
Jeffrey D. Ullman
Stanford University

 Spamming = any deliberate action intended
solely to boost a Web page’s position in search-
engine results.

 Web Spam = Web pages that are the result of
spamming.

 SEO industry might disagree!
 SEO = search engine optimization

 Boosting techniques.

 Techniques for making a Web page appear to be a
good response to a search query.

 Hiding techniques.

 Techniques to hide the use of boosting from humans
and Web crawlers.

 Term spamming.

 Manipulating the text of web pages in order to
appear relevant to queries.

 Link spamming.

 Creating link structures that boost PageRank.

 Repetition of terms, e.g., “Viagra,” in order to
subvert TF.IDF-based rankings.

 Dumping = adding large numbers of words to
your page.

 Example: run the search query you would like your
page to match, and add copies of the top 10 pages.

 Example: add a dictionary, so you match every
search query.

 Key hiding technique: words are hidden by giving
them the same color as the background.

6

 PageRank prevents spammers from using term
spam to fool a search engine.

 While spammers can still use the techniques, they
cannot get a high-enough PageRank to be in the top
10.

 Spammers now attempt to fool PageRank with
link spam by creating structures on the Web,
called spam farms, that increase the PageRank
of undeserving pages.

8

9

 Three kinds of Web pages from a spammer’s
point of view:

1. Own pages.

 Completely controlled by spammer.

2. Accessible pages.

 E.g., Web-log comment pages: spammer can post
links to his pages.

 “I totally agree with you. Here’s what I wrote about the
subject at www.MySpamPage.com.”

3. Inaccessible pages.

 Everything else.

10

 Spammer’s goal:

 Maximize the PageRank of target page t.

 Technique:

1. Get as many links as possible from accessible pages
to target page t.

 Note: if there are none at all, then search engines will not
even be aware of the existence of page t.

2. Construct a spam farm to get a PageRank-
multiplier effect.

11

Inaccessible

t

Accessible Own

1

2

M

Goal: boost PageRank of page t.
Here is one of the most common and
effective organizations for a spam farm.

Note links are 2-way.
Page t links to all M
pages and they link
back.

12

Suppose rank from accessible pages = x (known).
PageRank of target page = y (unknown).
Taxation rate = 1-b.
Rank of each “farm” page = by/M + (1-b)/N.

Inaccessible

t

Accessible Own

1
2

M

From t; M = number
of farm pages

Share of “tax”;
N = size of the Web.
Total PageRank = 1.

13

y = x + bM[by/M + (1-b)/N] + (1-b)/N
y = x + b2y + b(1-b)M/N
y = x/(1-b2) + cM/N where c = b/(1+b)

Inaccessible

t

Accessible Own

1
2

M

Tax share
for t.
Very small;
ignore.

PageRank of
each “farm” page

14

 y = x/(1-b2) + cM/N where c = b/(1+b).
 For b = 0.85, 1/(1-b2)= 3.6.

 Multiplier effect for “acquired” page rank.

 By making M large, we can make y almost as
large as we want.

Inaccessible

t

Accessible Own

1
2

M

Question for Thought:
What if b = 1 (i.e., no tax)?

Average page has
PageRank 1/N. c is
about ½, so this term
gives you M/2 times
as much PageRank
as average.

 If you design your spam farm just as was
described, Google will notice it and drop it from
the Web.

 More complex designs might be undetected,
although SEO innovations are tracked by Google
et al.

 Fortunately, there are other techniques for
combatting spam that do not rely on direct
detection of spam farms.

15

16

 Topic-specific PageRank, with a set of “trusted”
pages as the teleport set is called TrustRank.

 Spam Mass =
(PageRank – TrustRank)/PageRank.

 High spam mass means most of your PageRank
comes from untrusted sources – you may be link-
spam.

17

 Two conflicting considerations:

 Human may have to inspect each trusted page, so
this set should be as small as possible.

 Must ensure every “good page” gets adequate
TrustRank, so all good pages should be reachable
from the trusted set by short paths.

 Implies that the trusted set must be geographically diverse,
hence large.

18

1. Pick the top k pages by PageRank.

 It is almost impossible to get a spam page to the
very top of the PageRank order.

2. Pick the home pages of universities.

 Domains like .edu are controlled.

 Notice that both these approaches avoid the
requirement for human intervention.

 Google computes the PageRank of a trillion
pages (at least!).

 The PageRank vector of double-precision reals
requires 8 terabytes.

 And another 8 terabytes for the next estimate of
PageRank.

20

 The matrix of the Web has two special
properties:

1. It is very sparse: the average Web page has about
10 out-links.

2. Each column has a single value – 1 divided by the
number of out-links – that appears wherever that
column is not 0.

21

 Trick: for each column, store n = the number of
out-links and a list of the rows with nonzero
values (which must be 1/n).

 Thus, the matrix of the Web requires at least
(4*1+8*10)*1012 = 84 terabytes.

22

Integer n Average 10 links/column,
8 bytes per row number.

 Divide the current and next PageRank vectors
into k stripes of equal size.

 Each stripe is the components in some consecutive
rows.

 Divide the matrix into squares whose sides are
the same length as one of the stripes.

 Pick k large enough to fit a stripe of each vector
and in main memory at the same time.

 Note: We also need a block of the matrix, but that
can be piped through main memory and won’t use
that much memory at any time.

23

24

w1

w2

w3

v1

v2

v3

M11 M12 M13

M21 M22 M23

M31 M32 M33

=

At one time, we need wi, vj, and (part of) Mij in memory.

Vary v slowest: w1 = M11 v1; w2 = M21 v1; w3 = M31 v1; w1 += M12 v2;
w2 += M22 v2; w3 += M32 v2; w1 += M13 v3; w2 += M23 v3; w3 += M33 v3

 Each column of a block is represented by:

1. The number n of nonzero elements in the entire
column of the matrix (i.e., the total number of out-
links for the corresponding Web page).

2. The list of rows of that block only that have
nonzero values (which must be 1/n).

 I.e., for each column, we store n with each of
the k blocks and each out-link with whatever
block has the row to which the link goes.

25

 Total space to represent the matrix =
(4*k+8*10)*1012 = 4k+80 terabytes.

26

Integer n for a
column is represented
in each of k blocks.
Possible savings: if a
block has all 0’s in a
column, then n is not
needed.

Average 10 links/column,
8 bytes per row number,
spread over k blocks.

 We are not just multiplying a matrix and a
vector.

 We need to multiply the result by a constant to
reflect the “taxation.”

 We need to add a constant to each component
of the result w.

 Neither of these changes are hard to do.

 After computing each component wi of w, multiply
by b and then add (1-b)/N.

27

 The strategy described can be executed on a
single machine.

 But who would want to?
 There is a simple MapReduce algorithm to

perform matrix-vector multiplication.

 But since the matrix is sparse, better to treat it as a
relational join.

28

 Another approach is to use many jobs, each to
multiply a row of matrix blocks by the entire v.

 Use main memory to hold the one stripe of w
that will be produced.

 Read one stripe of v into main memory at a time.
 Read the block of M that needs to multiply the

current stripe of v, a tiny bit at a time.
 Works as long as k is large enough that stripes

(but not blocks) fit in memory.
 M read once; v read k times, among all the jobs.

 OK, because M is much larger than v.
29

30

Main Memory for job i

wi v1

Mi1

31

Main Memory for job i

wi v2

Mi2

32

Main Memory for job i

wi vj

Mij

 Unlike the similarity based on a distance
measure that we discussed with regard to LSH,
we may wish to look for entities that play
similar roles in a complex network.

 Example: Nodes represent students and classes;
find students with similar interests, classes on
similar subjects.

34

35

Gus

CS246

Ann

Sue

Joe

CS229

Ma55

 Intuition:

1. An entity is similar to itself.

2. If two entities A and B are similar, then that is
some evidence that entities C and D connected to
A and B, respectively, are similar.

36

37

Gus
CS246

Ann

Sue

Joe

CS229

Ma55

Ann
CS246,
CS229

Gus,
Ann

Gus,
Sue

Gus,
Joe

Three
others

CS246,
Ma55

 You can run Topic-Sensitive PageRank on such a
graph, with the nodes representing single
entities as the teleport set.

 Resulting PageRank of a node measures how
similar the two entities are.

 A high tax rate may be appropriate, or else you
conclude things like CS246 is similar to Hist101.

 Problem: Using node pairs squares the number
of nodes.

 Can be too large, even for university-sized data.

38

 Another approach is to work from the original
network.

 Treat undirected edges as arcs or links in both
directions.

 Find the entities similar to a single entity, which
becomes the sole member of the teleport set.

 Example: “Who is similar to Sue?” on next
slides.

39

40

Gus

CS246

Ann

Sue

Joe

CS229

Ma55

1.000

41

Gus

CS246

Ann

Sue

Joe

CS229

Ma55

.200

.400

.400

42

Gus

CS246

Ann

Sue

Joe

CS229

Ma55

.467

.080

.080
.107

.267

43

Gus

CS246

Ann

Sue

Joe

CS229

Ma55

.253

.294

.336
.021

.053

.048

44

Gus

CS246

Ann

Sue

Joe

CS229

Ma55

.407

.112

.131
.109

.207

.008 .019

