Linear Algebra Review
 (with a Small Dose of Optimization)

Hristo Paskov

CS246

Outline

- Basic definitions
- Subspaces and Dimensionality
- Matrix functions: inverses and eigenvalue decompositions
- Convex optimization

Vectors and Matrices

- Vector $x \in \mathbb{R}^{d}$

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right]
$$

- May also write

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right]^{T}
$$

Vectors and Matrices

- Matrix $M \in \mathbb{R}^{m \times n}$

$$
M=\left[\begin{array}{ccc}
M_{11} & \cdots & M_{1 n} \\
\vdots & \ddots & \vdots \\
M_{m 1} & \cdots & M_{m n}
\end{array}\right]
$$

- Written in terms of rows or columns

$$
\begin{gathered}
M=\left[\begin{array}{c}
\boldsymbol{r}_{1}^{T} \\
\vdots \\
\boldsymbol{r}_{m}^{T}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{c}_{1} & \ldots & \boldsymbol{c}_{n}
\end{array}\right] \\
\boldsymbol{r}_{i}=\left[\begin{array}{lll}
M_{i 1} & \ldots & M_{i n}
\end{array}\right]^{T} \boldsymbol{c}_{i}=\left[\begin{array}{lll}
M_{1 i} & \ldots & M_{m i}
\end{array}\right]^{T}
\end{gathered}
$$

Multiplication

- Vector-vector: $x, y \in \mathbb{R}^{d} \rightarrow \mathbb{R}$

$$
x^{T} y=\sum_{i=1}^{d} x_{i} y_{i}
$$

- Matrix-vector: $x \in \mathbb{R}^{n}, M \in \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m}$

$$
M x=\left[\begin{array}{c}
\boldsymbol{r}_{1}^{T} \\
\vdots \\
\boldsymbol{r}_{m}^{T}
\end{array}\right] x=\left[\begin{array}{c}
\boldsymbol{r}_{1}^{T} x \\
\vdots \\
\boldsymbol{r}_{m}^{T} x
\end{array}\right]
$$

Multiplication

- Matrix-matrix: $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n} \rightarrow \mathbb{R}^{m \times n}$

Multiplication

- Matrix-matrix: $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n} \rightarrow \mathbb{R}^{m \times n}$
- \boldsymbol{a}_{i} rows of A, \boldsymbol{b}_{j} cols of B

$$
\begin{aligned}
A B= & {\left[\begin{array}{lll}
A \boldsymbol{b}_{1} & \ldots & A \boldsymbol{b}_{n}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} B \\
\vdots \\
\boldsymbol{a}_{m}^{T} B
\end{array}\right] } \\
& =\left[\begin{array}{ccc}
\boldsymbol{a}_{1}^{T} \boldsymbol{b}_{1} & \ldots & \boldsymbol{a}_{1}^{T} \boldsymbol{b}_{n} \\
\vdots & \boldsymbol{a}_{i}^{T} \boldsymbol{b}_{j} & \vdots \\
\boldsymbol{a}_{m}^{T} \boldsymbol{b}_{1} & \cdots & \boldsymbol{a}_{m}^{T} \boldsymbol{b}_{n}
\end{array}\right]
\end{aligned}
$$

Multiplication Properties

- Associative

$$
(A B) C=A(B C)
$$

- Distributive

$$
A(B+C)=A B+B C
$$

- NOT commutative

$$
A B \neq B A
$$

- Dimensions may not even be conformable

Useful Matrices

- Identity matrix $I \in \mathbb{R}^{m \times m}$

$$
\begin{aligned}
-A I & =A, I A=A \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I_{i j}=\left\{\begin{array}{l}
0 i \neq j \\
1 i=j
\end{array}\right.}
\end{aligned}
$$

- Diagonal matrix $A \in \mathbb{R}^{m \times m}$

$$
A=\operatorname{diag}\left(a_{1}, \ldots, a_{m}\right)=\left[\begin{array}{ccc}
a_{1} & \cdots & 0 \\
\vdots & a_{i} & \vdots \\
0 & \cdots & a_{m}
\end{array}\right]
$$

Useful Matrices

- Symmetric $A \in \mathbb{R}^{m \times m}: A=A^{T}$
- Orthogonal $U \in \mathbb{R}^{m \times m}$:

$$
U^{T} U=U U^{T}=I
$$

- Columns/ rows are orthonormal
- Positive semidefinite $A \in \mathbb{R}^{m \times m}$:

$$
x^{T} A x \geq 0 \quad \text { for all } x \in \mathbb{R}^{m}
$$

- Equivalently, there exists $L \in \mathbb{R}^{m \times m}$

$$
A=L L^{T}
$$

Outline

- Basic definitions
- Subspaces and Dimensionality
- Matrix functions: inverses and eigenvalue decompositions
- Convex optimization

Norms

- Quantify "size" of a vector
- Given $x \in \mathbb{R}^{n}$, a norm satisfies

1. $\|c x\|=|c|\|x\|$
2. $\|x\|=0 \Leftrightarrow x=0$
3. $\|x+y\| \leq\|x\|+\|y\|$

- Common norms:

1. Euclidean L_{2}-norm: $\|x\|_{2}=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
2. L_{1}-norm: $\|x\|_{1}=\left|x_{1}\right|+\cdots+\left|x_{n}\right|$
3. L_{∞}-norm: $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$

Linear Subspaces

Linear Subspaces

- Subspace $\mathcal{V} \subset \mathbb{R}^{n}$ satisfies

1. $0 \in \mathcal{V}$
2. If $x, y \in \mathcal{V}$ and $c \in \mathbb{R}$, then $c(x+y) \in \mathcal{V}$

- Vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ span \mathcal{V} if

$$
\mathcal{V}=\left\{\sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}_{i} \mid \alpha \in \mathbb{R}^{m}\right\}
$$

Linear Independence and Dimension

- Vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ are linearly independent if

$$
\sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}_{i}=0 \Leftrightarrow \alpha=0
$$

- Every linear combination of the \boldsymbol{x}_{i} is unique
- $\operatorname{Dim}(\mathcal{V})=m$ if $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ span \mathcal{V} and are linearly independent
- If $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}$ span \mathcal{V} then
- $k \geq m$
- If $k>m$ then \boldsymbol{y}_{i} are NOT linearly independent

Linear Independence and Dimension

Matrix Subspaces

- Matrix $M \in \mathbb{R}^{m \times n}$ defines two subspaces
- Column space $\operatorname{col}(M)=\left\{M \alpha \mid \alpha \in \mathbb{R}^{n}\right\} \subset \mathbb{R}^{m}$
- Row space $\operatorname{row}(M)=\left\{M^{T} \beta \mid \beta \in \mathbb{R}^{m}\right\} \subset \mathbb{R}^{n}$
- Nullspace of $M: \operatorname{null}(M)=\left\{x \in \mathbb{R}^{n} \mid M x=0\right\}$
$-\operatorname{null}(M) \perp \operatorname{row}(M)$
$-\operatorname{dim}(\operatorname{null}(M))+\operatorname{dim}(\operatorname{row}(M))=n$
- Analog for column space

Matrix Rank

- $\operatorname{rank}(M)$ gives dimensionality of row and column spaces
- If $M \in \mathbb{R}^{m \times n}$ has rank k, can decompose into product of $m \times k$ and $k \times n$ matrices

Properties of Rank

- For $A, B \in \mathbb{R}^{m \times n}$

1. $\operatorname{rank}(A) \leq \min (m, n)$
2. $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$
3. $\operatorname{rank}(A B) \leq \min (\operatorname{rank}(A), \operatorname{rank}(B))$
4. $\operatorname{rank}(A+B) \leq \operatorname{rank}(A)+\operatorname{rank}(B)$

- A has full rank if $\operatorname{rank}(A)=\min (m, n)$
- If $m>\operatorname{rank}(A)$ rows not linearly independent
- Same for columns if $n>\operatorname{rank}(A)$

Outline

- Basic definitions
- Subspaces and Dimensionality
- Matrix functions: inverses and eigenvalue decompositions
- Convex optimization

Matrix Inverse

- $M \in \mathbb{R}^{m \times m}$ is invertible iff $\operatorname{rank}(M)=m$
- Inverse is unique and satisfies

1. $M^{-1} M=M M^{-1}=I$
2. $\left(M^{-1}\right)^{-1}=M$
3. $\left(M^{T}\right)^{-1}=\left(M^{-1}\right)^{T}$
4. If A is invertible then $M A$ is invertible and

$$
(M A)^{-1}=A^{-1} M^{-1}
$$

Systems of Equations

- Given $M \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^{m}$ wish to solve

$$
M x=y
$$

- Exists only if $y \in \operatorname{col}(M)$
- Possibly infinite number of solutions
- If M is invertible then $x=M^{-1} y$
- Notational device, do not actually invert matrices
- Computationally, use solving routines like Gaussian elimination

Systems of Equations

- What if $y \notin \operatorname{col}(M)$?
- Find x that gives $\hat{y}=M x$ closest to y
$-\hat{y}$ is projection of y onto $\operatorname{col}(M)$
- Also known as regression
- $\operatorname{Assume} \operatorname{rank}(M)=n<m$

$$
x=\underbrace{\left(M^{T} M\right)^{-1} M^{T} y \quad \hat{y}=\underbrace{M\left(M^{T} M\right)^{-1} M^{T}}_{\begin{array}{c}
\text { Projection } \\
\text { matrix }
\end{array}} y}_{\text {Invertible }}
$$

Systems of Equations

$\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]\left[\begin{array}{c}.5 \\ -2.5\end{array}\right]=\left[\begin{array}{c}.5 \\ -1.5\end{array}\right]$

$\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ -.5\end{array}\right]=\left[\begin{array}{c}5 \\ -1.5\end{array}\right]$

Eigenvalue Decomposition

- Eigenvalue decomposition of symmetric $M \in \mathbb{R}^{m \times m}$ is

$$
M=Q \Sigma Q^{T}=\sum_{i=1}^{m} \lambda_{i} \boldsymbol{q}_{i} \boldsymbol{q}_{i}^{T}
$$

$-\Sigma=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ contains eigenvalues of M

- Q is orthogonal and contains eigenvectors \boldsymbol{q}_{i} of M
- If M is not symmetric but diagonalizable

$$
M=Q \Sigma Q^{-1}
$$

$-\Sigma$ is diagonal by possibly complex

- Q not necessarily orthogonal

Characterizations of Eigenvalues

- Traditional formulation

$$
M x=\lambda x
$$

- Leads to characteristic polynomial

$$
\operatorname{det}(M-\lambda I)=0
$$

- Rayleigh quotient (symmetric M)

$$
\max _{x} \frac{x^{T} M x}{\|x\|_{2}^{2}}
$$

Eigenvalue Properties

- For $M \in \mathbb{R}^{m \times m}$ with eigenvalues λ_{i}

1. $\operatorname{tr}(M)=\sum_{i=1}^{m} \lambda_{i}$
2. $\operatorname{det}(M)=\lambda_{1} \lambda_{2} \ldots \lambda_{m}$
3. $\operatorname{rank}(M)=\# \lambda_{i} \neq 0$

- When M is symmetric
- Eigenvalue decomposition is singular value decomposition
- Eigenvectors for nonzero eigenvalues give orthogonal basis for $\operatorname{row}(M)=\operatorname{col}(M)$

Simple Eigenvalue Proof

- Why $\operatorname{det}(M-\lambda I)=0$?
- Assume M is symmetric and full rank

1. $M=Q \Sigma Q^{T}$
2. $M-\lambda I=Q \Sigma Q^{T}-\lambda I=Q(\Sigma-\lambda I) Q^{T}$
3. If $\lambda=\lambda_{i}, i^{\text {th }}$ eigenvalue of $M-\lambda I$ is 0
4. Since $\operatorname{det}(M-\lambda I)$ is product of eigenvalues, one of the terms is 0 , so product is 0

Outline

- Basic definitions
- Subspaces and Dimensionality
- Matrix functions: inverses and eigenvalue decompositions
- Convex optimization

Convex Optimization

- Find minimum of a function subject to solution constraints
- Business/economics/ game theory
- Resource allocation
- Optimal planning and strategies
- Statistics and Machine Learning
- All forms of regression and classification
- Unsupervised learning
- Control theory
- Keeping planes in the air!

Convex Sets

- A set C is convex if $\forall x, y \in C$ and $\forall \alpha \in[0,1]$

$$
\alpha x+(1-\alpha) y \in C
$$

- Line segment between points in C also lies in C
- Ex
- Intersection of halfspaces
- L_{p} balls
- Intersection of convex sets

Convex Functions

- A real-valued function f is convex if $\operatorname{dom} f$ is convex and $\forall x, y \in \operatorname{dom} f$ and $\forall \alpha \in[0,1]$
$f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$
- Graph of f upper bounded by line segment between points on graph

Gradients

- Differentiable convex f with $\operatorname{dom} f=\mathbb{R}^{d}$
- Gradient ∇f at x gives linear approximation

$$
\nabla f=\left[\begin{array}{lll}
\frac{\delta f}{\delta x_{1}} & \cdots & \frac{\delta f}{\delta x_{d}}
\end{array}\right]^{T}
$$

Gradients

- Differentiable convex f with $\operatorname{dom} f=\mathbb{R}^{d}$
- Gradient ∇f at x gives linear approximation

$$
\nabla f=\left[\begin{array}{lll}
\frac{\delta f}{\delta x_{1}} & \cdots & \frac{\delta f}{\delta x_{d}}
\end{array}\right]^{T}
$$

Gradient Descent

- To minimize f move down gradient
- But not too far!
- Optimum when $\nabla f=0$
- Given f, learning rate α, starting point x_{0} $x=x_{0}$
Do until $\nabla f=0$

$$
x=x-\alpha \nabla f
$$

Stochastic Gradient Descent

- Many learning problems have extra structure

$$
f(\theta)=\sum_{i=1}^{n} L\left(\theta ; x_{i}\right)
$$

- Computing gradient requires iterating over all points, can be too costly
- Instead, compute gradient at single training example

Stochastic Gradient Descent

- Given $f(\theta)=\sum_{i=1}^{n} L\left(\theta ; \boldsymbol{x}_{i}\right)$, learning rate α, starting point θ_{0}
$\theta=\theta_{0}$
Do until $f(\theta)$ nearly optimal

$$
\begin{aligned}
& \text { For } i=1 \text { to } n \text { in random order } \\
& \qquad \theta=\theta-\alpha \nabla L\left(\theta ; \boldsymbol{x}_{i}\right)
\end{aligned}
$$

- Finds nearly optimal θ

Minimize $\sum_{i=1}^{n}\left(y_{i}-\theta^{T} \boldsymbol{x}_{i}\right)^{2}$

Learning Parameter

