
Jeffrey D. Ullman
Stanford University/Infolab

Slides mostly developed by
Anand Rajaraman

 Classic model of (offline) algorithms:

 You get to see the entire input, then compute
some function of it.

 Online algorithm:

 You get to see the input one piece at a time,
and need to make irrevocable decisions along
the way.

 Similar to data stream models.

2

1

2

3

4

a

b

c

d Men Women

• Two sets of nodes.
• Some edges between them.
• Maximize the number of nodes paired 1-1
 by edges.

3

1

2

3

4

a

b

c

d

M = {(1,a),(2,b),(3,d)} is a matching
of cardinality |M| = 3.

Men Women

4

1

2

3

4

a

b

c

d Men Women

M = {(1,c),(2,b),(3,d),(4,a)} is a
perfect matching (all nodes matched).

5

 Problem: Find a maximum-cardinality matching
for a given bipartite graph.

 A perfect one if it exists.
 There is a polynomial-time offline algorithm

(Hopcroft and Karp 1973).
 But what if we don’t have the entire graph

initially?

6

 Initially, we are given the set of men.
 In each round, one woman’s set of choices is

revealed.
 At that time, we have to decide either to:

 Pair the woman with a man.

 Don’t pair the woman with any man.
 Example applications: assigning tasks to servers

or Web requests to threads.

7

1

2

3

4

a

b

c

d

(1,a)

(2,b)

(3,d)

8

 Pair the new woman with any eligible man.

 If there is none, don’t pair the woman.
 How good is the algorithm?

9

 For input I, suppose greedy produces matching
Mgreedy while an optimal matching is Mopt.

Competitive ratio =
 minall possible inputs I (|Mgreedy|/|Mopt|).

10

 Let O be the optimal matching, and G the
matches produced by a run of the greedy
algorithm.

 Consider the sets of women:

A: Matched in G, not in O.

B: Matched in both.

C: Matched in O, not in G.

11

 During the greedy matching, every woman in C

found her match in the optimal solution taken
by another woman.

 Thus, |A| + |B| > |C|.
 Surely, |A| + |B| > |B|.
 Thus, |G| = |A| + |B| > (|B| + |C|)/2 = |O|/2.

A B C

If you’re greater than each of two
things, you are greater than their
average.

Optimal
Greedy

12

1

2

3

4

a

b

c

(1,a)

(2,b)

d

|Greedy| = 2;
|Opt| = 4.

13

 Banner ads (1995-2001).

 Initial form of web advertising.

 Popular websites charged X$ for every 1000
“impressions” of ad.

Called “CPM” rate.

Modeled on TV, magazine ads.

 Untargeted to demographically targeted.

 Low clickthrough rates.

 low ROI for advertisers.

14

 Introduced by Overture around 2000.

 Advertisers “bid” on search keywords.

 When someone searches for that keyword,
the highest bidder’s ad is shown.

 Advertiser is charged only if the ad is clicked
on.

 Similar model adopted by Google with some
changes around 2002.

 Called “Adwords.”

15

 Performance-based advertising works!

 Multi-billion-dollar industry.
 Interesting problems:

 What ads to show for a search?

 If I’m an advertiser, which search terms
should I bid on and how much should I bid?

16

 A stream of queries arrives at the search engine

 q1, q2,…
 Several advertisers bid on each query.
 When query qi arrives, search engine must pick

a subset of advertisers whose ads are shown.
 Goal: maximize search engine’s revenues.
 Clearly we need an online algorithm!
 Simplest online algorithm is Greedy.

17

 Each ad has a different likelihood of being
clicked.

 Example:

 Advertiser 1 bids $2, click probability = 0.1.

 Advertiser 2 bids $1, click probability = 0.5.

 Click-through rate measured by historical performance.

 Simple solution:

 Instead of raw bids, use the “expected revenue per
click.”

18

Advertiser Bid CTR Bid * CTR

A

B

C

$1.00

$0.75

$0.50

1%

2%

2.5%

1 cent

1.5 cents

1.125 cents

19

Advertiser Bid CTR Bid * CTR

A

B

C

$1.00

$0.75

$0.50

1%

2%

2.5%

1 cent

1.5 cents

1.125 cents

20

 Each advertiser has a limited budget

 Search engine guarantees that the advertiser will not
be charged more than their daily budget.

21

 Assume all bids are 0 or 1.
 Each advertiser has the same budget B.
 One advertiser is chosen per query.
 Let’s try the greedy algorithm:

 Arbitrarily pick an eligible advertiser for each
keyword.

22

 Two advertisers A and B.
 A bids on query x, B bids on x and y.
 Both have budgets of $4.
 Query stream: x x x x y y y y.
 Possible greedy choice: B B B B _ _ _ _.
 Optimal: A A A A B B B B.
 Competitive ratio = 1/2.

 This is actually the worst case.

23

 [Mehta, Saberi, Vazirani, and Vazirani].
 For each query, pick the advertiser with the

largest unspent budget who bid on this query.

 Break ties arbitrarily.

24

 Two advertisers A and B.
 A bids on query x, B bids on x and y.
 Both have budgets of $4.
 Query stream: x x x x y y y y.
 Balance choice: B A B A B B _ _.
 Optimal: A A A A B B B B.
 Competitive ratio = 3/4.

25

 Consider simple case: two advertisers, A1 and
A2, each with budget B > 1, an even number.

 We’ll consider the case where the optimal
solution exhausts both advertisers’ budgets.
 I.e., optimal revenue to search engine = 2B.

 Balance must exhaust at least one advertiser’s
budget.
 If not, we can allocate more queries.
 Assume Balance exhausts A2’s budget.

26

A1 A2

B

Opt revenue = 2B
Balance revenue = 2B-x = B+y

We claim y > x (next slide).
Balance revenue is minimum for x=y=B/2.
Minimum Balance revenue = 3B/2.
Competitive Ratio = 3/4.

Queries allocated to A1 in optimal solution

Queries allocated to A2 in optimal solution

x y

B

A1 A2

x

 Neither

Balance allocation

Note: only green queries can be assigned to neither.
A blue query could have been assigned to A1.

27

 Case 1: At least half the blue
queries are assigned to A1 by
Balance.

 Then y > B/2, since the blues alone
are > B/2.

 Case 2: Fewer than half the blue
queries are assigned to A1 by
Balance.

 Let q be the last blue query
assigned by Balance to A2.

x y

B

A1 A2

x

 Neither

Balance allocation

A1 A2

B

28

 Since A1 obviously bid on q, at that
time, the budget of A2 must have
been at least as great as that of A1.

 Since more than half the blue
queries are assigned to A2, at the
time of q, A2’s remaining budget
was at most B/2.

 Therefore so was A1’s, which
implies x < B/2, and therefore y >
B/2 and y > x.

 Thus Balance assigns > 3B/2.

x y

B

A1 A2

x

 Neither

Balance allocation

A1 A2

B

29

 In the general case, competitive ratio of Balance
is 1–1/e = approx. 0.63.

 Interestingly, no online algorithm has a better
competitive ratio.

 Won’t go through the details here, but let’s see
the worst case that gives this ratio.

30

 N advertisers, each with budget B >> N >> 1.
 N*B queries appear in N rounds.
 Each round consists of a single query repeated

B times.
 Round 1 queries: bidders A1, A2,…, AN.
 Round 2 queries: bidders A2, A3,…, AN,…
 Round i queries: bidders Ai,…, AN,…
 Round N queries: only AN bids.
 Optimum allocation: round i queries to Ai.

 Optimum revenue N*B.

31

 After i rounds, the first i advertisers have
dropped out of the bidding.

 Why? All subsequent queries are ones they do not
bid on.

 Thus, they never get any more queries, even
though they have budget left.

32

…

A1 A2 A3
AN-1 AN

B/N

B/(N-1)

B/(N-2)

After k rounds, sum of allocations to each of Ak,…,AN is
Sk = Sk+1 = … = SN = 1<i<kB/(N-i+1).

If we find the smallest k such that Sk > B, then after k rounds
we cannot allocate any queries to any advertiser.

33

B/1 B/2 B/3 … B/(N-k+1) … B/(N-1) B/N

S1

S2

Sk = B

1/1 1/2 1/3 … 1/(N-k+1) … 1/(N-1) 1/N

S1

S2

Sk = 1

Or in terms of fractions (dividing by B):

Each width represents the
amount of budget spent
by Ak after k rounds.

34

 Fact: Hn = 1< i< n1/i ~= loge(n) for large n.

 Result due to Euler.

1/1 1/2 1/3 … 1/(N-k+1) … 1/(N-1) 1/N

Sk = 1

log(N)

log(N) - 1

Sk = 1 implies HN-k = log(N) - 1 = log(N/e).
N-k = N/e [Why? log(N-k) = HN-k = log(N/e)].
k = N(1-1/e) ~= 0.63N.

35

Euler Line above

 So after the first N(1-1/e) rounds, we cannot
allocate a query to any advertiser.

 Revenue = BN(1-1/e).
 Competitive ratio = 1-1/e.

36

 Arbitrary bids, budgets.
 Balance can be terrible.
 Example: Consider two advertisers A1 and A2,

each bidding on query q.

 A1: x1 = 1, b1 = 110.

 A2: x2 = 10, b2 = 100.

 First 10 occurrences of q all go to A1, and A1
then gets 10 q’s for every one that A2 gets.

 What if there are only 10 occurrences of q?

 Opt yields $100; Balance yields $10.

37

Bids Budgets

 Arbitrary bids; consider query q, bidder i.
 Bid = xi.

 Budget = bi.

 Amount spent so far = mi.

 Fraction of budget remaining fi = 1-mi/bi.
 Define i(q) = xi(1-e-fi).
 Allocate query q to bidder i with largest value of
i(q).

 Same competitive ratio (1-1/e).

38

