Linear Algebra Review (with a Small Dose of Optimization)

Hristo Paskov

CS246

Outline

- Basic definitions
- Subspaces and Dimensionality
- Matrix functions: inverses and eigenvalue decompositions
- Convex optimization

Vectors and Matrices

• Vector $x \in \mathbb{R}^d$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}$$

• May also write

$$x = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}^T$$

Vectors and Matrices

• Matrix $M \in \mathbb{R}^{m \times n}$

$$M = \begin{bmatrix} M_{11} & \cdots & M_{1n} \\ \vdots & \ddots & \vdots \\ M_{m1} & \cdots & M_{mn} \end{bmatrix}$$

• Written in terms of rows or columns

$$M = \begin{bmatrix} \boldsymbol{r}_1^T \\ \vdots \\ \boldsymbol{r}_m^T \end{bmatrix} = \begin{bmatrix} \boldsymbol{c}_1 & \dots & \boldsymbol{c}_n \end{bmatrix}$$

 $r_i = [M_{i1} \quad \dots \quad M_{in}]^T \quad c_i = [M_{1i} \quad \dots \quad M_{mi}]^T$

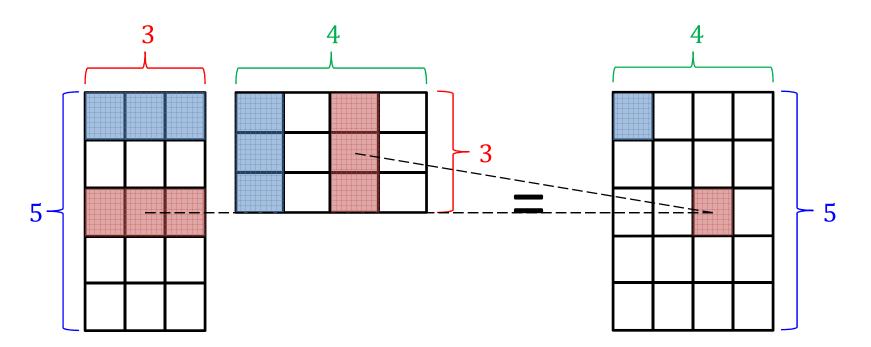
Multiplication

- Vector-vector: $x, y \in \mathbb{R}^d \to \mathbb{R}$ $x^T y = \sum_{i=1}^d x_i y_i$
- Matrix-vector: $x \in \mathbb{R}^n$, $M \in \mathbb{R}^{m \times n} \to \mathbb{R}^m$

$$Mx = \begin{bmatrix} \boldsymbol{r}_1^T \\ \vdots \\ \boldsymbol{r}_m^T \end{bmatrix} x = \begin{bmatrix} \boldsymbol{r}_1^T x \\ \vdots \\ \boldsymbol{r}_m^T x \end{bmatrix}$$

Multiplication

• Matrix-matrix: $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n} \to \mathbb{R}^{m \times n}$



Multiplication

• Matrix-matrix: $A \in \mathbb{R}^{m \times k}$, $B \in \mathbb{R}^{k \times n} \to \mathbb{R}^{m \times n}$ - a_i rows of A, b_j cols of B

$$AB = \begin{bmatrix} A\boldsymbol{b}_1 & \dots & A\boldsymbol{b}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^T B \\ \vdots \\ \boldsymbol{a}_m^T B \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{a}_1^T \boldsymbol{b}_1 & \cdots & \boldsymbol{a}_1^T \boldsymbol{b}_n \\ \vdots & \boldsymbol{a}_i^T \boldsymbol{b}_j & \vdots \\ \boldsymbol{a}_m^T \boldsymbol{b}_1 & \cdots & \boldsymbol{a}_m^T \boldsymbol{b}_n \end{bmatrix}$$

Multiplication Properties

• Associative

$$(AB)C = A(BC)$$

• Distributive

$$A(B+C) = AB + BC$$

• NOT commutative

 $AB \neq BA$

- Dimensions may not even be conformable

Useful Matrices

• Identity matrix $I \in \mathbb{R}^{m \times m}$

$$-AI = A, IA = A$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad I_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

• Diagonal matrix $A \in \mathbb{R}^{m \times m}$

$$A = \operatorname{diag}(a_1, \dots, a_m) = \begin{bmatrix} a_1 & \cdots & 0\\ \vdots & a_i & \vdots\\ 0 & \cdots & a_m \end{bmatrix}$$

Useful Matrices

- Symmetric $A \in \mathbb{R}^{m \times m}$: $A = A^T$
- Orthogonal $U \in \mathbb{R}^{m \times m}$:

$$U^T U = U U^T = I$$

Columns/ rows are orthonormal

- Positive semidefinite $A \in \mathbb{R}^{m \times m}$: $x^T A x \ge 0$ for all $x \in \mathbb{R}^m$
 - Equivalently, there exists $L \in \mathbb{R}^{m \times m}$

$$A = LL^T$$

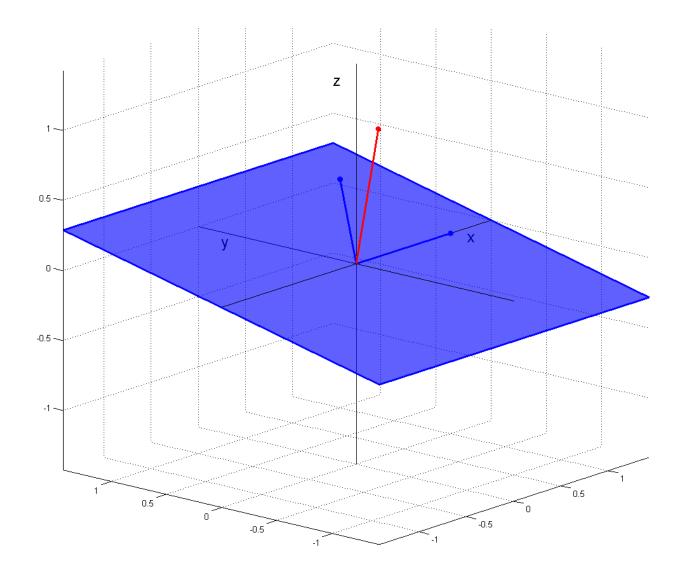
Outline

- Basic definitions
- Subspaces and Dimensionality
- Matrix functions: inverses and eigenvalue decompositions
- Convex optimization

Norms

- Quantify "size" of a vector
- Given $x \in \mathbb{R}^n$, a norm satisfies
 - 1. ||cx|| = |c|||x||
 - $2. ||x|| = 0 \Leftrightarrow x = 0$
 - 3. $||x + y|| \le ||x|| + ||y||$
- Common norms:
 - 1. Euclidean L_2 -norm: $||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$
 - 2. L_1 -norm: $||x||_1 = |x_1| + \dots + |x_n|$
 - 3. L_{∞} -norm: $||x||_{\infty} = \max_{i} |x_{i}|$

Linear Subspaces



Linear Subspaces

- Subspace $\mathcal{V} \subset \mathbb{R}^n$ satisfies
 - 1. $0 \in \mathcal{V}$
 - 2. If $x, y \in \mathcal{V}$ and $c \in \mathbb{R}$, then $c(x + y) \in \mathcal{V}$
- Vectors $\boldsymbol{x}_1, \dots, \boldsymbol{x}_m$ span \mathcal{V} if $\mathcal{V} = \left\{ \sum_{i=1}^m \alpha_i \boldsymbol{x}_i \ \middle| \alpha \in \mathbb{R}^m \right\}$

Linear Independence and Dimension

• Vectors $x_1, ..., x_m$ are linearly independent if $\sum_{i=1}^m \alpha_i x_i = 0 \iff \alpha = 0$

– Every linear combination of the x_i is unique

• $Dim(\mathcal{V}) = m$ if x_1, \dots, x_m span \mathcal{V} and are linearly independent

– If
$$oldsymbol{y}_1,\ldots,oldsymbol{y}_k$$
 span $\mathcal V$ then

- $k \ge m$
- If k > m then y_i are NOT linearly independent

Linear Independence and Dimension

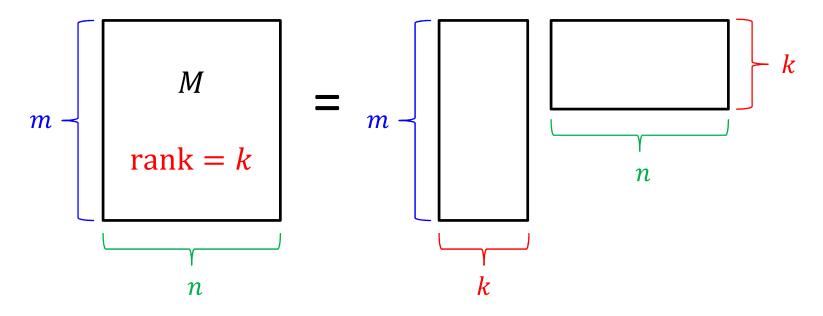


Matrix Subspaces

- Matrix $M \in \mathbb{R}^{m \times n}$ defines two subspaces
 - Column space $col(M) = \{M\alpha | \alpha \in \mathbb{R}^n\} \subset \mathbb{R}^m$
 - Row space row(M) = { $M^T\beta | \beta \in \mathbb{R}^m$ } $\subset \mathbb{R}^n$
- Nullspace of M: null $(M) = \{x \in \mathbb{R}^n | Mx = 0\}$
 - $-\operatorname{null}(M) \perp \operatorname{row}(M)$
 - $-\dim(\operatorname{null}(M)) + \dim(\operatorname{row}(M)) = n$
 - Analog for column space

Matrix Rank

- rank(M) gives dimensionality of row <u>and</u> column spaces
- If $M \in \mathbb{R}^{m \times n}$ has rank k, can decompose into product of $m \times k$ and $k \times n$ matrices



Properties of Rank

- For $A, B \in \mathbb{R}^{m \times n}$
 - 1. $\operatorname{rank}(A) \leq \min(m, n)$
 - 2. rank(A) = rank(A^T)
 - 3. $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$
 - 4. $rank(A + B) \le rank(A) + rank(B)$
- A has full rank if rank(A) = min(m, n)
- If $m > \operatorname{rank}(A)$ rows not linearly independent
 - Same for columns if $n > \operatorname{rank}(A)$

Outline

- Basic definitions
- Subspaces and Dimensionality
- Matrix functions: inverses and eigenvalue decompositions
- Convex optimization

Matrix Inverse

- $M \in \mathbb{R}^{m \times m}$ is invertible iff rank(M) = m
- Inverse is unique and satisfies

1.
$$M^{-1}M = MM^{-1} = I$$

2.
$$(M^{-1})^{-1} = M$$

3.
$$(M^T)^{-1} = (M^{-1})^T$$

4. If A is invertible then MA is invertible and $(MA)^{-1} = A^{-1}M^{-1}$

Systems of Equations

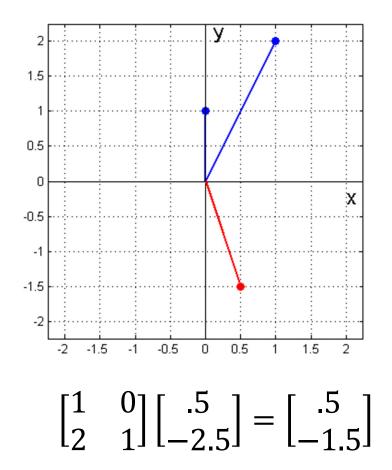
- Given $M \in \mathbb{R}^{m \times n}$, $y \in \mathbb{R}^m$ wish to solve Mx = y
 - Exists only if $y \in col(M)$
 - Possibly infinite number of solutions
- If *M* is invertible then $x = M^{-1}y$
 - Notational device, <u>do not</u> actually invert matrices
 - Computationally, use solving routines like
 Gaussian elimination

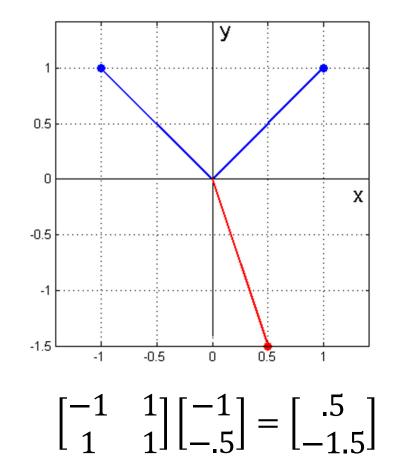
Systems of Equations

- What if $y \notin \operatorname{col}(M)$?
- Find x that gives $\hat{y} = Mx$ closest to y
 - $-\hat{y}$ is projection of y onto col(M)
 - Also known as regression
- Assume rank(M) = n < m

$$x = (M^{T}M)^{-1}M^{T}y \qquad \hat{y} = M(M^{T}M)^{-1}M^{T}y$$
Invertible
Invertible
Projection
matrix

Systems of Equations





Eigenvalue Decomposition

• Eigenvalue decomposition of symmetric $M \in \mathbb{R}^{m \times m}$ is

$$M = Q\Sigma Q^T = \sum_{i=1}^{T} \lambda_i \boldsymbol{q}_i \boldsymbol{q}_i^T$$

 $-\Sigma = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ contains eigenvalues of M

- Q is orthogonal and contains eigenvectors \boldsymbol{q}_i of M
- If *M* is not symmetric but *diagonalizable* $M = Q\Sigma Q^{-1}$
 - $\boldsymbol{\Sigma}$ is diagonal by possibly complex
 - -Q not necessarily orthogonal

Characterizations of Eigenvalues

• Traditional formulation $Mx = \lambda x$

- Leads to characteristic polynomial $det(M - \lambda I) = 0$

• Rayleigh quotient (symmetric *M*) $\max_{x} \frac{x^T M x}{\|x\|_2^2}$

Eigenvalue Properties

• For $M \in \mathbb{R}^{m \times m}$ with eigenvalues λ_i

1.
$$\operatorname{tr}(M) = \sum_{i=1}^{m} \lambda_i$$

2.
$$\det(M) = \lambda_1 \lambda_2 \dots \lambda_m$$

3. rank(
$$M$$
) = # $\lambda_i \neq 0$

- When *M* is symmetric
 - Eigenvalue decomposition is singular value decomposition
 - Eigenvectors for nonzero eigenvalues give orthogonal basis for row(M) = col(M)

Simple Eigenvalue Proof

• Why det
$$(M - \lambda I) = 0$$
?

- Assume *M* is symmetric and full rank
- 1. $M = Q\Sigma Q^T$
- 2. $M \lambda I = Q \Sigma Q^T \lambda I = Q (\Sigma \lambda I) Q^T$
- 3. If $\lambda = \lambda_i$, i^{th} eigenvalue of $M \lambda I$ is 0
- 4. Since det $(M \lambda I)$ is product of eigenvalues, one of the terms is 0, so product is 0

Outline

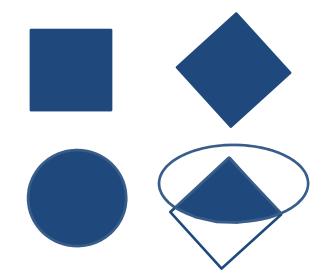
- Basic definitions
- Subspaces and Dimensionality
- Matrix functions: inverses and eigenvalue decompositions
- Convex optimization

Convex Optimization

- Find minimum of a function subject to solution constraints
- Business/economics/ game theory
 - Resource allocation
 - Optimal planning and strategies
- Statistics and Machine Learning
 - All forms of regression and classification
 - Unsupervised learning
- Control theory
 - Keeping planes in the air!

Convex Sets

- A set *C* is convex if $\forall x, y \in C$ and $\forall \alpha \in [0,1]$ $\alpha x + (1 - \alpha)y \in C$
 - Line segment between points in C also lies in C
- Ex
 - Intersection of halfspaces
 - $-L_p$ balls
 - Intersection of convex sets

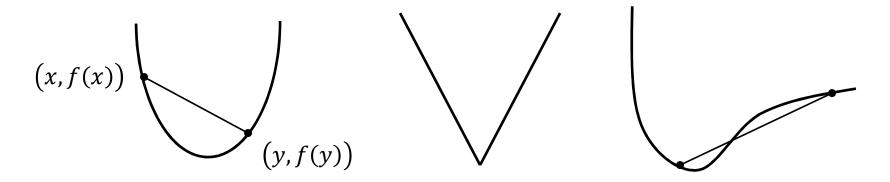


Convex Functions

• A real-valued function f is convex if domf is convex and $\forall x, y \in \text{dom} f$ and $\forall \alpha \in [0,1]$

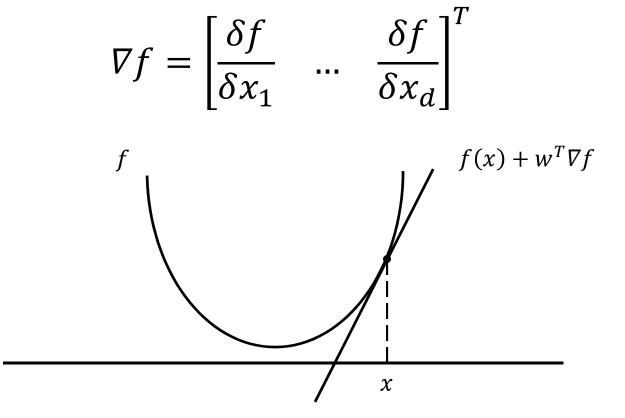
$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Graph of f upper bounded by line segment
 between points on graph



Gradients

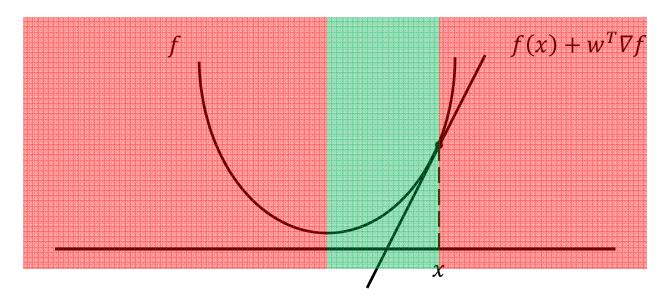
- Differentiable convex f with dom $f = \mathbb{R}^d$
- Gradient ∇f at x gives linear approximation



Gradients

- Differentiable convex f with dom $f = \mathbb{R}^d$
- Gradient ∇f at x gives linear approximation

$$\nabla f = \begin{bmatrix} \frac{\delta f}{\delta x_1} & \dots & \frac{\delta f}{\delta x_d} \end{bmatrix}^T$$



Gradient Descent

- To minimize *f* move down gradient
 - But not too far!
 - Optimum when $\nabla f = 0$
- Given f, learning rate α , starting point x_0 $x = x_0$

Do until $\nabla f = 0$

$$x = x - \alpha \nabla f$$

Stochastic Gradient Descent

- Many learning problems have extra structure $f(\theta) = \sum_{i=1}^{n} L(\theta; \mathbf{x}_i)$
- Computing gradient requires iterating over all points, can be too costly
- Instead, compute gradient at single training example

Stochastic Gradient Descent

• Given $f(\theta) = \sum_{i=1}^{n} L(\theta; \mathbf{x}_i)$, learning rate α , starting point θ_0

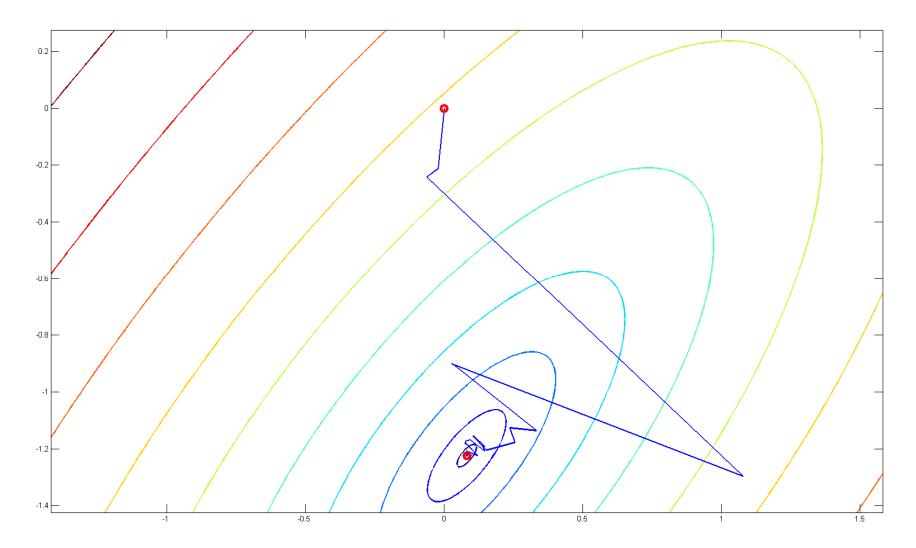
 $\theta = \theta_0$

Do until $f(\theta)$ nearly optimal

For i = 1 to n in random order $\theta = \theta - \alpha \nabla L(\theta; \mathbf{x}_i)$

• Finds nearly optimal θ

Minimize $\sum_{i=1}^{n} (y_i - \theta^T x_i)^2$



Learning Parameter

