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Vectors and Matrices

• Vector � ∈ ℝ�

� =
����⋮
��

• May also write

� = �� �� … �� 




Vectors and Matrices

• Matrix � ∈ ℝ�×�

� =
��� ⋯ ���⋮ ⋱ ⋮
��� ⋯ ���

• Written in terms of rows or columns

� =
��
⋮
��


= �� … ��

�� = ��� … ��� 
			�� = ��� … ��� 




Multiplication

• Vector-vector: �, � ∈ ℝ� → ℝ
�
� =�����

�

���
• Matrix-vector: � ∈ ℝ�, � ∈ ℝ�×� → ℝ�
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⋮
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Multiplication

• Matrix-matrix: � ∈ ℝ�×� , � ∈ ℝ�×� → ℝ�×�
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Multiplication

• Matrix-matrix: � ∈ ℝ�×� , � ∈ ℝ�×� → ℝ�×�
–  � rows of �, !" cols of �

�� = �!� … �!� =
 �
�⋮
 �
 �

=
 �
!� ⋯  �
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Multiplication Properties

• Associative

�� # = � �#
• Distributive

� � + # = �� + �#
• NOT commutative

�� ≠ ��
– Dimensions may not even be conformable



Useful Matrices

• Identity matrix & ∈ ℝ�×�
– �& = �, &� = �

1 0 0
0 1 0
0 0 1

									&�" = )0	* ≠ +
1	* = +

• Diagonal matrix � ∈ ℝ�×�

� = diag 0�, … , 0� =
0� ⋯ 0
⋮ 0� ⋮
0 ⋯ 0�



Useful Matrices

• Symmetric � ∈ ℝ�×�: � = �

• Orthogonal 2 ∈ ℝ�×�:

2
2 = 22
 = &
– Columns/ rows are orthonormal

• Positive semidefinite � ∈ ℝ�×�:

�
�� ≥ 0						for	all	� ∈ ℝ�							
– Equivalently, there exists 8 ∈ ℝ�×�

� = 88
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Norms

• Quantify “size” of a vector

• Given � ∈ ℝ�, a norm satisfies

1. 9� = 9 �
2. � = 0 ⇔ � = 0
3. � + � ≤ � + �

• Common norms:

1. Euclidean 8�-norm: � � = ��� +⋯+ ���
2. 8�-norm: � � = �� +⋯+ ��
3. 8<-norm: � < = max� ��



Linear Subspaces



Linear Subspaces

• Subspace ? ⊂ ℝ� satisfies

1. 0 ∈ ?
2. If �, � ∈ ? and 9 ∈ ℝ, then 9 � + � ∈ ?

• Vectors A�, … , A� span ? if

? = �B�A�
�

���
B ∈ ℝ�



Linear Independence and Dimension

• Vectors A�, … , A� are linearly independent if

∑ B�A����� = 0 ⟺ B = 0
– Every linear combination of the A� is unique

• Dim ? = F if A�, … , A� span ? and are 

linearly independent

– If G�, … , G� span ?	then

• H ≥ F
• If H > F then G� are NOT linearly independent



Linear Independence and Dimension



Matrix Subspaces

• Matrix � ∈ ℝ�×� defines two subspaces

– Column space col � = �B B ∈ ℝ� ⊂ ℝ�
– Row space row � = �
L L ∈ ℝ� ⊂ ℝ�

• Nullspace of �: null � = � ∈ ℝ� �� = 0
– null � ⊥ row �
– dim null � + dim row � = P
– Analog for column space



Matrix Rank

• rank � gives dimensionality of row and

column spaces

• If � ∈ ℝ�×� has rank H, can decompose into 

product of F × H and H × P matrices

�
rank = H

=F

P

F
P

H

H



Properties of Rank

• For �, � ∈ ℝ�×�
1. rank � ≤ min F, P
2. rank � = rank �

3. rank �� ≤ min rank � , rank �
4. rank � + � ≤ rank � + rank �

• � has full rank if rank � = min F, P
• If F > rank � rows not linearly independent

– Same for columns if P > rank �
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Matrix Inverse

• � ∈ ℝ�×� is invertible iff rank � = F
• Inverse is unique and satisfies

1. �T�� = ��T� = &
2. �T� T� = �
3. �
 T� = �T� 

4. If � is invertible then �� is invertible and 

�� T� = �T��T�



Systems of Equations

• Given � ∈ ℝ�×�, � ∈ ℝ� wish to solve

�� = �
– Exists only if � ∈ col �

• Possibly infinite number of solutions

• If � is invertible then � = �T��
– Notational device, do not actually invert matrices

– Computationally, use solving routines like 

Gaussian elimination



Systems of Equations

• What if � ∉ col � ?

• Find � that gives �V = �� closest to �
– �V is projection of � onto col �
– Also known as regression

• Assume rank � = P < F
� = �
� T��
�											�V = � �
� T��
�

Invertible Projection 

matrix



Systems of Equations

1 0
2 1

.5
X2.5 = .5

X1.5
X1 1
1 1

X1
X.5 = .5

X1.5



Eigenvalue Decomposition

• Eigenvalue decomposition of symmetric � ∈ ℝ�×� is

� = YΣY
 =�[�\�\�

�

���
– Σ = diag [�, … , [� contains eigenvalues of �	
– Y is orthogonal and contains eigenvectors \� of �

• If � is not symmetric but diagonalizable

� = YΣYT�
– Σ is diagonal by possibly complex

– Y not necessarily orthogonal



Characterizations of Eigenvalues

• Traditional formulation

�� = [�
– Leads to characteristic polynomial

det � X [& = 0
• Rayleigh quotient (symmetric �)

max_
�
��
� ��



Eigenvalue Properties

• For � ∈ ℝ�×� with eigenvalues [�
1. tr � = ∑ [�����
2. det � = [�[�…[�
3. rank � = #[� ≠ 0

• When � is symmetric

– Eigenvalue decomposition is singular value 
decomposition

– Eigenvectors for nonzero eigenvalues give 
orthogonal basis for row � = col �



Simple Eigenvalue Proof

• Why det � − [& = 0?

• Assume � is symmetric and full rank

1. � = YΣY

2. � − [& = YΣY
 − [& = Y Σ − [& Y

3. If [ = [�, *ab eigenvalue of � − [& is 0

4. Since det � − [& is product of eigenvalues, 

one of the terms is 0, so product is 0

YY
 = &
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Convex Optimization

• Find minimum of a function subject to 
solution constraints

• Business/economics/ game theory

– Resource allocation

– Optimal planning and strategies

• Statistics and Machine Learning

– All forms of regression and classification

– Unsupervised learning

• Control theory

– Keeping planes in the air!



Convex Sets

• A set # is convex if ∀�, � ∈ # and ∀B ∈ 0,1
B� + 1 − B � ∈ #

– Line segment between points in # also lies in #
• Ex

– Intersection of halfspaces

– 8d balls

– Intersection of convex sets



Convex Functions

• A real-valued function e is convex if dome is

convex and ∀�, � ∈ dome and ∀B ∈ 0,1
e B� + 1 − B � ≤ Be � + 1 − B e �
– Graph of e upper bounded by line segment 

between points on graph

�, e �

�, e �



Gradients

• Differentiable convex e with dome = ℝ�
• Gradient fe at � gives linear approximation

fe = ge
g�� … ge

g��



e

�

e � + h
fe



Gradients

• Differentiable convex e with dome = ℝ�
• Gradient fe at � gives linear approximation

fe = ge
g�� … ge

g��



e

�

e � + h
fe



Gradient Descent

• To minimize e	move down gradient

– But not too far!

– Optimum when fe = 0
• Given e, learning rate B, starting point �i
� = �i
Do until fe = 0

� = � − Bfe



Stochastic Gradient Descent

• Many learning problems have extra structure

e j =�8 j; A�
�

���
• Computing gradient requires iterating over all 

points, can be too costly

• Instead, compute gradient at single training 

example



Stochastic Gradient Descent

• Given e j = ∑ 8 j; A����� , learning rate B, 

starting point ji
j = ji
Do until e j nearly optimal

For * = 1	to	P in random order

j = j − Bf8 j; A�
• Finds nearly optimal j



Minimize ∑ �� − j
A� �����



Learning Parameter


