PageRank

Random Surfers on the Web Transition Matrix of the Web Dead Ends and Spider Traps Topic-Specific PageRank Hubs and Authorities

Jeffrey D. Ullman Stanford University

Intuition – (1)

- Web pages are important if people visit them a lot.
- But we can't watch everybody using the Web.
- A good surrogate for visiting pages is to assume people follow links randomly.
- Leads to random surfer model:
 - Start at a random page and follow random out-links repeatedly, from whatever page you are at.
 - PageRank = limiting probability of being at a page.

Intuition – (2)

- Solve the recursive equations: "importance of a page = its share of the importance of each of its predecessor pages."
 - Equivalent to the random-surfer definition of PageRank.
- Technically, *importance* = the principal eigenvector of the transition matrix of the Web.
 - A few fixups needed.

Transition Matrix of the Web

- Number the pages 1, 2,....
- Page *i* corresponds to row and column *i*.
 M [*i*, *j*] = 1/*n* if page *j* links to *n* pages, including page *i*; 0 if *j* does not link to *i*.
 - M [i, j] is the probability a surfer will next be at page i if it is now at page j.
 - Or it is the share of *j*'s importance that *i* receives.

Example: Transition Matrix

Suppose page *j* links to 3 pages, including *i* but not *x*.

Called a *stochastic matrix* = "all columns sum to 1."

Random Walks on the Web

- Suppose v is a vector whose i th component is the probability that a random surfer is at page i at a certain time.
- If a surfer chooses a successor page from page *i* at random, the probability distribution for surfers is then given by the vector *Mv*.

Random Walks – (2)

- Starting from any vector **u**, the limit M (M (...M (M **u**) ...)) is the long-term distribution of the surfers.
- The math: limiting distribution = principal eigenvector of M = PageRank.
 - Note: If v is the limit of MM...Mu, then v satisfies the equation v = Mv, so v is an eigenvector of M with eigenvalue 1.

Example: The Web in 1839

Solving The Equations

- Because there are no constant terms, the equations v = Mv do not have a unique solution.
 - Example: doubling each component of solution v yields another solution.
- In Web-sized examples, we cannot solve by Gaussian elimination anyway; we need to use *relaxation* (= iterative solution).

Simulating a Random Walk

- Start with the vector u = [1, 1,..., 1] representing the idea that each Web page is given one unit of *importance*.
 - Note: it is more common to start with each vector element = 1/N, where N is the number of Web pages and to keep the sum of the elements at 1.
 - Question for thought: Why such small values?
- Repeatedly apply the matrix *M* to *u*, allowing the importance to flow like a random walk.
- About 50 iterations is sufficient to estimate the limiting solution.

Example: Iterating Equations

- Equations v = Mv:
 - y = y / 2 + a / 2 a = y / 2 + mm = a / 2

Note: "=" is really "assignment."

У	1	1	5/4	9/8	6/5
a =	1	3/2	1	11/8	 6/5
m	1	1/2	3/4	1/2	3/5

In the Limit ...

The Web Is More Complex Than That

Dead Ends Spider Traps Taxation Policies

Real-World Problems

- Some pages are *dead ends* (have no links out).
 - Such a page causes importance to leak out, or surfers to disappear.
- Other groups of pages are spider traps (all outlinks are within the group).
 - Eventually spider traps absorb all importance; all surfers get stuck in the trap.

Example: Effect of Dead Ends

- Equations v = Mv:
 - y = y /2 + a /2 a = y /2 m = a /2

У	1	1	3/4	5/8	0
a =	1	1/2	1/2	3/8	 0
m	1	1/2	1/4	1/4	0

In the Limit ...

M'soft Becomes Spider Trap

Example: Effect of Spider Trap

- Equations v = Mv:
 - y = y/2 + a/2a = y/2m = a/2 + m

У	1	1	3/4	5/8	0
a =	1	1/2	1/2	3/8	 0
m	1	3/2	7/4	2	3

Microsoft Becomes a Spider Trap

Microsoft Becomes a Spider Trap

Microsoft Becomes a Spider Trap

In the Limit ...

PageRank Solution to Traps, Etc.

- "Tax" each page a fixed percentage at each iteration.
- Add a fixed constant to all pages.
 - Optional but useful: add exactly enough to balance the loss (tax + PageRank of dead ends).
- Models a random walk with a fixed probability of leaving the system, and a fixed number of new surfers injected into the system at each step.
 - Divided equally among all pages.

Example: Microsoft is a Spider Trap; 20% Tax

- Equations v = 0.8(Mv) + 0.2:
 - y = 0.8(y/2 + a/2) + 0.2
 - a = 0.8(y/2) + 0.2
 - m = 0.8(a/2 + m) + 0.2

У	1	1.00	0.84	0.776	7/11
a =	1	0.60	0.60	0.536	 5/11
m	1	1.40	1.56	1.688	21/11

Topic-Specific PageRank

Focusing on Specific Pages Teleport Sets Interpretation as a Random Walk

Topic-Specific Page Rank

- Goal: Evaluate Web pages not just by popularity, but also by relevance to a particular topic, e.g. "sports" or "history."
- Allows search queries to be answered based on interests of the user.
- Example: Search query [jaguar] wants different pages depending on whether you are interested in automobiles, nature, or sports.
 - Might discover interests by browsing history, bookmarks, e.g.

Teleport Sets

- Assume each surfer has a small probability of "teleporting" at any tick.
 - Teleport can go to:
 - 1. Any page with equal probability.
 - As in the "taxation" scheme.
 - 2. A set of "relevant" pages (*teleport set*).
 - For topic-specific PageRank.
- Note: can also inject surfers to compensate for surfers lost at dead ends.
 - Or imagine a surfer always teleports from a dead end.

Example: Topic = Software

- Only Microsoft is in the teleport set.
- Assume 20% "tax."
 - I.e., probability of a teleport is 20%.

Picking the Teleport Set

- 1. One option is to choose the pages belonging to the topic in Open Directory.
- Another option is to "learn," from a training set (which could be Open Directory), the typical words in pages belonging to the topic; use pages heavy in those words as the teleport set.

Application: Link Spam

- Spam farmers create networks of millions of pages designed to focus PageRank on a few undeserving pages.
 - We'll discuss this technology shortly.
- To minimize their influence, use a teleport set consisting of trusted pages only.
 - Example: home pages of universities.

HITS

Hubs Authorities Solving the Implied Recursion

Hubs and Authorities ("HITS")

- Mutually recursive definition:
 - A hub links to many authorities;
 - An *authority* is linked to by many hubs.
- Authorities turn out to be places where information can be found.
 - Example: course home pages.
- Hubs tell where the authorities are.
 - Example: departmental course-listing page.

Transition Matrix A

- HITS uses a matrix A[i, j] = 1 if page i links to page j, 0 if not.
- A^T, the transpose of A, is similar to the PageRank matrix M, but A^T has 1's where M has fractions.
- Also, HITS uses column vectors h and a representing the degrees to which each page is a hub or authority, respectively.
- Computation of h and a is similar to the iterative way we compute PageRank.

Example: H&A Transition Matrix

Using Matrix A for HITS

- Powers of A and A^T have elements whose values grow exponentially with the exponent, so we need scale factors λ and μ.
- Let h and a be column vectors measuring the "hubbiness" and authority of each page.
 Equations: h = λAa; a = μA^Th.
 - Hubbiness = scaled sum of authorities of successor pages (out-links).
 - Authority = scaled sum of hubbiness of predecessor pages (in-links).

Consequences of Basic Equations

- From $\mathbf{h} = \lambda A \mathbf{a}$; $\mathbf{a} = \mu A^T \mathbf{h}$ we can derive:
 - $\mathbf{h} = \lambda \mu A A^T \mathbf{h}$
 - a = λμA^TA a
- Compute h and a by iteration, assuming initially each page has one unit of hubbiness and one unit of authority.
- Technically, these equations let you solve for λμ as well as h and a.
- In practice, you don't fix λµ, but rather scale the result at each iteration.
 - Example: scale to keep largest value at 1.

Scale Doesn't Matter

- Remember: it is only the direction of the vectors, or the relative hubbiness and authority of Web pages that matters.
- As for PageRank, the only reason to worry about scale is so you don't get overflows or underflows in the values as you iterate.

Example: Iterating H&A

$$\mathbf{a} = \mathbf{\lambda} \mathbf{\mu} A^T A \mathbf{a}; \mathbf{h} = \mathbf{\lambda} \mathbf{\mu} A A^T \mathbf{h}$$

	111		1	10		3 2	1		2 3	12
A =	101	A ^T =	: 1	0 1	AAT	= 2 2	0	A ^T A=	1	2 1
	010		1	10		1 0	1		2	12
a(v	vahoo)	=	1	5	24	114		1+V	3	
a(a	imazon)	=	1	4	18	84		2		
a(r	n'soft)	=	1	5	24	114		1+1	3	
h(y	/ahoo)	=	1	6	28	132		1.00	0	
h(a	amazon)	=	1	4	20	96		0.73	5	
h(r	nicrosoft)	=	1	2	8	36		0.26	8	

A Better Way to Solve HITS

- Start with h = [1,1,...,1]; multiply by A^T to get first a; scale so largest component = 1; then multiply by A to get next h, and repeat until approximate convergence.
- You may be tempted to compute AA^T and A^TA first, then iterate multiplication by these matrices, as for PageRank.
- Question for thought: Why was the separate calculations of h and a actually less efficient than the method suggested above.