clusters BFR Algorithm CURE Algorithm

Jeffrey D. Ullman Stanford University

The Problem of Clustering

 Given a set of points, with a notion of distance between points, group the points into some number of *clusters*, so that members of a cluster are "close" to each other, while members of different clusters are "far."

Example: Clusters

Problems With Clustering

- Clustering in two dimensions looks easy.
- Clustering small amounts of data looks easy.
- And in most cases, looks are not deceiving.

The Curse of Dimensionality

- Many applications involve not 2, but 10 or 10,000 dimensions.
 - Example: clustering documents by the vector of word counts (one dimension for each word).
- High-dimensional spaces look different: almost all pairs of points are at about the same distance.

Example: Curse of Dimensionality

- Assume random points between 0 and 1 in each dimension.
- In 2 dimensions: a variety of distances between 0 and 1.41.
- In any number of dimensions, the distance between two random points in any one dimension is distributed as a triangle.

Example – Continued

- The distance between two random points in n dimensions, with each dimension distributed as a triangle, becomes normally distributed as n gets large.
- And the standard deviation grows as the square root of the average distance.
 - I.e., "all points are the same distance apart."

Euclidean and Non-Euclidean Distances

- Euclidean spaces have dimensions, and points have coordinates in each dimension.
- Distance between points is usually the squareroot of the sum of the squares of the distances in each dimension.
- Non-Euclidean spaces have a distance measure, but points do not really have a position in the space.
 - Big problem: cannot "average" points.

Example: DNA Sequences

- Objects are sequences of {C,A,T,G}.
- Distance between sequences = *edit distance* = the minimum number of inserts and deletes needed to turn one into the other.
 - Notice: no way to "average" two strings.
 - Question for thought: why not make half the changes and call that the "average"?

 In practice, the distance for DNA sequences is more complicated: allows other operations like *mutations* (change of a symbol into another) or reversal of substrings.

Methods of Clustering

- Hierarchical (Agglomerative):
 - Initially, each point in cluster by itself.
 - Repeatedly combine the two "nearest" clusters into one.
- Point Assignment:
 - Maintain a set of clusters.
 - Place points into their nearest cluster.
 - Possibly split clusters or combine clusters as we go.

Which is Better?

- Point assignment good when clusters are nice, convex shapes.
- Hierarchical can win when shapes are weird.
 - Note both clusters have essentially the same centroid.

Aside: if you realized you had concentric clusters, you could map points based on distance from center, and turn the problem into a simple, one-dimensional case.

Hierarchical Clustering

- Two important questions:
- 1. How do you determine the "nearness" of clusters?
- 2. How do you represent a cluster of more than one point?

Locating Clusters

- Euclidean case: each cluster has a *centroid* = average of its points.
 - Represent cluster by centroid + count of points.
 - Measure intercluster distances by distances of centroids.
 - That is only one of several options.

Example

Dendrogram

And in the Non-Euclidean Case?

- The only "locations" we can talk about are the points themselves.
 - I.e., there is no "average" of two points.
- Approach 1: *clustroid* = point "closest" to other points.
 - Treat clustroid as if it were centroid, when computing intercluster distances.

"Closest" Point?

- Possible meanings:
- 1. Smallest maximum distance to the other points.
- 2. Smallest average distance to other points.
- 3. Smallest sum of squares of distances to other points.
- 4. Etc., etc.

Example: Intercluster Distance

Other Approaches to Defining "Nearness" of Clusters

- Approach 2: intercluster distance = minimum of the distances between any two points, one from each cluster.
- Approach 3: Pick a notion of "cohesion" of clusters, e.g., maximum distance from the centroid or clustroid.
 - Merge clusters whose *union* is most cohesive.

Cohesion

- Approach 1: Use the *diameter* of the merged cluster = maximum distance between points in the cluster.
- Approach 2: Use the average distance between points in the cluster.

Cohesion – (2)

- Approach 3: Density-based approach: take the diameter or average distance, e.g., and divide by the number of points in the cluster.
 - Perhaps raise the number of points to a power first, e.g., square-root.

Which is Best?

- It really depends on the shape of clusters.
 - Which you may not know in advance.
- Example: we'll compare two approaches:
 - 1. Merge clusters with smallest distance between centroids (or clustroids for non-Euclidean).
 - 2. Merge clusters with the smallest distance between two points, one from each cluster.

Case 1: Convex Clusters

 Centroid-based merging works well.
 But merger based on closest members might accidentally merge incorrectly.

A and B have closer centroids than A and C, but closest points are from A and C.

Case 2: Concentric Clusters

- Linking based on closest members works well.
- But Centroid-based linking might cause errors.

k–Means Algorithm(s)

- An example of point-assignment.
- Assumes Euclidean space.
- Start by picking k, the number of clusters.
- Initialize clusters with a seed (= one point per cluster).
 - Example: pick one point at random, then k-1 other points, each as far away as possible from the previous points.
 - OK, as long as there are no *outliers* (points that are far from any reasonable cluster).

- Basic idea: pick a small sample of points, cluster them by any algorithm, and use the centroids as a seed.
- In k-means++, sample size = k times a factor that is logarithmic in the total number of points.
- How to pick sample points: Visit points in random order, but the probability of adding a point p to the sample is proportional to D(p)².
 - D(p) = distance between p and the nearest picked point.

k-Means

- k-means++, like other seed methods, is sequential.
 - You need to update D(p) for each unpicked p due to new point.
- Parallel approach: compute nodes can each handle a small set of points.
 - Each picks a few new sample points using same D(p).
- Really important and common trick: don't update after every selection; rather make many selections at one round.
 - Suboptimal picks don't really matter.

Populating Clusters

- 1. For each point, place it in the cluster whose current centroid it is nearest.
- 2. After all points are assigned, fix the centroids of the *k* clusters.
- 3. Optional: reassign all points to their closest centroid.
 - Sometimes moves points between clusters.
 - You could then iterate, since new clusters have new centroids, which could change the assignment of some points.

Example: Assigning Clusters

Clusters after first round

Getting k Right

- Try different k, looking at the change in the average distance to centroid, as k increases.
 Average falls rapidly uptil right k, then changes
- Average falls rapidly until right k, then changes little.

Example: Picking k

Too few clusters; many long distances to centroid.

Example: Picking k

Just right; distances rather short.

Example: Picking k

Too many clusters; little improvement in average distance.

BFR Algorithm

- BFR (Bradley-Fayyad-Reina) is a variant of kmeans designed to handle very large (diskresident) data sets.
- It assumes that clusters are normally distributed around a centroid in a Euclidean space.
 - Standard deviations in different dimensions may be different.
 - E.g., cigar-shaped clusters.
- Goal is to find cluster centroids; point assignment can be done in a second pass through the data.

BFR – (2)

- Points are read one main-memory-full at a time.
- Most points from previous memory loads are summarized by simple statistics.
 - Also kept in main memory, which limits how many points can be read in one "memory full."
- To begin, from the initial load we select the initial k centroids by some sensible approach.

Three Classes of Points

- 1. The *discard set* (*DS*): points close enough to a centroid to be summarized.
- 2. The *compression set* (*CS*): groups of points that are close together but not close to any centroid. They are summarized, but not assigned to a cluster.
- 3. The *retained set* (*RS*): isolated points.

"Galaxies" Picture

Summarizing Sets of Points

- Each cluster in the discard set and each compression set is summarized by:
 - 1. The number of points, *N*.
- 2. The vector SUM, whose *i* th component is the sum of the coordinates of the points in the *i* th dimension.
- 3. The vector SUMSQ: *i* th component = sum of squares of coordinates in *i* th dimension.

Comments

- 2d + 1 values represent any number of points.
 - *d* = number of dimensions.
- Averages in each dimension (centroid coordinates) can be calculated easily as SUM_i/N.
 - $SUM_i = i^{\text{th}}$ component of SUM.
- Variance in dimension *i* can be computed by:
 (SUMSQ_i /N) (SUM_i /N)²
 - And the standard deviation is the square root of that.

Processing a "Memory-Full" of Points

- Find those points that are "sufficiently close" to a cluster centroid; add those points to that cluster and the DS.
- 2. Use any main-memory clustering algorithm to cluster the remaining points and the old RS.
 - Clusters go to the CS; outlying points to the RS.
 - These are not "clusters" in the sense of being one of the k clusters of the final answer.

Processing – (2)

- 3. Adjust statistics of the clusters to account for the new points.
 - Consider merging compressed sets in the CS.
- If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster.

- How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- How do we decide whether two compressed sets deserve to be combined into one?

How Close is Close Enough?

- We need a way to decide whether to put a new point into a cluster.
- BFR suggest two ways:
 - 1. The *Mahalanobis distance* is less than a threshold.
 - 2. Low likelihood of the currently nearest centroid changing.

Mahalanobis Distance

- Normalized Euclidean distance from centroid. For point $(x_1, ..., x_d)$ and centroid $(c_1, ..., c_d)$:
 - 1. Normalize in each dimension: $y_i = (x_i c_i)/\sigma_i$
 - σ_i = standard deviation in *i*th dimension for this cluster.
 - 2. Take sum of the squares of the y_i 's.
 - 3. Take the square root.

Mahalanobis Distance – (2)

- If clusters are normally distributed in *d* dimensions, then after transformation, one standard deviation = \sqrt{d} .
 - I.e., 70% of the points of the cluster will have a Mahalanobis distance $< \sqrt{d}$.
- Accept a point for a cluster if its M.D. is < some threshold, e.g. 4 standard deviations.

Picture: Equal M.D. Regions

Should Two CS Subclusters Be Combined?

- Similar to measuring cohesion. For example:
- Compute the variance of the combined subcluster, in each dimension.
 - N, SUM, and SUMSQ allow us to make that calculation quickly.
- Combine if the sum of the variances is below some threshold.
- Many alternatives: treat dimensions differently, consider density.

The CURE Algorithm

- Problem with BFR/k-means:
 - Assumes clusters are normally distributed in each dimension.
 - And axes are fixed ellipses at an angle are not OK.

CURE:

- Assumes a Euclidean distance.
- Allows clusters to assume any shape.

Example: Stanford Faculty Salaries

Starting CURE

- 1. Pick a random sample of points that fit in main memory.
- 2. Cluster these points hierarchically.
- 3. For each cluster, pick a sample of points, as dispersed as possible.
- Pick *representatives* for the cluster by moving the sample points (say) 20% toward the centroid of the cluster.

Example: Initial Clusters

Example: Pick Dispersed Points

Example: Pick Dispersed Points

Why the 20% Move Inward?

- A large, dispersed cluster will have large moves from its boundary.
- A small, dense cluster will have little move.
- Favors a small, dense cluster that is near a larger dispersed cluster.

Finishing CURE

- Now, visit each point p in the data set.
- Place it in the "closest cluster."
 - CURE definition of "closest": that cluster with the closest (to p) among all the representative points of all the clusters.