
Jeffrey D. Ullman
Stanford University

3

 The entity-resolution problem is to examine a
collection of records and determine which refer
to the same entity.

 Entities could be people, events, etc.

 Typically, we want to merge records if their
values in corresponding fields are similar.

4

 I once took a consulting job solving the
following problem:

 Company A agreed to solicit customers for Company
B, for a fee.

 They then argued over how many customers.

 Neither recorded exactly which customers were
involved.

5

 Each company had about 1 million records
describing customers that might have been
sent from A to B.

 Records had name, address, and phone, but for
various reasons, they could be different for the
same person.

 E.g., misspellings, but there are many sources of
error.

6

 Problem: (1 million)2 is too many pairs of
records to score.

 Solution: A simple LSH.

 Three hash functions: exact values of name,
address, phone.

 Compare iff records are identical in at least one.

 Misses similar records with a small differences in
all three fields.

7

 Design a measure (“score ”) of how similar
records are:

 E.g., deduct points for small misspellings (“Jeffrey”
vs. “Jeffery”) or same phone with different area
code.

 Score all pairs of records that the LSH scheme
identified as candidates; report high scores as
matches.

8

 Problem: How do we hash strings such as
names so there is one bucket for each string?

 Answer: Sort the strings instead.
 Another option was to use a few million

buckets, and deal with buckets that contain
several different strings.

9

 We were able to tell what values of the scoring
function were reliable in an interesting way.

 Identical records had an average creation-date
difference of 10 days.

 We only looked for records created within 90
days of each other, so bogus matches had a 45-
day average difference in creation dates.

10

 By looking at the pool of matches with a fixed
score, we could compute the average time-
difference, say x, and deduce that fraction
(45-x)/35 of them were valid matches.

 Alas, the lawyers didn’t think the jury would
understand.

11

 Any field not used in the LSH could have been
used to validate, provided corresponding values
were closer for true matches than false.

 Example: if records had a height field, we would
expect true matches to be close, false matches
to have the average difference for random
people.

13

 The Political-Science Dept. at Stanford asked a
team from CS to help them with the problem of
identifying duplicate, on-line news articles.

 Problem: the same article, say from the
Associated Press, appears on the Web site of
many newspapers, but looks quite different.

14

 Each newspaper surrounds the text of the
article with:

 It’s own logo and text.

 Ads.

 Perhaps links to other articles.

 A newspaper may also “crop” the article (delete
parts).

15

 The team came up with its own solution, that
included shingling, but not minhashing or
LSH.

 A special way of shingling that appears quite good
for this application.

 LSH substitute: candidates are articles of similar
length.

16

 I told them the story of minhashing + LSH.
 They implemented it and found it faster for

similarities below 80%.

 Aside: That’s no surprise. When the similarity
threshold is high, there are better methods – see
Sect. 3.9 of MMDS and/or YouTube videos 8-4, 8-5,
and 8-6.

17

 Their first attempt at minhashing was very
inefficient.

 They were unaware of the importance of
doing the minhashing row-by-row.

 Since their data was column-by-column,
they needed to sort once before
minhashing.

18

 The team observed that news articles have a lot
of stop words, while ads do not.

 “Buy Sudzo” vs. “I recommend that you buy Sudzo
for your laundry.”

 They defined a shingle to be a stop word and
the next two following words.

19

 By requiring each shingle to have a stop word,
they biased the mapping from documents to
shingles so it picked more shingles from the
article than from the ads.

 Pages with the same article, but different ads,
have higher Jaccard similarity than those with
the same ads, different articles.

21

 Generalized LSH is based on some kind of
“distance” between points.

 Similar points are “close.”

 Example: Jaccard similarity is not a distance; 1
minus Jaccard similarity is.

22

 d is a distance measure if it is a function from
pairs of points to real numbers such that:

1. d(x,y) > 0.

2. d(x,y) = 0 iff x = y.

3. d(x,y) = d(y,x).

4. d(x,y) < d(x,z) + d(z,y) (triangle inequality).

23

 L2 norm: d(x,y) = square root of the sum of the
squares of the differences between x and y in
each dimension.

 The most common notion of “distance.”

 L1 norm: sum of the differences in each
dimension.

 Manhattan distance = distance if you had to travel
along coordinates only.

24

a = (5,5)

b = (9,8)
L2-norm:
dist(a,b) =
(42+32)
= 5

L1-norm:
dist(a,b) =
4+3 = 7

4

3 5

 People have defined Lr norms for any r, even
fractional r.

 What do these norms look like as r gets larger?
 What if r approaches 0?

25

26

 Jaccard distance for sets = 1 minus Jaccard
similarity.

 Cosine distance for vectors = angle between the
vectors.

 Edit distance for strings = number of inserts
and deletes to change one string into another.

27

 Consider x = {1,2,3,4} and y = {1,3,5}
 Size of intersection = 2; size of union = 5,

Jaccard similarity (not distance) = 2/5.
 d(x,y) = 1 – (Jaccard similarity) = 3/5.

28

 d(x,y) > 0 because |xy| < |xy|.

 Thus, similarity < 1 and distance = 1 – similarity > 0.

 d(x,x) = 0 because xx = xx.
 And if x  y, then |xy| is strictly less than

|xy|, so sim(x,y) < 1; thus d(x,y) > 0.
 d(x,y) = d(y,x) because union and intersection

are symmetric.
 d(x,y) < d(x,z) + d(z,y) trickier – next slide.

29

1 - |x z| + 1 - |y z| > 1 -|x y|
 |x z| |y z| |x y|
 Remember: |a b|/|a b| = probability that

minhash(a) = minhash(b).
 Thus, 1 - |a b|/|a b| = probability that

minhash(a)  minhash(b).
 Need to show: prob[minhash(x)  minhash(y)]

< prob[minhash(x)  minhash(z)] +
prob[minhash(z)  minhash(y)]

d(x,z) d(x,y) d(z,y)

30

 Whenever minhash(x)  minhash(y), at least one
of minhash(x)  minhash(z) and minhash(z) 
minhash(y) must be true.

minhash(x)  minhash(z) minhash(z)  minhash(y)

minhash(x) 
minhash(y

31

 Think of a point as a vector from the origin
[0,0,…,0] to its location.

 Two points’ vectors make an angle, whose
cosine is the normalized dot-product of the
vectors: p1.p2/|p2||p1|.

 Example: p1 = [1,0,2,-2,0]; p2 = [0,0,3,0,0].

 p1.p2 = 6; |p1| = |p2| = 9 = 3.

 cos() = 6/9;  is about 48 degrees.

32

 The edit distance of two strings is the number
of inserts and deletes of characters needed to
turn one into the other.

 An equivalent definition: d(x,y) = |x| + |y| -
2|LCS(x,y)|.

 LCS = longest common subsequence = any longest
string obtained both by deleting from x and deleting
from y.

33

 x = abcde ; y = bcduve.
 Turn x into y by deleting a, then inserting u and

v after d.

 Edit distance = 3.

 Or, computing edit distance through the LCS,
note that LCS(x,y) = bcde.

 Then:|x| + |y| - 2|LCS(x,y)| = 5 + 6 –2*4 = 3 =
edit distance.

 Question for thought: An example of two
strings with two different LCS’s?

 Hint: let one string be ab.

 There is a subtlety about what a “hash
function” is, in the context of LSH families.

 A hash function h really takes two elements x
and y, and returns a decision whether x and y
are candidates for comparison.

 Example: the family of minhash functions
computes minhash values and says “yes” iff
they are the same.

 Shorthand: “h(x) = h(y)” means h says “yes” for
pair of elements x and y.

35

36

 Suppose we have a space S of points with a
distance measure d.

 A family H of hash functions is said to be
(d1,d2,p1,p2)-sensitive if for any x and y in S:

1. If d(x,y) < d1, then the probability over all h in H,
that h(x) = h(y) is at least p1.

2. If d(x,y) > d2, then the probability over all h in H,
that h(x) = h(y) is at most p2.

37

d1 d2

High
probability;
at least p1

Low
probability;
at most p2

???

p1

p2

38

 Let:

 S = subsets of some universal set,

 d = Jaccard distance,

 H formed from the minhash functions for all
permutations of the universal set.

 Then Prob[h(x)=h(y)] = 1-d(x,y).

 Restates theorem about Jaccard similarity and
minhashing in terms of Jaccard distance.

39

 Claim: H is a (1/3, 3/4, 2/3, 1/4)-sensitive family
for S and d.

If distance < 1/3
(so similarity > 2/3)

Then probability
that minhash values
agree is > 2/3

For Jaccard similarity, minhashing gives us a
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1 < d2.

If distance > 3/4
(so similarity < 1/4)

Then probability
that minhash values
agree is < 1/4

40

 The “bands” technique we learned for signature
matrices carries over to this more general
setting.

 Goal: the “S-curve” effect seen there.

 AND construction like “rows in a band.”
 OR construction like “many bands.”

41

 Given family H, construct family H’ whose
members each consist of r functions from H.

 For h = {h1,…,hr} in H’, h(x)=h(y) if and only if
hi(x)=hi(y) for all i.

 Theorem: If H is (d1,d2,p1,p2)-sensitive, then

H’ is (d1,d2,(p1)r,(p2)r)-sensitive.

 Proof: Use fact that hi ’s are independent.

Lowers probability for
large distances (Good)

Also lowers probability
for small distances (Bad)

42

 Given family H, construct family H’ whose
members each consist of b functions from H.

 For h = {h1,…,hb} in H’, h(x)=h(y) if and only if
hi(x)=hi(y) for some i.

 Theorem: If H is (d1,d2,p1,p2)-sensitive, then

H’ is (d1,d2,1-(1-p1)b,1-(1-p2)b)-sensitive.

Raises probability for
small distances (Good)

Raises probability for
large distances (Bad)

43

 By choosing b and r correctly, we can make the
lower probability approach 0 while the higher
approaches 1.

 As for the signature matrix, we can use the AND
construction followed by the OR construction.

 Or vice-versa.

 Or any sequence of AND’s and OR’s alternating.

44

 Each of the two probabilities p is transformed
into 1-(1-pr)b.

 The “S-curve” studied before.

 Example: Take H and construct H’ by the AND
construction with r = 4. Then, from H’,
construct H’’ by the OR construction with b = 4.

45

p 1-(1-p4)4

.2 .0064

.3 .0320

.4 .0985

.5 .2275

.6 .4260

.7 .6666

.8 .8785

.9 .9860

Example: Transforms a
(.2,.8,.8,.2)-sensitive
family into a
(.2,.8,.8785,.0064)-
sensitive family.

46

 Each of the two probabilities p is transformed
into (1-(1-p)b)r.

 The same S-curve, mirrored horizontally and
vertically.

 Example: Take H and construct H’ by the OR
construction with b = 4. Then, from H’,
construct H’’ by the AND construction with r =
4.

47

p (1-(1-p)4)4

.1 .0140

.2 .1215

.3 .3334

.4 .5740

.5 .7725

.6 .9015

.7 .9680

.8 .9936

Example: Transforms a
(.2,.8,.8,.2)-sensitive
family into a
(.2,.8,.9936,.1215)-
sensitive family.

48

 Example: Apply the (4,4) OR-AND construction
followed by the (4,4) AND-OR construction.

 Transforms a (.2,.8,.8,.2)-sensitive family into a
(.2,.8,.9999996,.0008715)-sensitive family.

49

 For each AND-OR S-curve 1-(1-pr)b, there is a
threshold t, for which 1-(1-tr)b = t.

 Above t, high probabilities are increased; below
t, low probabilities are decreased.

 You improve the sensitivity as long as the low
probability is less than t, and the high
probability is greater than t.

 Iterate as you like.

 Similar observation for the OR-AND type of S-
curve: (1-(1-p)b)r.

Threshold
 t

t

50

Probability
Is lowered

Probability
Is raised

p

52

 For cosine distance, there is a technique
analogous to minhashing for generating a

(d1,d2,(1-d1/180),(1-d2/180))-sensitive family
for any d1 and d2.

 Called random hyperplanes.

53

 Each vector v determines a hash function hv
with two buckets.

 hv(x) = +1 if v.x > 0; hv(x) = -1 if v.x < 0.
 LS-family H = set of all functions derived from

any vector v.
 Claim: Prob[h(x)=h(y)] = 1 – (angle between x

and y divided by 180).

54

x

y

Look in the
plane of x
and y.

Prob[Red case]
= θ/180

θ
Hyperplanes
(normal to v)
for which h(x)
≠ h(y)

v

Hyperplanes
for which
h(x) = h(y)

Note: what is important is that
hyperplane is outside the angle,
not that the vector is inside.

55

 Pick some number of vectors, and hash your
data for each vector.

 The result is a signature (sketch) of +1’s and
–1’s that can be used for LSH like the minhash
signatures for Jaccard distance.

 But you don’t have to think this way.
 The existence of the LSH-family is sufficient for

amplification by AND/OR.

56

 We need not pick from among all possible
vectors v to form a component of a sketch.

 It suffices to consider only vectors v consisting
of +1 and –1 components.

