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 Given a set of points, with a notion of distance 
between points, group the points into some 
number of clusters, so that members of a 
cluster are “close” to each other, while 
members of different clusters are “far.” 
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 Clustering in two dimensions looks easy. 
 Clustering small amounts of data looks easy. 
 And in most cases, looks are not deceiving. 
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 Many applications involve not 2, but 10 or 
10,000 dimensions. 

 Example: clustering documents by the vector of 
word counts (one dimension for each word). 

 High-dimensional spaces look different: almost 
all pairs of points are at about the same 
distance. 
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 Assume random points between 0 and 1 in each 
dimension. 

 In 2 dimensions: a variety of distances between 
0 and 1.41. 

 In any number of dimensions, the distance 
between two random points in any one 
dimension is distributed as a triangle. 

Any point is distance 
zero from itself. 

Half the points are the first 
of points at distance ½. 

Only points 0 and 
1 are distance 1. 
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 The distance between two random points in n 
dimensions, with each dimension distributed as 
a triangle, becomes normally distributed as n 
gets large. 

 And the standard deviation grows as the square 
root of the average distance. 

 I.e., “all points are the same distance apart.” 



 Euclidean spaces have dimensions, and points 
have coordinates in each dimension. 

 Distance between points is usually the square-
root of the sum of the squares of the distances 
in each dimension. 

 Non-Euclidean spaces have a distance measure, 
but points do not really have a position in the 
space. 

 Big problem: cannot “average” points. 

8 



9 

 Objects are sequences of {C,A,T,G}. 
 Distance between sequences = edit distance = 

the minimum number of inserts and deletes 
needed to turn one into the other. 

 Notice: no way to “average” two strings. 

 Question for thought: why not make half the 
changes and call that the “average”? 

 In practice, the distance for DNA sequences is 
more complicated: allows other operations like 
mutations (change of a symbol into another) or 
reversal of substrings. 
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 Hierarchical (Agglomerative): 

 Initially, each point in cluster by itself. 

 Repeatedly combine the two “nearest” clusters into 
one. 

 Point Assignment: 

 Maintain a set of clusters. 

 Place points into their nearest cluster. 

 Possibly split clusters or combine clusters as we go. 



 Point assignment good 
when clusters are nice, 
convex shapes. 

 Hierarchical can win when 
shapes are weird. 

 Note both clusters have 
essentially the same centroid. 
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Aside: if you realized you had concentric 
clusters, you could map points based on 
distance from center, and turn the problem 
into a simple, one-dimensional case. 
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 Two important questions: 

1. How do you determine the “nearness” of clusters? 

2. How do you represent a cluster of more than one 
point? 
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 Euclidean case: each cluster has a centroid = 
average of its points. 

 Represent cluster by centroid + count of points. 

 Measure intercluster distances by distances of 
centroids. 

 That is only one of several options. 
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 The only “locations” we can talk about are the 
points themselves. 

 I.e., there is no “average” of two points. 

 Approach 1: clustroid  = point “closest” to other 
points. 

 Treat clustroid as if it were centroid, when 
computing intercluster distances.  
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 Possible meanings: 

1. Smallest maximum distance to the other points. 

2. Smallest average distance to other points. 

3. Smallest sum of squares of distances to other 
points. 

4. Etc., etc. 
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 Approach 2: intercluster distance = minimum 
of the distances between any two points, one 
from each cluster. 

 Approach 3: Pick a notion of “cohesion” of 
clusters, e.g., maximum distance from the 
centroid or clustroid. 

 Merge clusters whose union is most cohesive. 
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 Approach 1: Use the diameter of the merged 
cluster = maximum distance between points in 
the cluster. 

 Approach 2: Use the average distance between 
points in the cluster. 
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 Approach 3: Density-based approach: take the 
diameter or average distance, e.g., and divide 
by the number of points in the cluster. 

 Perhaps raise the number of points to a power first, 
e.g., square-root. 



 It really depends on the shape of clusters. 

 Which you may not know in advance. 

 Example: we’ll compare two approaches: 

1. Merge clusters with smallest distance between 
centroids (or clustroids for non-Euclidean). 

2. Merge clusters with the smallest distance between 
two points, one from each cluster. 

22 



 Centroid-based 
merging works well. 

 But merger based on 
closest members 
might accidentally 
merge incorrectly. 
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A and B have closer centroids 
than A and C, but closest points 
are from A and C. 

A 

B 

C 



 Linking based on 
closest members 
works well. 

 But Centroid-based 
linking might cause 
errors. 
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 An example of point-assignment. 
 Assumes Euclidean space. 
 Start by picking k, the number of clusters. 
 Initialize clusters with a seed (= one point per 

cluster). 

 Example: pick one point at random, then  k-1 other 
points, each as far away as possible from the 
previous points. 

 OK, as long as there are no outliers (points that are far from 
any reasonable cluster). 



 Basic idea: pick a small sample of points, cluster 
them by any algorithm, and use the centroids as 
a seed. 

 In k-means++, sample size = k times a factor 
that is logarithmic in the total number of points. 

 How to pick sample points: Visit points in 
random order, but the probability of adding a 
point p to the sample is proportional to D(p)2. 

 D(p) = distance between p and the nearest picked 
point. 
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 k-means++, like other seed methods, is 
sequential. 

 You need to update D(p) for each unpicked p due to 
new point. 

 Parallel approach: compute nodes can each 
handle a small set of points. 

 Each picks a few new sample points using same D(p). 

 Really important and common trick: don’t 
update after every selection; rather make many 
selections at one round. 

 Suboptimal picks don’t really matter. 
27 
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1. For each point, place it in the cluster whose 
current centroid it is nearest. 

2. After all points are assigned, fix the centroids 
of the k clusters. 

3. Optional: reassign all points to their closest 
centroid. 
 Sometimes moves points between clusters. 

 You could then iterate, since new clusters have 
new centroids, which could change the assignment 
of some points. 
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 Try different k, looking at the change in the 
average distance to centroid, as k  increases. 

 Average falls rapidly until right k, then changes 
little. 

k 

Average 
distance to 
centroid Best value 

of k 

Note: binary search 
for k is possible. 
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Just right; 
distances 
rather short. 
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Too many clusters; 
little improvement 
in average distance. 
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 BFR (Bradley-Fayyad-Reina) is a variant of k-
means designed to handle very large (disk-
resident) data sets. 

 It assumes that clusters are normally distributed 
around a centroid in a Euclidean space. 

 Standard deviations in different dimensions may be 
different. 

 E.g., cigar-shaped clusters. 

 Goal is to find cluster centroids; point assignment 
can be done in a second pass through the data. 
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 Points are read one main-memory-full at a 
time. 

 Most points from previous memory loads are 
summarized by simple statistics. 

 Also kept in main memory, which limits how many 
points can be read in one “memory full.” 

 To begin, from the initial load we select the 
initial k centroids by some sensible approach. 
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1. The discard set (DS): points close enough to a 
centroid to be summarized. 

2. The compression set (CS): groups of points that 
are close together but not close to any 
centroid.  They are summarized, but not 
assigned to a cluster. 

3. The retained set (RS): isolated points. 
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 Each cluster in the discard set and each 
compression set is summarized by: 

1. The number of points, N. 

2. The vector SUM, whose i th component is the sum 
of the coordinates of the points in the i th 
dimension. 

3. The vector SUMSQ: i th component = sum of 
squares of coordinates in i th dimension. 
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 2d + 1 values represent any number of points. 

 d  = number of dimensions. 

 Averages in each dimension (centroid 
coordinates) can be calculated easily as SUMi/N. 

 SUMi = i th component of SUM. 

 Variance in dimension i can be computed by: 
(SUMSQi /N ) – (SUMi /N )2 

 And the standard deviation is the square root of 
that. 
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1. Find those points that are “sufficiently close” to 
a cluster centroid; add those points to that 
cluster and the DS. 

2. Use any main-memory clustering algorithm to 
cluster the remaining points and the old RS. 

 Clusters go to the CS; outlying points to the RS. 

 These are not “clusters” in the sense of being one of the k 
clusters of the final answer. 
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3. Adjust statistics of the clusters to account for 
the new points. 

 Consider merging compressed sets in the CS. 
4. If this is the last round, merge all compressed 

sets in the CS and all RS points into their 
nearest cluster. 
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 How do we decide if a point is “close enough” 
to a cluster that we will add the point to that 
cluster? 

 How do we decide whether two compressed 
sets deserve to be combined into one? 
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 We need a way to decide whether to put a 
new point into a cluster. 

 BFR suggest two ways: 

1. The Mahalanobis distance is less than a threshold. 

2. Low likelihood of the currently nearest centroid 
changing. 
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 Normalized Euclidean distance from centroid. 
 For point (x1,…, xd) and centroid (c1,…, cd): 

1. Normalize in each dimension: yi = (xi -ci)/i  

 i = standard deviation in i th dimension for this cluster. 

2. Take sum of the squares of the yi ’s. 

3. Take the square root. 
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 If clusters are normally distributed in d  
dimensions, then after transformation, one 
standard deviation = d. 

 I.e., 70% of the points of the cluster will have a 
Mahalanobis distance < d. 

 Accept a point for a cluster if its M.D. is < some 
threshold, e.g. 4 standard deviations. 
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 Similar to measuring cohesion. For example: 
 Compute the variance of the combined 

subcluster, in each dimension. 

 N, SUM, and SUMSQ allow us to make that 
calculation quickly. 

 Combine if the sum of the variances is below 
some threshold. 

 Many alternatives: treat dimensions differently, 
consider density. 
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 Problem with BFR/k-means: 

 Assumes clusters are normally distributed in each 
dimension. 

 And axes are fixed – ellipses at an angle are not OK. 

 CURE: 

 Assumes a Euclidean distance. 

 Allows clusters to assume any shape. 



49 

e e 

e 

e 

e e 

e 

e e 

e 

e 

h 

h 

h 

h 

h 

h 

h h 

h 

h 

h 

h h 

salary 

age 



50 

1. Pick a random sample of points that fit in main 
memory. 

2. Cluster these points hierarchically. 
3. For each cluster, pick a sample of points, as 

dispersed as possible. 
4. Pick representatives for the cluster by moving 

the sample points (say) 20% toward the 
centroid of the cluster. 
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Pick (say) 4 
remote points 
for each 
cluster. 
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Move points 
(say) 20% 
toward the 
centroid. 



 A large, dispersed cluster will have large moves 
from its boundary. 

 A small, dense cluster will have little move. 
 Favors a small, dense cluster that is near a 

larger dispersed cluster. 
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 Now, visit each point p in the data set. 
 Place it in the “closest cluster.” 

 CURE definition of “closest”: that cluster with the 
closest (to p) among all the representative points of 
all the clusters. 


