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 Web pages are important if people visit them a 
lot. 

 But we can’t watch everybody using the Web. 
 A good surrogate for visiting pages is to assume 

people follow links randomly. 
 Leads to random surfer model: 

 Start at a random page and follow random out-links 
repeatedly, from whatever page you are at. 

 PageRank = limiting probability of being at a page. 
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 Solve the recursive equations: “importance of a 
page = its share of the importance of each of its 
predecessor pages.” 

 Equivalent to the random-surfer definition of 
PageRank. 

 Technically, importance = the principal 
eigenvector of the transition matrix of the Web. 

 A few fixups needed. 
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 Number the pages 1, 2,… . 

 Page i corresponds to row and column i. 

 M [i, j] = 1/n if page j links to n pages, 
including page i ; 0 if j does not link to i. 

 M [i, j] is the probability a surfer will next be at 
page i if it is now at page j. 

 Or it is the share of j’s importance that i receives. 
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i 

j 

Suppose page j  links to 3 pages, including i  but not x. 

1/3 
x 

0 

Called a stochastic matrix = 
“all columns sum to 1.” 
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 Suppose v is a vector whose i th component is 
the probability that a random surfer is at page 
i at a certain time. 

 If a surfer chooses a successor page from 
page i at random, the probability distribution 
for surfers is then given by the vector Mv. 
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 Starting from any vector u, the limit                 
M (M (…M (M u ) …)) is the long-term 
distribution of the surfers. 

 The math: limiting distribution = principal 
eigenvector of M = PageRank. 

 Note: If v is the limit of MM…Mu, then v satisfies 
the equation v = Mv, so v is an eigenvector of M 
with eigenvalue 1. 
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Yahoo 

M’soft Amazon 

y   1/2  1/2   0 
a   1/2   0      1 
m   0    1/2   0 

         y    a   m 
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 Because there are no constant terms, the 
equations v = Mv do not have a unique 
solution. 

 Example: doubling each component of solution v 
yields another solution. 

 In Web-sized examples, we cannot solve by 
Gaussian elimination anyway; we need to use 
relaxation (= iterative solution). 
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 Start with the vector u  = [1, 1,…, 1] 
representing the idea that each Web page is 
given one unit of importance. 

 Note: it is more common to start with each vector 
element = 1/N, where N is the number of Web 
pages and to keep the sum of the elements at 1. 

 Question for thought: Why such small values? 

 Repeatedly apply the matrix M to u, allowing 
the importance to flow like a random walk. 

 About 50 iterations is sufficient to estimate 
the limiting solution.  
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 Equations v  = Mv: 

y  = y /2 + a /2 

a  = y /2 + m 

m = a /2 

 

y 
a    = 
m 

1 
1 
1 

1 
3/2 
1/2 

5/4 
 1 
3/4 

9/8 
11/8 
1/2 

6/5 
6/5 
3/5 

. . . 

Note: “=” is 
really “assignment.” 
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 Some pages are dead ends (have no links out). 

 Such a page causes importance to leak out, or 
surfers to disappear. 

 Other groups of pages are spider traps (all out-
links are within the group). 

 Eventually spider traps absorb all importance; all 
surfers get stuck in the trap. 
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Yahoo 

M’soft Amazon 

y   1/2  1/2   0 
a   1/2   0      0 
m   0    1/2   0 

         y    a   m 

A substochastic matrix = 
“all columns sum to at most 1.” 
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 Equations v = Mv: 

y  = y /2 + a /2 

a  = y /2 

m = a /2 

 

y 
a    = 
m 

1 
1 
1 

1 
1/2 
1/2 

3/4 
1/2 
1/4 

5/8 
3/8 
1/4 

0 
0 
0 

. . . 
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Yahoo 

M’soft Amazon 

y   1/2  1/2   0 
a   1/2   0      0 
m   0    1/2   1 

         y    a   m 
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 Equations v = Mv: 

y  = y /2 + a /2 

a  = y /2 

m = a /2 + m 

 

y 
a    = 
m 

1 
1 
1 

1 
1/2 
3/2 

3/4 
1/2 
7/4 

5/8 
3/8 
2 

0 
0 
3 

. . . 
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 “Tax” each page a fixed percentage at each 
iteration. 

 Add a fixed constant to all pages. 

 Optional but useful: add exactly enough to balance 
the loss (tax + PageRank of dead ends). 

 Models a random walk with a fixed probability 
of leaving the system, and a fixed number of 
new surfers injected into the system at each 
step. 

 Divided equally among all pages. 
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 Equations  v = 0.8(Mv) + 0.2: 

y   = 0.8(y/2 + a/2) + 0.2 

a   = 0.8(y/2) + 0.2 

m  = 0.8(a/2 + m) + 0.2 

 

y 
a    = 
m 

1 
1 
1 

1.00 
0.60 
1.40 

0.84 
0.60 
1.56 

0.776 
0.536 
1.688 

  7/11 
  5/11 
21/11 

. . . 

Note: amount injected is chosen to balance 
the tax.  If we started with 1/3 for each rather 
than 1, the 0.2 would be replaced by 0.0667.  
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 Goal: Evaluate Web pages not just by popularity, 
but also by relevance to a particular topic, e.g. 
“sports” or “history.” 

 Allows search queries to be answered based on 
interests of the user. 

 Example: Search query [jaguar] wants different 
pages depending on whether you are interested 
in automobiles, nature, or sports. 

 Might discover interests by browsing history, 
bookmarks, e.g. 
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 Assume each surfer has a small probability of 
“teleporting” at any tick. 

 Teleport can go to: 

1. Any page with equal probability. 

 As in the “taxation” scheme. 

2. A set of “relevant” pages (teleport set). 

 For topic-specific PageRank. 

 Note: can also inject surfers to compensate for 
surfers lost at dead ends. 

 Or imagine a surfer always teleports from a dead 
end. 
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 Only Microsoft is in the teleport set. 
 Assume 20% “tax.” 

 I.e., probability of a teleport is 20%. 
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Yahoo 

M’soft Amazon 

Dr. Who’s 
phone 
booth. 
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1. One option is to choose the pages belonging to 
the topic in Open Directory. 

2. Another option is to “learn,” from a training 
set (which could be Open Directory), the 
typical words in pages belonging to the topic; 
use pages heavy in those words as the teleport 
set. 
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 Spam farmers create networks of millions of 
pages designed to focus PageRank on a few 
undeserving pages. 

 We’ll discuss this technology shortly. 

 To minimize their influence, use a teleport set 
consisting of trusted pages only. 

 Example: home pages of universities. 
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 Mutually recursive definition: 

 A hub links to many authorities; 

 An authority is linked to by many hubs. 

 Authorities turn out to be places where 
information can be found. 

 Example: course home pages. 

 Hubs tell where the authorities are. 

 Example: departmental course-listing page. 
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 HITS uses a matrix A[i, j] = 1 if page i links to 
page j, 0 if not. 

 AT, the transpose of A, is similar to the PageRank 
matrix M, but AT has 1’s where M has fractions. 

 Also, HITS uses column vectors h and a 
representing the degrees to which each page is 
a hub or authority, respectively. 

 Computation of h and a is similar to the 
iterative way we compute PageRank. 
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Yahoo 

M’soft Amazon 

A = 
y     1    1    1 
a     1    0    1 
m   0    1    0 

         y    a   m 
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 Powers of A and AT have elements whose 
values grow exponentially with the exponent, 
so we need scale factors λ and μ. 

 Let h and a be column vectors measuring the 
“hubbiness” and authority of each page. 

 Equations: h = λAa; a = μAT h. 

 Hubbiness = scaled sum of authorities of successor 
pages (out-links). 

 Authority = scaled sum of hubbiness of 
predecessor pages (in-links).  
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 From h = λAa; a = μAT h we can derive: 
 h = λμAAT h 

 a = λμATA a 
 Compute h and a by iteration, assuming 

initially each page has one unit of hubbiness 
and one unit of authority. 

 Technically, these equations let you solve for 
λμ as well as h and a. 

 In practice, you don’t fix λμ, but rather scale 
the result at each iteration. 
 Example: scale to keep largest value at 1. 



 Remember: it is only the direction of the 
vectors, or the relative hubbiness and authority 
of Web pages that matters. 

 As for PageRank, the only reason to worry 
about scale is so you don’t get overflows or 
underflows in the values as you iterate. 
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         1  1  1 
A =    1  0  1 
           0  1  0 

         1  1  0 
AT =   1  0  1 
           1  1  0 

           3  2  1 
AAT=   2  2  0 
             1   0  1 

           2  1  2 
ATA=    1  2  1 
              2  1  2 

a(yahoo) 
a(amazon) 
a(m’soft) 

= 
= 
= 

1 
1 
1 

5 
4 
5 

24 
18 
24 

114 
  84 
114 

. . . 

. . . 

. . . 

1+3 
2 
1+3 

h(yahoo)               =            1 
h(amazon)           =            1 
h(microsoft)        =            1 

6 
4 
2 

132 
  96 
  36 

. . . 

. . . 

. . . 

1.000 
0.735 
0.268 

28 
20 
  8 

a = λμATA a; h = λμAAT h 
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 Start with h = [1,1,…,1]; multiply by AT  to get 
first a; scale so largest component = 1; then 
multiply by A to get next h, and repeat until 
approximate convergence. 

 You may be tempted to compute AAT and ATA 
first, then iterate multiplication by these 
matrices, as for PageRank. 

 Question for thought: Why was the separate 
calculations of h and a actually less efficient 
than the method suggested above. 


