## Computational Advertising

Greedy Algorithms
Competitive Algorithms
Picking the Best Ad
The Balance Algorithm
Jeffrey D. Ullman
Stanford University/Infolab
Slides mostly developed by
Anand Rajaraman


## Online Algorithms

- Classic model of (offline) algorithms:
- You get to see the entire input, then compute some function of it.
- Online algorithm:
- You get to see the input one piece at a time, and need to make irrevocable decisions along the way.
- Similar to data stream models.


## Example: Bipartite Matching



- Two sets of nodes.
- Some edges between them.
- Maximize the number of nodes paired 1-1 by edges.


## Bipartite Matching - (2)


$M=\{(1, a),(2, b),(3, d)\}$ is a matching
of cardinality $|\mathrm{M}|=3$.

## Bipartite Matching - (3)


$M=\{(1, c),(2, b),(3, d),(4, a)\}$ is a perfect matching (all nodes matched).

## Matching Algorithm

- Problem: Find a maximum-cardinality matching for a given bipartite graph.
- A perfect one if it exists.
- There is a polynomial-time offline algorithm (Hopcroft and Karp 1973).
- But what if we don't have the entire graph initially?


## Online Matching

- Initially, we are given the set of men.
- In each round, one woman's set of choices is revealed.
- At that time, we have to decide either to:
- Pair the woman with a man.
- Don't pair the woman with any man.
- Example applications: assigning tasks to servers or Web requests to threads.


## Online Matching - (2)


(1,a)
$(2, b)$
$(3, d)$

## Greedy Algorithm

- Pair the new woman with any eligible man.
- If there is none, don't pair the woman.
- How good is the algorithm?


## Competitive Ratio

- For input I, suppose greedy produces matching $M_{\text {greedy }}$ while an optimal matching is $M_{\text {opt }}$.

Competitive ratio $=$
$\min _{\text {all possible inputs I }}\left(\left|M_{\text {greedy }}\right| /\left|M_{\text {opt }}\right|\right)$.

## Greedy Has Competitive Ratio 1/2

- Let O be the optimal matching, and G the matches produced by a run of the greedy algorithm.
- Consider the sets of women:

A: Matched in G , not in O .
B: Matched in both.
C: Matched in O , not in G .

## Proof of Competitive Ratio 1/2



- During the greedy matching, every woman in C found her match in the optimal solution taken by another woman.
- Thus, $|A|+|B| \geq|C|$. If you're greater than each of two things, you are greater than their
- Surely, $|A|+|B| \geq|B|$. average. $\downarrow$
- Thus, $|G|=|A|+|B| \geq(|B|+|C|) / 2=|O| / 2$.


## Worst-Case Scenario


(1,a)
$(2, b)$
$\mid$ Greedy| $=2 ;$
$|O p t|=4$.

## History of Web Advertising

- Banner ads (1995-2001).
- Initial form of web advertising.
- Popular websites charged X\$ for every 1000 "impressions" of ad. - Called "CPM" rate. - Modeled on TV, magazine ads.
- Untargeted to demographically targeted.
- Low clickthrough rates.
- low ROI for advertisers.


## Performance-Based Advertising

- Introduced by Overture around 2000.
- Advertisers "bid" on search keywords.
- When someone searches for that keyword, the highest bidder's ad is shown.
- Advertiser is charged only if the ad is clicked on.
- Similar model adopted by Google with some changes around 2002.
- Called "Adwords."


## Web 2.0

- Performance-based advertising works!
- Multi-billion-dollar industry.
- Interesting problems:
- What ads to show for a search?
- If I'm an advertiser, which search terms should I bid on and how much should I bid?


## Adwords Problem

- A stream of queries arrives at the search engine - q1, q2,...
- Several advertisers bid on each query.
- When query $q_{i}$ arrives, search engine must pick a subset of advertisers whose ads are shown.
- Goal: maximize search engine's revenues.
- Clearly we need an online algorithm!
- Simplest online algorithm is Greedy.


## Complications - (1)

- Each ad has a different likelihood of being clicked.
- Example:
- Advertiser 1 bids $\$ 2$, click probability $=0.1$.
- Advertiser 2 bids $\$ 1$, click probability $=0.5$.
- Click-through rate measured by historical performance.
- Simple solution:
- Instead of raw bids, use the "expected revenue per click."


## The Adwords Innovation

| Advertiser | Bid | CTR | Bid * CTR |
| :---: | :---: | :---: | :---: |
| A | $\$ 1.00$ | $1 \%$ | 1 cent |
| B | $\$ 0.75$ | $2 \%$ | 1.5 cents |
| C | $\$ 0.50$ | $2.5 \%$ | 1.125 cents |

## The Adwords Innovation

| Advertiser | Bid | CTR | Bid * CTR |
| :---: | :---: | :---: | :---: |
| B | $\$ 0.75$ | $2 \%$ | 1.5 cents |
| C | $\$ 0.50$ | $2.5 \%$ | 1.125 cents |
| A | $\$ 1.00$ | $1 \%$ | 1 cent |

## Complications - (2)

- Each advertiser has a limited budget
- Search engine guarantees that the advertiser will not be charged more than their daily budget.


## Simplified Model

- Assume all bids are 0 or 1.
- Each advertiser has the same budget B.
- One advertiser is chosen per query.
- Let's try the greedy algorithm:
- Arbitrarily pick an eligible advertiser for each keyword.


## Bad Scenario For Greedy

- Two advertisers A and B.
- A bids on query $x, B$ bids on $x$ and $y$.
- Both have budgets of \$4.
- Query stream: x x x x y y y y.
- Possible greedy choice: B B B B
- Optimal: A A A A B B B B.
- Competitive ratio $=1 / 2$.
- This is actually the worst case.


## Balance Algorithm [MSVV]

- [Mehta, Saberi, Vazirani, and Vazirani].
- For each query, pick the advertiser with the largest unspent budget who bid on this query. - Break ties arbitrarily.


## Example: Balance

- Two advertisers A and B.
- A bids on query $x, B$ bids on $x$ and $y$.
- Both have budgets of \$4.
- Query stream: x x x x y y y y.
- Balance choice: B A B A B B _ .
- Optimal: A A A A B B B B.
- Competitive ratio $=3 / 4$.


## Analyzing Balance

- Consider simple case: two advertisers, $\mathrm{A}_{1}$ and $A_{2}$, each with budget $B>1$, an even number.
- We'll consider the case where the optimal solution exhausts both advertisers' budgets.
- I.e., optimal revenue to search engine = 2B.
- Balance must exhaust at least one advertiser's budget.
- If not, we can allocate more queries.
- Assume Balance exhausts $\mathrm{A}_{2}$ 's budget.


## Analyzing Balance


$\mathrm{A}_{1}$

$\mathrm{A}_{2}$

$\square$ Queries allocated to $\mathrm{A}_{2}$ in optimal solution

Opt revenue $=2 \mathrm{~B}$
Balance revenue $=2 B-x=B+y$

Note: only green queries can be assigned to neither.
A blue query could have been assigned to $\mathrm{A}_{1}$.

We claim $y \geq x$ (next slide).
Balance revenue is minimum for $x=y=B / 2$. Minimum Balance revenue $=3 B / 2$.
Competitive Ratio $=3 / 4$.

Balance allocation

## Analyzing Balance: Two Cases



- Case 1: At least half the blue queries are assigned to $A_{1}$ by Balance.
- Then $y \geq B / 2$, since the blues alone are $\geq B / 2$.
- Case 2: Fewer than half the blue


Balance allocation queries are assigned to $\mathrm{A}_{1}$ by Balance.

- Let q be the last blue query assigned by Balance to $\mathrm{A}_{2}$.


## Analyzing Balance - (3)

- Since $A_{1}$ obviously bid on $q$, at that
 time, the budget of $A_{2}$ must have been at least as great as that of $A_{1}$.
- Since more than half the blue queries are assigned to $A_{2}$, at the time of $q, A_{2}$ 's remaining budget was at most $\mathrm{B} / 2$.


Balance allocation
$B$ Therefore so was $A_{1}$ 's, which implies $x \leq B / 2$, and therefore $y \geq$ $B / 2$ and $y \geq x$.

- Thus Balance assigns $\geq 3 B / 2$.


## General Result

- In the general case, competitive ratio of Balance is $1-1 / e=$ approx. 0.63.
- Interestingly, no online algorithm has a better competitive ratio.
- Won't go through the details here, but let's see the worst case that gives this ratio.


## Worst Case for Balance

- N advertisers, each with budget $\mathrm{B} \gg \mathrm{N} \gg 1$.
- $\mathrm{N}^{*} \mathrm{~B}$ queries appear in N rounds.
- Each round consists of a single query repeated B times.
- Round 1 queries: bidders $A_{1}, A_{2}, \ldots, A_{N}$.
- Round 2 queries: bidders $A_{2}, A_{3}, \ldots, A_{N}, \ldots$
- Round i queries: bidders $A_{i}, \ldots, A_{N}, \ldots$
- Round $N$ queries: only $A_{N}$ bids.
- Optimum allocation: round $i$ queries to $A_{i}$.
- Optimum revenue N*B.


## Pattern to Remember

- After i rounds, the first i advertisers have dropped out of the bidding.
- Why? All subsequent queries are ones they do not bid on.
- Thus, they never get any more queries, even though they have budget left.


## Balance Allocation


$\mathrm{A}_{1}$

$\mathrm{A}_{2}$

$\mathrm{A}_{3}$

$\mathrm{A}_{\mathrm{N}-1}$

$A_{N}$

After $k$ rounds, sum of allocations to each of $A_{k} \ldots, A_{N}$ is $\mathrm{S}_{\mathrm{k}}=\mathrm{S}_{\mathrm{k}+1}=\ldots=\mathrm{S}_{\mathrm{N}}=\sum_{1 \leq \leq i \mathrm{k}} \mathrm{B} /(\mathrm{N}-\mathrm{i}+1)$.

If we find the smallest $k$ such that $S_{k} \geq B$, then after $k$ rounds we cannot allocate any queries to any advertiser.

## BALANCE Analysis

$$
\begin{gathered}
\mathrm{B} / 1 \quad \mathrm{~B} / 2 \quad \mathrm{~B} / 3 \ldots \\
\text { Each width represents the }
\end{gathered}
$$ amount of budget spent by $A_{k}$ after $k$ rounds.

Or in terms of fractions (dividing by $B$ ): $\quad S_{k}=B$


## BALANCE analysis

- Fact: $H_{n}=\sum_{1 \leq i \leq n} 1 / i \sim=\log _{e}(n)$ for large $n$. - Result due to Euler.

$$
\begin{aligned}
& 1 / 1 \quad 1 / 2 \quad 1 / 3 \quad \ldots \quad 1 /(\mathrm{N}-\mathrm{k}+1) \quad \ldots \quad 1 /(\mathrm{N}-1) \quad 1 / \mathrm{N} \\
& \log (\mathrm{~N})-1 \longrightarrow \mathrm{~S}_{\mathrm{k}}=1
\end{aligned}
$$

$S_{k}=1$ implies $H_{N-k}=\log (N)-1=\log (N / e)$.
$N-k=N / e\left[W h y ? \log (N-k)=H_{N-k}=\log (N / e)\right]$.
$\mathrm{k}=\mathrm{N}(1-1 / \mathrm{e}) \sim=0.63 \mathrm{~N}$.

## Balance Analysis

- So after the first N(1-1/e) rounds, we cannot allocate a query to any advertiser.
- Revenue = BN(1-1/e).
- Competitive ratio = 1-1/e.


## General Version of Problem

- Arbitrary bids, budgets.
- Balance can be terrible.
- Example: Consider two advertisers $\mathrm{A}_{1}$ and $\mathrm{A}_{2}$, each bidding on query $q$.
Bids $\int_{A_{2}: x_{2}=10, b_{2}=100 .}^{A_{1}: x_{1}=1, b_{1}=110 .}>_{\text {Budgets }}$
- First 10 occurrences of $q$ all go to $A_{1}$, and $A_{1}$ then gets 10 q's for every one that $A_{2}$ gets.
- What if there are only 10 occurrences of $q$ ?
- Opt yields \$100; Balance yields \$10.


## Generalized Balance

- Arbitrary bids; consider query q, bidder i.
- Bid $=x_{i}$.
- Budget $=b_{i}$.
- Amount spent so far $=\mathrm{m}_{\mathrm{i}}$.
- Fraction of budget remaining $f_{i}=1-m_{i} / b_{i}$.
- Define $\psi_{i}(q)=x_{i}\left(1-e^{-f_{i}}\right)$.
- Allocate query $q$ to bidder $i$ with largest value of $\psi_{i}(\mathrm{q})$.
- Same competitive ratio (1-1/e).

