Design Space of
 Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

CS224W: Deep Learning in Graphs

Key Questions for GNN Design

- GNN architectural design:
- How to find a good GNN design for a specific GNN task?
- Important but challenging:
- Domain experts want to use SOTA GNN on their specific tasks, however...
- There are tons of possible GNN architectures
- GCN, GraphSAGE, GAT, GIN, ...
- Issue: Best design in one task can perform badly for another task
- Redo hyperparameter grid search for each new task is NOT feasible
- Topic for today:
- Study for the GNN design space and task space
- GraphGym, a powerful platform for exploring different GNN designs and tasks

Background: Terminology

- Design: a concrete model instantiation
- E.g., a 4-layer GraphSAGE
- Design dimensions characterize a design
- E.g., the number of layers $L \in\{2,4,6,8\}$
- Design choice is the actual selected value in the design dimension
- E.g., the number of layers L=2
- Design space consists of a Cartesian product of design dimensions
- Task: A specific task of interest
- E.g., node classification on Cora, graph classification on ENZYMES
- Task space consists of all the tasks we care about

Recap: GNN Design Space

Intra-layer Design:

GNN Layer = Transformation + Aggregation

- We propose a general instantiation under this perspective

Recap: GNN Design Space

Inter-layer Design

- We explore different ways of organizing GNN layers

Intra-layer Design: 4 dims

Learning Configuration: 4 dims

Batch size

Learning rate Optimizer
Training epochs

Inter-layer Design: 4 dims

Pre-process layers:
Important when expressive node feature encoder is needed E.g., when nodes are images/text

Skip connections:

Improve deep GNN's performance

Post-process layers: Important when reasoning or transformation over node embeddings are needed E.g., graph classification, knowledge graphs

Recap: GNN Design Space

Summary: GNN Design Space

Intra-layer Design: 4 dims

Overall: A GNN design space

- Intra-layer design

Batch Normalization	Dropout	Activation	Aggregation
True, False	False, 0.3, 0.6	ReLU, PRELU, SwISH	MEAN, MAx, SUM
\square	\|nter-layer deSign		

| Layer connectivity | Pre-process layers | Message passing layers | Post-precess layers |
| :---: | :---: | :---: | :---: | :---: |
| STACK, SKIP-SUM, SKIP-CAT | $1,2,3$ | $2,4,6,8$ | $1,2,3$ | \mathbf{L}

- Learning configuration

Batch size	Learning rate	Optimizer	Training epochs
$16,32,64$	$0.1,0.01,0.001$	SGD, ADAM	$100,200,400$

A General GNN Task Space

- Categorizing GNN tasks
- Common practice: node / edge / graph level task
- Reasonable but not precise
- Node prediction: predict clustering coefficient vs. predict a node's subject area in a citation networks - completely different task
- But creating a precise taxonomy of GNN tasks is very hard!
- Subjective; Novel GNN tasks can always emerge
- Our innovation: a quantitative task similarity metric
- Purpose: understand GNN tasks, transfer the best GNN models across tasks

A General GNN Task Space

- Quantitative task similarity metric
- 1) Select "anchor" models (M_{1}, \ldots, M_{5})
- 2) Characterize a task by ranking the performance of anchor models
- 3) Tasks with similar rankings are considered as similar

Task Similarity Metric

	Anchor Model Performance ranking					Similarity to Task A
Task A	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	1.0
Task B	M_{1}	M_{3}	M_{2}	M_{4}	M_{5}	0.8
Task C	M_{5}	M_{1}	M_{4}	M_{3}	M_{2}	-0.4

Task A is similar to Task B
Task A is not similar to Task C

- How do we select the anchor models?

A General GNN Task Space

- Selecting the anchor models
- 1) Select a small dataset
- E.g., node classification on Cora
- 2) Randomly sample N models from our design space, run on the dataset
- E.g., we sample 100 models
- 3) Sort these models based on their

Sorted by performance

- Goal: Cover a wide spectrum of models: A bad model in one task could be great for another task

A General GNN Task Space

We collect 32 tasks: node / graph classification

Task name

node-AmazonComputers-N/A-N/A node-AmazonPhoto-N/A-N/A node-CiteSeer-N/A-N/A node-CoauthorCS-N/A-N/A node-CoauthorPhysics-N/A-N/A node-Cora-N/A-N/A node-scalefree-clustering-pagerank node-scalefree-const-clustering node-scalefree-const-pagerank node-scalefree-onehot-clustering node-scalefree-onehot-pagerank node-scalefree-pagerank-clustering node-smallworld-clustering-pagerank node-smallworld-const-clustering node-smallworld-const-pagerank node-smallworld-onehot-clustering node-smallworld-onehot-pagerank node-smallworld-pagerank-clustering
graph-PROTEINS-N/A-N/A graph-BZR-N/A-N/A
graph-COX2-N/A-N/A graph-DD-N/A-N/A graph-ENZYMES-N/A-N/A graph-IMDB-N/A-N/A graph-scalefree-clustering-path graph-scalefree-const-path graph-scalefree-onehot-path graph-scalefree-pagerank-path graph-smallworld-clustering-path graph-smallworld-const-path graph-smallworld-onehot-path graph-smallworld-pagerank-path graph-ogbg-molhiv-N/A-N/A
(We include link prediction results in the Appendix)

6 Real-world node classificationtasks

12 Synthetic node classification tasks
Predict node properties:

- Clustering coefficient
- PageRank

6 Real-world graph classification tasks

8 Synthetic graph classification tasks
Predict graph properties:

- Average path length

Evaluating GNN Designs

- Evaluating a design dimension:
- "Is BatchNorm generally useful for GNNs?"
- The common practice:
- (1) Pick one model (e.g., a 5-layer 64-dim GCN)
- (2) Compare two models, with BN = True / False
- Our approach:
- Note that we have defined 315K (models) * 32 (tasks) $\approx \mathbf{1 0 M}$ model-task combinations
- (1) Sample from 10M possible model-task combinations
- (2) Rank the models with BN = True / False - How do we make it scalable \& convincing?

Evaluating GNN Designs

- Evaluating a design dimension: Controlled random search
- a) Sample random model-task configurations, perturb BatchNorm = [True, False]
- Here we control the computational budget for all the models
(a) Controlled Random Search

GNN Design Space					GNN Task Space		
BatchNorm	Activation	\ldots	Message layers	Layer Connectivity	Task level	dataset	
True	relu	\ldots	8	skip_sum	node	CiteSeer	
False	relu	\ldots	8	skip_sum	node	CiteSeer	
True	relu	\ldots	2	skip_cat	graph	BZR	
False	relu	\ldots	2	skip_cat	graph	BZR	
True	prelu	\ldots	4	stack	graph	scale free	
False	prelu	\ldots	4	stack	graph	scale free	

Evaluating GNN Designs

- b) Rank BatchNorm = [True, False] by their performance (lower ranking is better)
- c) Plot Average / Distribution of the ranking of BatchNorm = [True, False]
(b) Rank Design Choices by Performance

GNN Design Space
BatchNorm
True
False
True
False
True
False

Experimental Results	
Val. Accuracy	Design Choice Ranking
0.75	1
0.54	2
0.88	1 (a tie)
0.88	1 (a tie)
0.89	1
0.36	2

(c) Ranking Analysis

- Summary: Convincingly evaluate any new design dimension, e.g., evaluate a new GNN layer we propose

Results 1: A Guideline for GNN Design

- Certain design choices exhibit clear advantages
- Intra-layer designs:

Explanation:
GNNs are hard to optimize

Explanation:

This is our new finding!

Explanation:
GNNs experience underfitting more often

Explanation:
Sum is the most expre aggregator

Results 1: A Guideline for GNN Design

- Certain design choices exhibit clear advantages
- Inter-layer designs

Optimal number of layers is hard to decide Highly dependent on the task

PP'è-p̈r̈ōčēs̈š läÿèīs

Explanation: Skip connection enable hierarchical node representation

Results 1: A Guideline for GNN Design

- Certain design choices exhibit clear advantages
- Learning configurations

Optimal batch size and learning rate is hard to decide Highly dependent on the task

Explanation:
Adam is more robust
More training epochs is better

Results 2: Understanding GNN Tasks

- Best GNN designs in different tasks vary significantly
- Motivate that studying a task space is crucial

Dataset: BZR

Message passinğ läÿëris'
Dataset: scalefree

Results 2: Understanding GNN Tasks

- Build a GNN task space

Proposed task similarity (computed from 12 models) node-AmazonComputers-N/A-N/A-node-AmazonComputers-N/A-N/A-
node-AmazonPhoto-N/A-N/A-node-AmazonPhoto-N/A-N/A-
node-CiteSeer-N/A-N/A-
node-CoauthorCS-N/A-N/A-node-CiteSeer-N/A-N/A-
node-CoauthorCS-N/A-N/A-
node-CoauthorPhysics-N/A-N/A-node-CoauthorPhysics-N/A-N/A-node-Cora-N/A-N/A-graph-PROTEINS-N/A-N/A-
graph-BZR-N/A-N/A-graph-BZR-N/A-N/A-
graph-COX2-N/A-N/A-graph-COX2-N/A-N/A-
graph-DD-N/A-N/A-graph-ENZYMES-N/A-N/A-graph-IMDB-N/A-N/A-graph-scalefree-clustering-path-graph-scalefree-const-path-graph-scalefree-onehot-path-graph-scalefree-pagerank-path-graph-smallworld-const-path-graph-smallworld-onehot-path-graph-smallworld-pagerank-path-graph-smallworld-pagerank-path-
node-scalefree-clustering-pagerank-node-scalefree-const-clustering-node-scalefree-const-pagerank-
node-scalefree-onehot-clustering-node-scalefree-onehot-clustering-node-scalefree-pagerank-clustering-node-smallworld-clustering-pagerank-node-smallworld-const-clustering-node-smallworld-const-pagerank-node-smallworld-onehot-clustering-
node-smallworld-onehot-pagerank-node-smallworld-pagerank-clustering-

We compute pairwise similarities between all GNN tasks

Recall how we compute task similarity

	Anchor Model Performance ranking					Similarity to Task A
Task A	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}	1.0
Task B	M_{1}	M_{3}	M_{2}	M_{4}	M_{5}	0.8
Task C	M_{5}	M_{1}	M_{4}	M_{3}	M_{2}	-0.4

Task similarity computation is cheap:
Using 12 anchor models is a good approximation!

Results 2: Understanding GNN Tasks

- GNN task space is informative

Group 1:
Tasks rely on feature information Node/graph classification tasks, where input graphs have highdimensional features

- Cora graph has 1000+ dim node feature

Results 2: Understanding GNN Tasks

- GNN task space is informative
 best architectures
- AmazonComputers
- AmazonPhoto

CiteSeer
CoauthorCS
CoauthorPhysics

BZR
COX2
DD

IMDB
scalefree
smallworld
Task-level

* Graph-level

Best GNN Designs Found in Different Tasks					
	Prelayers	MP layers	Postlayers	Connectivity	AGG
Task A	2	8	2	skip-sum	sum
Task B	1	8	2	skip-sum	sum
Task C	2	6	2	skip-cat	mean

Results 3: Transfer to Novel Tasks

- Case study: generalize best models to unseen OGB ogbg-molhiv task:
- ogbg-molhiv is unique from other tasks: 20x larger, imbalanced (1.4% positive) and requires out-of-distribution generalization
- Concrete steps for applying to a novel task:
- Step 1: Measure 12 anchor model performance on the new task
- Step 2: Compute similarity between the new task and existing tasks
- Step 3: Recommend the best designs from existing tasks with high similarity

Results 3: Transfer to Novel Tasks

- Our task space can guide best model transfer to novel tasks!

Findings:

We pick 2 tasks:
Task A: Similar to OGB
Task B: Not similar to OGB

Transfer the best model from Task A achieves SOTA on OGB
Transfer the best model from Task B performs badly on OGB

	Task $A:$ graph- scalefree-const-path	Task $B:$ node- CoauthorPhysics
Best design in our design space	$(1,8,3$, skipcat, sum $)$	$(1,4,2$, skipcat, max $)$
Task Similarity with ogbg-molhiv	$\mathbf{0 . 4 7}$	-0.61
Performance after transferto ogbg-molhiv	$\mathbf{0 . 7 8 5}$	0.736

Previous SOTA: 0.771

GNN Design Space: Summary

- Systematic investigation of:
- General guidelines for GNN design
- Understandings of GNN tasks
- Transferring best GNN designs across tasks
- GraphGym: Easy-to-use code platform for GNN
(a) GNN Design Space

Learning Configuration: $\mathbf{4}$ dims
Batch size
Learning rate
Optimizer Training epochs
3/16/2023
(b) GNN Task Space

(c) Controlled Random Search

GNN Design Space					GNN Task Space	
BatchNorm	Act	\ldots	MP layers	Connectivity	level	dataset
True	relu	\ldots	8	skip_sum	node	CiteSeer
False	relu	\ldots	8	skip_sum	node	CiteSeer
True	relu	\ldots	2	skip_cat	graph	BZR
False	relu	\ldots	2	skip_cat	graph	BZR
\ldots						

(d) Rank Design Choices by Performance

Experimental Results	
Val. Accuracy	Design Choice Ranking
0.75	1
0.54	2
0.88	1 (a tie)
0.86	1 (a tie)
\ldots	

(e) Ranking Analysis
 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs

Pre-Training Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Graph ML in Scientific Domains

- Chemistry: Molecular graphs
- Molecular property prediction

Our running
example today
= toxic?

- Biology: Protein-protein association graphs
- Protein function prediction

GNNs for Graph Classification

- GNNs obtain an embedding of an entire graph by following two steps
- Iteratively aggregate neighboring information to obtain node embeddings
- Pool node embeddings to obtain a graph embedding

GNNs for Graph Classification

- Node embeddings capture local neighborhood structure
- The embedding of an entire graph is a global aggregation of such node embeddings

Capture local neighborhood structure
Molecule

Globallyaggregate local features

Challenges of Applying ML

- Two fundamental challenges in applying ML to scientific domains

1. Scarcity of labeled data

- Obtaining labels requires expensive lab experiments
\rightarrow ML models overfit to small training data

2. Out-of-distribution prediction

- Test examples tend to be very different from training examples
\rightarrow ML models extrapolate poorly

Challenges for Deep Learning (1)

- Deep learning models have a lot parameters to train (e.g., in the order of millions).
- \#(Labeled training data) << \#(Parameters)
- Deep learning models are extremely prone to overfitting on small labeled data.

Challenges for Deep Learning (2)

- Deep learning models extrapolate poorly
- Models often make predictions based on spurious correlations in a dataset [Sagawa et al. ICML 2020]
" Ex) Image classification between "polar bear" and "brown bear"
- During training:

Adapted from
Wikipedia
" Most "polar bears" have the snow background
" Most "brown bears" have the grass background

- Model can learn to make prediction based on the image background, rather than the animal itself.
- At test time, what if we see "polar bear" on the grass?

Injecting Domain Knowledge

- Goal: Improve model's out-of-distribution prediction performance even with limited data.
- Key idea: Inject domain knowledge into a model before training on scarcely-labeled tasks!
- The model already knows the domain knowledge before training on data
- So that the model can
- Generalize well without many task-specific labeled data
- Extract essential (non-spurious) pattern that allows better extrapolation.

Effective Solution: Pre-Training

- We pre-train a model on relevant tasks, where data is abundant.
- After pre-training, the model parameters already contain domain knowledge.
- For downstream tasks (what we care about, typically with small \#labeled data)
- We start from the pre-trained parameters and finetuning them.

Pre-training
Raw
input

Output

Fine-tuning on downstream tasks

Pre-Training is Successful

- Pre-training has been hugely successful in computer vision and natural language processing.
- Pre-training improves label-efficiency.
- Pre-training improves out-of-distribution performance [Hendrycks et al. ICML 2019]
- Pre-training is a powerful solution to the two ML challenges in scientific applications
- Scarce labels
- Out-of-distribution prediction

Pre-training GNNs

- Let's consider pre-training GNNs!
- We design GNN pre-training strategies and systematically investigate

Q1. How effective is pre-training GNNs?
Q2. What is the effective pre-training strategy?

How Effective is Pre-training GNNs?

Let's think about molecular property prediction for drug discovery.
 - Naïve strategy

Multi-task supervised pre-training on relevant labels.

Molecule

Diverse labels
from chemical database

Experimental Setting

- Molecule classification

- Task: Binary classification. ROC-AUC as metric

$$
f(, \mathcal{O})=\{0,1\}
$$

- Supervised pre-training data
- 1310 diverse binary bioassays annotated over ~450K molecules
- Downstream task (what we care about!)
- 8 molecular classification datasets (relatively-small, 1K100K molecules)
- Data split: Scaffold (test molecules are out-ofdistribution)

How Effective is Pre-training GNNs?

- Naïve strategy:

Multi-task supervised pre-training on relevant labels.
\rightarrow Limited performance improvement on downstream tasks. Often leads to negative transfer

Molecule classification performance

Downstream datasets

What is the Effective Strategy?

- Key idea: Pre-train both node and graph embeddings.
\rightarrow GNN can capture domain-specific knowledge of both local and global structure

What is the Effective Strategy?

- Key idea: Pre-train both node and graph embeddings.

Embedding illustration

Proposed Pre-Training Methods

Self-supervised
(No need for external labels)

Attribute prediction	Attribute Masking	Supervised Attribute Prediction
Structure prediction	Context Prediction	Structural Similarity Prediction

Attribute Masking: Algorithm

- Mask node attributes
- Use GNNs to generate node embeddings.
- Use the embeddings to predict masked attributes.

Attribute Masking: Intuition

Intuition

- Through solving the masked attribute prediction task, a GNN is forced to learn domain knowledge, e.e.g., chemical rules.

Context Prediction: Algorithm

- For each graph, sample one center node.
- Extract neighborhood and context graphs.
- Use GNNs to encode neighborhood and context graphs into vectors.
- Maximize/minimize the inner product between true/false (neighborhood, context) pairs.

Context Prediction: Intuition

- Intuition

Subgraphs that are surrounded by similar contexts are semantically similar.

- In natural language processing, this is called distributional hypothesis, and is exploited in the word2vec model [mikioloveta. N N1P52013].

Supervised Attribute Prediction

- Multi-task supervised training on many relevant labels.

Iterative neighbor aggregation

Overall Strategy

1. Node-level pre-training
 2. Graph-level pre-training 3. Fine-tuning on downstream tasks

Results of Our Strategy

- Avoids negative transfer.
- Significantly improve the performance.

Non pretrained GNNs

Molecule classification performance

Comparison of GNN models

- When different GNN models are pre-trained, the most expressive model (GIN) benefits the most from pre-training.
- Intuition: Expressive model can learn to capture more domain knowledge than less expressive models.

	Chemistry			Biology		
	Non-pre-trained	Pre-trained	Gain	Non-pre-trained	Pre-trained	Gain
GIN	67.0	$\mathbf{7 4 . 2}$	$\mathbf{+ 7 . 2}$	64.8 ± 1.0	$\mathbf{7 4 . 2} \pm \mathbf{1 . 5}$	$+\mathbf{+ 9 . 4}$
GCN	$\mathbf{6 8 . 9}$	72.2	+3.4	63.2 ± 1.0	70.9 ± 1.7	+7.7
GraphSAGE	68.3	70.3	+2.0	65.7 ± 1.2	68.5 ± 1.5	+2.8
GAT	66.8	60.3	-6.5	$\mathbf{6 8 . 2} \pm \mathbf{1 . 1}$	67.8 ± 3.6	-0.4

Pre-Training GNNs: Summary

- GNNs have important applications in scientific applications, but they present challenges of
- Label scarcity
- Out-of-distribution prediction
- Pre-training is promising to tackle the challenges.
- However, naïve pre-training strategy gives suboptimal performance and even leads to negative transfer.
- Our strategy: Pre-train both node and graph embeddings \rightarrow Leads to significant performance gain on downstream tasks.

CS224W: Wrap-Up

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Modern ML Toolbox

Images

Text/Speech

Modern deep learning toolbox is designed for simple sequences \& grids

This Course

How can we develop neural networks that are much more broadly applicable?

Graphs are the new frontier of deep learning

Graphs and Relational Data

Image credit: ResearchGate
Code Graphs

Molecules

3D Shapes

CS224W: Deep Learning in Graphs

Models of Interest: Invariances

Perceptrons
Function regularity

CNNs
Translation

Group-CNNs
Translation+Rotation, Global groups

LSTMs
Time warping

DeepSets / Transformers
Permutation

GNNs
Permutation

Intrinsic CNNs
Isometry / Gauge choice

The Bottom Line

- There is exciting relational structure in many many real-world problems
- Molecules/Proteins as strings vs. graphs
- Travel time duration over the map graph
- Identifying and harnessing this relational structure leads to better predictions
- AlphaFold
- Biomedicine
- Recommender systems

You learned a lot!

- Theory:
- Models, architectures, approaches
- Practice:
- Collab notebooks
- Homeworks
- Creative research:
- Course project

The real-world use cases and applications

What Next?

- Project write-ups:
- Tues March 21 Midnight (11:59PM) Pacific Time No late days!
- Courses:
- CS246: Mining Massive Datasets (Spring)
- Data Mining \& Machine Learning for big data
- (big==doesn’t fit in memory/single machine)
- Fast clever algorithms for real-world problems
- Distributed data processing frameworks: MapReduce, Spark

In Closing...

- It has been a challenging year for everyone
- Back to campus, work from home, social distancing, fatigue, disease, well-being
- Virtual office hours, take home exam
- But we *all* did our best and did best given the challenging circumstances

Thank you, team!!!

Course Assistants

Mohammad Aljubran

Sharmila Nangi

Xuan Su

Serina Chang

Lun Yu (Tina) Li

Feiyang (Kathy) Yu

Anirudh Sriram

Aman Bansal

Paridhi Maheshwari

Arvind Sridhar

Zhuoyi Huang

I am very proud of everyone!

- You Have Done a Lot!!!
- And (hopefully) learned a lot!!!
- Answered questions and proved many interesting results
- Implemented a number of methods
- And did excellently on the project!

> Thank You for the Hard Work!!!

