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 Spamming = any deliberate action intended 
solely to boost a Web page’s position in search-
engine results. 

 Web Spam = Web pages that are the result of 
spamming. 

 SEO industry might disagree! 
 SEO = search engine optimization 



 Boosting techniques. 

 Techniques for making a Web page appear to be a 
good response to a search query. 

 Hiding techniques. 

 Techniques to hide the use of boosting from humans 
and Web crawlers. 



 Term spamming. 

 Manipulating the text of web pages in order to 
appear relevant to queries. 

 Link spamming. 

 Creating link structures that boost PageRank. 



 Repetition of terms, e.g., “Viagra,” in order to 
subvert TF.IDF-based rankings. 

 Dumping = adding large numbers of words to 
your page. 

 Example: run the search query you would like your 
page to match, and add copies of the top 10 pages. 

 Example: add a dictionary, so you match every 
search query. 

 Key hiding technique: words are hidden by giving 
them the same color as the background. 
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 PageRank prevents spammers from using term 
spam to fool a search engine. 

 While spammers can still use the techniques, they 
cannot get a high-enough PageRank to be in the top 
10. 

 Spammers now attempt to fool PageRank with 
link spam by creating structures on the Web, 
called spam farms,  that increase the PageRank 
of undeserving pages. 
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 Three kinds of Web pages from a spammer’s 
point of view: 

1. Own pages. 

 Completely controlled by spammer. 

2. Accessible pages. 

 E.g., Web-log comment pages: spammer can post 
links to his pages. 

 “I totally agree with you.  Here’s what I wrote about the 
subject at www.MySpamPage.com.” 

3. Inaccessible pages. 

 Everything else. 
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 Spammer’s goal: 

 Maximize the PageRank of target page t. 

 Technique: 

1. Get as many links as possible from accessible pages  
to target page t. 

 Note: if there are none at all, then search engines will not 
even be aware of the existence of page t. 

2. Construct a spam farm to get a PageRank-
multiplier effect. 
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Goal: boost PageRank of page t. 
Here is one of the most common and 
effective organizations for a spam farm. 

Note links are 2-way. 
Page t links to all M 
pages and they link 
back. 
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Suppose rank from accessible pages = x (known). 
PageRank of target page = y (unknown). 
Taxation rate = 1-b. 
Rank of each “farm” page = by/M + (1-b)/N. 
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From t; M = number 
of farm pages 

Share of “tax”; 
N = size of the Web. 
Total PageRank = 1. 
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y = x + bM[by/M + (1-b)/N] + (1-b)/N 
y = x + b2y + b(1-b)M/N 
y = x/(1-b2) + cM/N where c = b/(1+b) 
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Tax share 
for t. 
Very small; 
ignore. 

PageRank of 
each “farm” page 
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 y = x/(1-b2) + cM/N where c = b/(1+b). 
 For b = 0.85, 1/(1-b2)= 3.6. 

 Multiplier effect for “acquired” page rank. 

 By making M large, we can make y almost as 
large as we want. 
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Question for Thought: 
What if b = 1 (i.e., no tax)? 

Average page has 
PageRank 1/N. c is 
about ½, so this term 
gives you M/2 times 
as much PageRank 
as average. 



 If you design your spam farm just as was 
described, Google will notice it and drop it from 
the Web. 

 More complex designs might be undetected, 
although SEO innovations are tracked by Google 
et al. 

 Fortunately, there are other techniques for 
combatting spam that do not rely on direct 
detection of spam farms. 
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 Topic-specific PageRank, with a set of “trusted” 
pages as the teleport set is called TrustRank. 

 Spam Mass =                                            
(PageRank – TrustRank)/PageRank. 

 High spam mass means most of your PageRank 
comes from untrusted sources – you may be link-
spam. 
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 Two conflicting considerations: 

 Human may have to inspect each trusted page, so 
this set should be as small as possible. 

 Must ensure every “good page” gets adequate 
TrustRank, so all good pages should be reachable 
from the trusted set by short paths. 

 Implies that the trusted set must be geographically diverse, 
hence large. 
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1. Pick the top k pages by PageRank. 

 It is almost impossible to get a spam page to the 
very top of the PageRank order. 

2. Pick the home pages of universities. 

 Domains like .edu are controlled. 

 Notice that both these approaches avoid the 
requirement for human intervention. 





 Google computes the PageRank of a trillion 
pages (at least!). 

 The PageRank vector of double-precision reals 
requires 8 terabytes. 

 And another 8 terabytes for the next estimate of 
PageRank. 
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 The matrix of the Web has two special 
properties: 

1. It is very sparse: the average Web page has about 
10 out-links. 

2. Each column has a single value – 1 divided by the 
number of out-links – that appears wherever that 
column is not 0. 
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 Trick: for each column, store n = the number of 
out-links and a list of the rows with nonzero 
values (which must be 1/n). 

 Thus, the matrix of the Web requires at least 
(4*1+8*10)*1012 = 84 terabytes. 
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Integer n Average 10 links/column, 
8 bytes per row number.  



 Divide the current and next PageRank vectors 
into k stripes of equal size. 

 Each stripe is the components in some consecutive 
rows. 

 Divide the matrix into squares whose sides are 
the same length as one of the stripes. 

 Pick k large enough to fit a stripe of each vector 
and in main memory at the same time. 

 Note: We also need a block of the matrix, but that 
can be piped through main memory and won’t use 
that much memory at any time. 
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w1 
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w3 

v1 
 

v2 
 

v3 

M11 M12 M13 
 

M21 M22 M23 
 

M31 M32 M33 

= 

At one time, we need wi, vj, and (part of) Mij in memory. 

Vary v slowest: w1 = M11 v1; w2 = M21 v1; w3 = M31 v1; w1 += M12 v2; 
w2 += M22 v2; w3 += M32 v2; w1 += M13 v3; w2 += M23 v3; w3 += M33 v3 



 Each column of a block is represented by: 

1. The number n of nonzero elements in the entire 
column of the matrix (i.e., the total number of out-
links for the corresponding Web page). 

2. The list of rows of that block only that have 
nonzero values (which must be 1/n). 

 I.e., for each column, we store n with each of 
the k blocks and each out-link with whatever 
block has the row to which the link goes. 
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 Total space to represent the matrix = 
(4*k+8*10)*1012 = 4k+80 terabytes. 
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Integer n for a 
column is represented 
in each of k blocks. 
Possible savings: if a 
block has all 0’s in a 
column, then n is not 
needed. 

Average 10 links/column, 
8 bytes per row number, 
spread over k blocks.  



 We are not just multiplying a matrix and a 
vector. 

 We need to multiply the result by a constant to 
reflect the “taxation.” 

 We need to add a constant to each component 
of the result w. 

 Neither of these changes are hard to do. 

 After computing each component wi of w, multiply 
by b and then add (1-b)/N. 
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 The strategy described can be executed on a 
single machine. 

 But who would want to? 
 There is a simple MapReduce algorithm to 

perform matrix-vector multiplication. 

 But since the matrix is sparse, better to treat it as a 
relational join. 
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 Another approach is to use many jobs, each to 
multiply a row of matrix blocks by the entire v. 

 Use main memory to hold the one stripe of w 
that will be produced. 

 Read one stripe of v into main memory at a time. 
 Read the block of M that needs to multiply the 

current stripe of v, a tiny bit at a time. 
 Works as long as k is large enough that stripes 

(but not blocks) fit in memory. 
 M read once; v read k times, among all the jobs. 

 OK, because M is much larger than v. 
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Main Memory for job i 

wi v1 

Mi1 
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Main Memory for job i 

wi v2 

Mi2 
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Main Memory for job i 

wi vj 

Mij 





 Unlike the similarity based on a distance 
measure that we discussed with regard to LSH, 
we may wish to look for entities that play 
similar roles in a complex network. 

 Example: Nodes represent students and classes; 
find students with similar interests, classes on 
similar subjects. 
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Gus 

CS246 

Ann 

Sue 

Joe 

CS229 

Ma55 



 Intuition: 

1. An entity is similar to itself. 

2. If two entities A and B are similar, then that is 
some evidence that entities C and D connected to 
A and B, respectively, are similar. 
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Gus 
CS246 

Ann 

Sue 

Joe 

CS229 

Ma55 

Ann 
CS246,
CS229 

Gus, 
Ann 

Gus, 
Sue 

Gus, 
Joe 

Three 
others 

CS246,
Ma55 



 You can run Topic-Sensitive PageRank on such a 
graph, with the nodes representing single 
entities as the teleport set. 

 Resulting PageRank of a node measures how 
similar the two entities are. 

 A high tax rate may be appropriate, or else you 
conclude things like CS246 is similar to Hist101. 

 Problem: Using node pairs squares the number 
of nodes. 

 Can be too large, even for university-sized data. 
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 Another approach is to work from the original 
network. 

 Treat undirected edges as arcs or links in both 
directions. 

 Find the entities similar to a single entity, which 
becomes the sole member of the teleport set. 

 Example: “Who is similar to Sue?” on next 
slides. 
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.400 
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.267 



43 

Gus 

CS246 

Ann 

Sue 

Joe 

CS229 

Ma55 

.253 
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