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 The entity-resolution problem is to examine a 
collection of records and determine which refer 
to the same entity. 

 Entities could be people, events, etc. 

 Typically, we want to merge records if their 
values in corresponding fields are similar. 
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 I once took a consulting job solving the 
following problem: 

 Company A agreed to solicit customers for Company 
B, for a fee. 

 They then argued over how many customers. 

 Neither recorded exactly which customers were 
involved. 
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 Each company had about 1 million records 
describing customers that might have been 
sent from A to B. 

 Records had name, address, and phone, but for 
various reasons, they could be different for the 
same person. 

 E.g., misspellings, but there are many sources of 
error. 



6 

 Problem: (1 million)2 is too many pairs of 
records to score. 

 Solution: A simple LSH. 

 Three hash functions: exact values of name, 
address, phone. 

 Compare iff records are identical in at least one. 

 Misses similar records with a small differences in 
all three fields. 
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 Design a measure (“score ”) of how similar 
records are: 

 E.g., deduct points for small misspellings (“Jeffrey” 
vs. “Jeffery”) or same phone with different area 
code. 

 Score all pairs of records that the LSH scheme 
identified as candidates; report high scores as 
matches. 
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 Problem: How do we hash strings such as 
names so there is one bucket for each string? 

 Answer: Sort the strings instead. 
 Another option was to use a few million 

buckets, and deal with buckets that contain 
several different strings. 
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 We were able to tell what values of the scoring 
function were reliable in an interesting way. 

 Identical records had an average creation-date 
difference of 10 days. 

 We only looked for records created within 90 
days of each other, so bogus matches had a 45-
day average difference in creation dates. 
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 By looking at the pool of matches with a fixed 
score, we could compute the average time-
difference, say x, and deduce that fraction    
(45-x)/35 of them were valid matches. 

 Alas, the lawyers didn’t think the jury would 
understand. 
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 Any field not used in the LSH could have been 
used to validate, provided corresponding values 
were closer for true matches than false. 

 Example: if records had a height field, we would 
expect true matches to be close, false matches 
to have the average difference for random 
people. 
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 The Political-Science Dept. at Stanford asked a 
team from CS to help them with the problem of 
identifying duplicate, on-line news articles. 

 Problem: the same article, say from the 
Associated Press, appears on the Web site of 
many newspapers, but looks quite different.  



14 

 Each newspaper surrounds the text of the 
article with: 

 It’s own logo and text. 

 Ads. 

 Perhaps links to other articles. 

 A newspaper may also “crop” the article (delete 
parts). 
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 The team came up with its own solution, that 
included shingling, but not minhashing or 
LSH. 

 A special way of shingling that appears quite good 
for this application. 

 LSH substitute: candidates are articles of similar 
length. 
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 I told them the story of minhashing + LSH. 
 They implemented it and found it faster for 

similarities below 80%. 

 Aside: That’s no surprise.  When the similarity 
threshold is high, there are better methods – see 
Sect. 3.9 of MMDS and/or YouTube videos 8-4, 8-5, 
and 8-6. 
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 Their first attempt at minhashing was very 
inefficient. 

 They were unaware of the importance of 
doing the minhashing row-by-row. 

 Since their data was column-by-column, 
they needed to sort once before 
minhashing. 
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 The team observed that news articles have a lot 
of stop words, while ads do not. 

 “Buy Sudzo” vs.  “I recommend that you buy Sudzo 
for your laundry.” 

 They defined a shingle to be a stop word and 
the next two following words. 
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 By requiring each shingle to have a stop word, 
they biased the mapping from documents to 
shingles so it picked more shingles from the 
article than from the ads. 

 Pages with the same article, but different ads, 
have higher Jaccard similarity than those with 
the same ads, different articles. 
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 Generalized LSH is based on some kind of 
“distance” between points. 

 Similar points are “close.” 

 Example: Jaccard similarity is not a distance; 1 
minus Jaccard similarity is. 
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 d  is a distance measure if it is a function from 
pairs of points to real numbers such that: 

1. d(x,y) > 0.  

2. d(x,y) = 0 iff x = y. 

3. d(x,y) = d(y,x). 

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality). 
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 L2 norm: d(x,y) = square root of the sum of the 
squares of the differences between x  and y  in 
each dimension. 

 The most common notion of “distance.” 

 L1 norm: sum of the differences in each 
dimension. 

 Manhattan distance = distance if you had to travel 
along coordinates only. 
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a = (5,5) 

b = (9,8) 
L2-norm: 
dist(a,b) = 
(42+32) 
= 5 

L1-norm: 
dist(a,b) = 
4+3 = 7 

4 

3 5 



 People have defined Lr norms for any r, even 
fractional r. 

 What do these norms look like as r gets larger? 
 What if r approaches 0? 
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 Jaccard distance for sets = 1 minus Jaccard 
similarity. 

 Cosine distance for vectors = angle between the 
vectors. 

 Edit distance for strings = number of inserts 
and deletes to change one string into another. 
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 Consider x = {1,2,3,4} and y = {1,3,5} 
 Size of intersection = 2; size of union = 5, 

Jaccard similarity (not distance) = 2/5. 
 d(x,y) = 1 – (Jaccard similarity) = 3/5. 
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 d(x,y) > 0 because |xy| < |xy|. 

 Thus, similarity < 1 and distance = 1 – similarity > 0. 

 d(x,x) = 0 because xx = xx. 
 And if x  y, then |xy| is strictly less than 

|xy|, so sim(x,y) < 1; thus d(x,y) > 0.  
 d(x,y) = d(y,x) because union and intersection 

are symmetric. 
 d(x,y) < d(x,z) + d(z,y) trickier – next slide. 
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1 - |x z| + 1 - |y z| > 1  -|x y| 
      |x z|         |y z|          |x y| 
 Remember: |a b|/|a b| = probability that 

minhash(a) = minhash(b). 
 Thus, 1 - |a b|/|a b| = probability that 

minhash(a)  minhash(b). 
 Need to show: prob[minhash(x)  minhash(y)] 

< prob[minhash(x)  minhash(z)] + 
prob[minhash(z)  minhash(y)] 

d(x,z) d(x,y) d(z,y) 
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 Whenever minhash(x)  minhash(y), at least one 
of minhash(x)  minhash(z) and minhash(z)  
minhash(y) must be true. 

minhash(x)  minhash(z) minhash(z)  minhash(y) 

minhash(x)  
minhash(y
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 Think of a point as a vector from the origin 
[0,0,…,0] to its location. 

 Two points’ vectors make an angle, whose 
cosine is the normalized dot-product of the 
vectors: p1.p2/|p2||p1|. 

 Example: p1 = [1,0,2,-2,0]; p2 = [0,0,3,0,0]. 

 p1.p2 = 6; |p1| = |p2| = 9 = 3. 

 cos() = 6/9;  is about 48 degrees. 
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 The edit distance of two strings is the number 
of inserts and deletes of characters needed to 
turn one into the other. 

 An equivalent definition: d(x,y) = |x| + |y| - 
2|LCS(x,y)|. 

 LCS = longest common subsequence = any longest 
string obtained both by deleting from x and deleting 
from y. 
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 x = abcde ; y = bcduve. 
 Turn x into y by deleting a, then inserting u and 

v after d. 

 Edit distance = 3. 

 Or, computing edit distance through the LCS, 
note that LCS(x,y) = bcde. 

 Then:|x| + |y| - 2|LCS(x,y)| = 5 + 6 –2*4 = 3 = 
edit distance. 

 Question for thought: An example of two 
strings with two different LCS’s? 

 Hint: let one string be ab. 





 There is a subtlety about what a “hash 
function” is, in the context of LSH families. 

 A hash function h really takes two elements x 
and y, and returns a decision whether x and y 
are candidates for comparison. 

 Example: the family of minhash functions 
computes minhash values and says “yes” iff 
they are the same. 

 Shorthand: “h(x) = h(y)” means h says “yes” for 
pair of elements x and y. 

35 
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 Suppose we have a space S of points with a 
distance measure d. 

 A family H of hash functions is said to be 
(d1,d2,p1,p2)-sensitive if for any x and y in S: 

1. If d(x,y) < d1, then the probability over all h in H, 
that h(x) = h(y) is at least p1. 

2. If d(x,y) > d2, then the probability over all h in H, 
that h(x) = h(y) is at most p2. 



37 

d1 d2 

High 
probability; 
at least p1 

Low 
probability; 
at most p2 

??? 

p1 

p2 



38 

 Let: 

 S = subsets of some universal set, 

 d = Jaccard distance, 

 H formed from the minhash functions for all 
permutations of the universal set. 

 Then Prob[h(x)=h(y)] = 1-d(x,y). 

 Restates theorem about Jaccard similarity and 
minhashing in terms of Jaccard distance. 
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 Claim: H is a (1/3, 3/4, 2/3, 1/4)-sensitive family 
for S and d. 

If distance < 1/3 
(so similarity > 2/3) 

Then probability 
that minhash values 
agree is > 2/3 

For Jaccard similarity, minhashing gives us a  
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1 < d2. 
 

If distance > 3/4 
(so similarity < 1/4) 

Then probability 
that minhash values 
agree is < 1/4 
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 The “bands” technique we learned for signature 
matrices carries over to this more general 
setting. 

 Goal: the “S-curve” effect seen there. 

 AND construction like “rows in a band.” 
 OR construction like “many bands.” 
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 Given family H, construct family H’ whose 
members each consist of r functions from H. 

 For h = {h1,…,hr} in H’, h(x)=h(y) if and only if 
hi(x)=hi(y) for all i. 

 Theorem: If H is (d1,d2,p1,p2)-sensitive, then 

H’ is (d1,d2,(p1)r,(p2)r)-sensitive. 

 Proof: Use fact that hi ’s are independent. 

Lowers probability for 
large distances (Good) 

Also lowers probability 
for small distances (Bad) 
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 Given family H, construct family H’ whose 
members each consist of b functions from H. 

 For h = {h1,…,hb} in H’, h(x)=h(y) if and only if 
hi(x)=hi(y) for some i. 

 Theorem: If H is (d1,d2,p1,p2)-sensitive, then 

H’ is (d1,d2,1-(1-p1)b,1-(1-p2)b)-sensitive. 

Raises probability for 
small distances (Good) 

Raises probability for 
large distances (Bad) 
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 By choosing b and r correctly, we can make the 
lower probability approach 0 while the higher 
approaches 1. 

 As for the signature matrix, we can use the AND 
construction followed by the OR construction. 

 Or vice-versa. 

 Or any sequence of AND’s and OR’s alternating. 



44 

 Each of the two probabilities p is transformed 
into 1-(1-pr)b. 

 The “S-curve” studied before. 

 Example: Take H and construct H’ by the AND 
construction with r = 4.  Then, from H’, 
construct H’’ by the OR construction with b = 4. 
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p 1-(1-p4)4 

.2 .0064 

.3 .0320 

.4 .0985 

.5 .2275 

.6 .4260 

.7 .6666 

.8 .8785 

.9 .9860 

Example: Transforms a 
(.2,.8,.8,.2)-sensitive 
family into a 
(.2,.8,.8785,.0064)- 
sensitive family. 
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 Each of the two probabilities p is transformed 
into (1-(1-p)b)r. 

 The same S-curve, mirrored horizontally and 
vertically. 

 Example: Take H and construct H’ by the OR 
construction with b = 4.  Then, from H’, 
construct H’’ by the AND construction with r = 
4. 
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p (1-(1-p)4)4 

.1 .0140 

.2 .1215 

.3 .3334 

.4 .5740 

.5 .7725 

.6 .9015 

.7 .9680 

.8 .9936 

Example: Transforms a 
(.2,.8,.8,.2)-sensitive 
family into a 
(.2,.8,.9936,.1215)- 
sensitive family. 
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 Example: Apply the (4,4) OR-AND construction 
followed by the (4,4) AND-OR construction. 

 Transforms a (.2,.8,.8,.2)-sensitive family into a 
(.2,.8,.9999996,.0008715)-sensitive family. 



49 

 For each AND-OR S-curve 1-(1-pr)b, there is a 
threshold t, for which 1-(1-tr)b = t. 

 Above t, high probabilities are increased; below 
t, low probabilities are decreased. 

 You improve the sensitivity as long as the low 
probability is less than t, and the high 
probability is greater than t.  

 Iterate as you like. 

 Similar observation for the OR-AND type of S-
curve: (1-(1-p)b)r. 



Threshold 
       t 

t 
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Probability 
Is lowered 

Probability 
Is raised 

p 
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 For cosine distance, there is a technique 
analogous to minhashing for generating a 

(d1,d2,(1-d1/180),(1-d2/180))-sensitive family 
for any d1 and d2. 

 Called random hyperplanes. 
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 Each vector v determines a hash function hv 
with two buckets. 

 hv(x) = +1 if v.x > 0; hv(x) = -1 if v.x < 0. 
 LS-family H = set of all functions derived from 

any vector v. 
 Claim: Prob[h(x)=h(y)] = 1 – (angle between x 

and y divided by 180). 
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x 

y 

Look in the 
plane of x 
and y. 

Prob[Red case] 
= θ/180 

θ 
Hyperplanes 
(normal to v ) 
for which h(x) 
≠ h(y) 

v 

Hyperplanes 
for which 
h(x) = h(y) 

Note: what is important is that 
hyperplane is outside the angle, 
not that the vector is inside. 
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 Pick some number of vectors, and hash your 
data for each vector. 

 The result is a signature (sketch) of +1’s and      
–1’s that can be used for LSH like the minhash 
signatures for Jaccard distance. 

 But you don’t have to think this way. 
 The existence of the LSH-family is sufficient for 

amplification by AND/OR. 



56 

 We need not pick from among all possible 
vectors v to form a component of a sketch. 

 It suffices to consider only vectors v consisting 
of +1 and –1 components. 


