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 Classic model of (offline) algorithms: 

 You get to see the entire input, then compute 
some function of it. 

 Online algorithm: 

 You get to see the input one piece at a time, 
and need to make irrevocable decisions along 
the way. 

 Similar to data stream models. 
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• Two sets of nodes. 
• Some edges between them. 
• Maximize the number of nodes paired 1-1 
           by edges. 
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M = {(1,a),(2,b),(3,d)} is a matching 
of cardinality  |M| = 3. 

Men Women 
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M = {(1,c),(2,b),(3,d),(4,a)} is a  
perfect matching (all nodes matched). 
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 Problem: Find a maximum-cardinality matching 
for a given bipartite graph. 

 A perfect one if it exists. 
 There is a polynomial-time offline algorithm 

(Hopcroft and Karp 1973). 
 But what if we don’t have the entire graph 

initially? 

 

6 



 Initially, we are given the set of men. 
 In each round, one woman’s set of choices is 

revealed. 
 At that time, we have to decide either to: 

 Pair the woman with a man. 

 Don’t pair the woman with any man. 
 Example applications: assigning tasks to servers 

or Web requests to threads. 
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 Pair the new woman with any eligible man. 

 If there is none, don’t pair the woman. 
 How good is the algorithm? 
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 For input I, suppose greedy produces matching 
Mgreedy while an optimal matching is Mopt. 

 
Competitive ratio =  
   minall possible inputs I (|Mgreedy|/|Mopt|). 
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 Let O be the optimal matching, and G the 
matches produced by a run of the greedy 
algorithm. 

 Consider the sets of women: 

A: Matched in G, not in O. 

B: Matched in both. 

C: Matched in O, not in G. 
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 During the greedy matching, every woman in C 

found her match in the optimal solution taken 
by another woman. 

 Thus, |A| + |B| > |C|. 
 Surely, |A| + |B| > |B|. 
 Thus, |G| = |A| + |B| > (|B| + |C|)/2 = |O|/2. 

 

A B C 

If you’re greater than each of two 
things, you are greater than their 
average. 

Optimal 
Greedy 
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|Greedy| = 2; 
|Opt| = 4. 
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 Banner ads (1995-2001). 

 Initial form of web advertising. 

 Popular websites charged X$ for every 1000 
“impressions” of ad. 

Called “CPM” rate. 

Modeled on TV, magazine ads. 

 Untargeted to demographically targeted. 

 Low clickthrough rates. 

 low ROI for advertisers. 
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 Introduced by Overture around 2000. 

 Advertisers “bid” on search keywords. 

 When someone searches for that keyword, 
the highest bidder’s ad is shown. 

 Advertiser is charged only if the ad is clicked 
on. 

 Similar model adopted by Google with some 
changes around 2002. 

 Called “Adwords.” 
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 Performance-based advertising works! 

 Multi-billion-dollar industry. 
 Interesting problems: 

 What ads to show for a search? 

 If I’m an advertiser, which search terms 
should I bid on and how much should I bid? 
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 A stream of queries arrives at the search engine 

 q1, q2,… 
 Several advertisers bid on each query. 
 When query qi arrives, search engine must pick 

a subset of advertisers whose ads are shown. 
 Goal: maximize search engine’s revenues. 
 Clearly we need an online algorithm! 
 Simplest online algorithm is Greedy. 
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 Each ad has a different likelihood of being 
clicked. 

 Example: 

 Advertiser 1 bids $2, click probability = 0.1. 

 Advertiser 2 bids $1, click probability = 0.5. 

 Click-through rate measured by historical performance. 

 Simple solution: 

 Instead of raw bids, use the “expected revenue per 
click.” 
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 Each advertiser has a limited budget 

 Search engine guarantees that the advertiser will not 
be charged more than their daily budget. 

21 



 Assume all bids are 0 or 1. 
 Each advertiser has the same budget B. 
 One advertiser is chosen per query. 
 Let’s try the greedy algorithm: 

 Arbitrarily pick an eligible advertiser for each 
keyword. 

22 



 Two advertisers A and B. 
 A bids on query x, B bids on x and y. 
 Both have budgets of $4. 
 Query stream: x x x x y y y y. 
 Possible greedy choice: B B B B _ _ _ _. 
 Optimal: A A A A B B B B. 
 Competitive ratio = 1/2. 

 This is actually the worst case. 
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 [Mehta, Saberi, Vazirani, and Vazirani]. 
 For each query, pick the advertiser with the 

largest unspent budget who bid on this query. 

 Break ties arbitrarily. 
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 Two advertisers A and B. 
 A bids on query x, B bids on x and y. 
 Both have budgets of $4. 
 Query stream: x x x x y y y y. 
 Balance choice: B A B A B B _ _. 
 Optimal: A A A A B B B B. 
 Competitive ratio = 3/4. 
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 Consider simple case: two advertisers, A1 and 
A2, each with budget B > 1, an even number. 

 We’ll consider the case where the optimal 
solution exhausts both advertisers’ budgets. 
 I.e., optimal revenue to search engine = 2B. 

 Balance must exhaust at least one advertiser’s 
budget. 
 If not, we can allocate more queries. 
 Assume Balance exhausts A2’s budget. 
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B 

Opt revenue = 2B 
Balance revenue = 2B-x = B+y 

We claim y > x (next slide). 
Balance revenue is minimum for x=y=B/2. 
Minimum Balance revenue = 3B/2. 
Competitive Ratio = 3/4. 

Queries allocated to A1 in optimal solution 

Queries allocated to A2 in optimal solution 

x y 

B 

A1 A2 

x 

                        Neither 
 
Balance allocation 

Note: only green queries can be assigned to neither. 
A blue query could have been assigned to A1. 
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 Case 1: At least half the blue 
queries are assigned to A1 by 
Balance. 

 Then y > B/2, since the blues alone 
are > B/2. 

 Case 2: Fewer than half the blue 
queries are assigned to A1 by 
Balance. 

 Let q be the last blue query 
assigned by Balance to A2. 
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 Since A1 obviously bid on q, at that 
time, the budget of A2 must have 
been at least as great as that of A1. 

 Since more than half the blue 
queries are assigned to A2, at the 
time of q, A2’s remaining budget 
was at most B/2. 

 Therefore so was A1’s, which 
implies x < B/2, and therefore y > 
B/2 and y > x. 

 Thus Balance assigns > 3B/2. 
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 In the general case, competitive ratio of Balance 
is 1–1/e = approx. 0.63. 

 Interestingly, no online algorithm has a better 
competitive ratio. 

 Won’t go through the details here, but let’s see 
the worst case that gives this ratio. 
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 N advertisers, each with budget B >> N >> 1. 
 N*B queries appear in N rounds. 
 Each round consists of a single query repeated 

B times. 
 Round 1 queries: bidders A1, A2,…, AN. 
 Round 2 queries: bidders A2, A3,…, AN,… 
 Round i queries: bidders Ai,…, AN,… 
 Round N queries: only AN bids. 
 Optimum allocation: round i queries to Ai. 

 Optimum revenue N*B. 
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 After i rounds, the first i advertisers have 
dropped out of the bidding. 

 Why?  All subsequent queries are ones they do not 
bid on. 

 Thus, they never get any more queries, even 
though they have budget left. 
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… 

A1 A2 A3 
AN-1 AN 

B/N 

B/(N-1) 

B/(N-2) 

After k rounds, sum of allocations to each of  Ak,…,AN is  
Sk = Sk+1 = … = SN = 1<i<kB/(N-i+1). 

If we find the smallest k such that Sk > B, then after k rounds 
we cannot allocate any queries to any advertiser. 
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B/1          B/2          B/3  …    B/(N-k+1) …         B/(N-1)            B/N 

S1 

S2 

Sk = B  

1/1           1/2            1/3  …  1/(N-k+1) …           1/(N-1)            1/N 

S1 

S2 

Sk = 1  

Or in terms of fractions (dividing by B): 

Each width represents the 
amount of budget spent 
by Ak after k rounds. 
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 Fact: Hn = 1< i< n1/i ~= loge(n) for large n. 

 Result due to Euler. 

 
 

1/1      1/2        1/3      …     1/(N-k+1)          …      1/(N-1)          1/N 

Sk = 1  

log(N) 

log(N) - 1 

Sk = 1 implies HN-k = log(N) - 1 = log(N/e). 
N-k = N/e [Why? log(N-k) = HN-k = log(N/e)]. 
k = N(1-1/e) ~= 0.63N. 
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 So after the first N(1-1/e) rounds, we cannot 
allocate a query to any advertiser. 

 Revenue = BN(1-1/e). 
 Competitive ratio = 1-1/e. 
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 Arbitrary bids, budgets. 
 Balance can be terrible. 
 Example: Consider two advertisers A1 and A2, 

each bidding on query q. 

 A1: x1 = 1, b1 = 110. 

 A2: x2 = 10, b2 = 100. 

 First 10 occurrences of q all go to A1, and A1 
then gets 10 q’s for every one that A2 gets. 

 What if there are only 10 occurrences of q? 

 Opt yields $100; Balance yields $10. 
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 Arbitrary bids; consider query q, bidder i. 
 Bid = xi. 

 Budget = bi. 

 Amount spent so far = mi. 

 Fraction of budget remaining fi = 1-mi/bi. 
 Define i(q) = xi(1-e-fi). 
 Allocate query q to bidder i with largest value of 
i(q). 

 Same competitive ratio (1-1/e). 
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