Design Space of Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

CS224W: Deep Learning in Graphs

Key Questions for GNN Design

GNN architectural design:

How to find a good GNN design for a specific GNN task?

Important but challenging:

- Domain experts want to use SOTA GNN on their specific tasks, however...
 - There are tons of possible GNN architectures
 - GCN, GraphSAGE, GAT, GIN, ...
 - Issue: Best design in one task can perform badly for another task
 - Redo hyperparameter grid search for each new task is NOT feasible

Topic for today:

- Study for the GNN design space and task space
- GraphGym, a powerful platform for exploring different GNN designs and tasks

Background: Terminology

- Design: a concrete model instantiation
 - E.g., a 4-layer GraphSAGE
- Design dimensions characterize a design
 - E.g., the number of layers $L \in \{2, 4, 6, 8\}$
- Design choice is the actual selected value in the design dimension
 - E.g., the number of layers L = 2
- Design space consists of a Cartesian product of design dimensions
- Task: A specific task of interest
 - E.g., node classification on Cora, graph classification on ENZYMES
- Task space consists of all the tasks we care about

Recap: GNN Design Space

Intra-layer Design:

- **GNN Layer = Transformation + Aggregation**
- We propose a general instantiation under this perspective

Recap: GNN Design Space

Inter-layer Design

• We explore different ways of organizing GNN layers

Pre-process layers:

Important when expressive node feature encoder is needed E.g., when nodes are images/text

Skip connections:

Improve deep GNN's performance

Post-process layers:

Important when reasoning or transformation over node embeddings are needed E.g., graph classification, knowledge graphs

Recap: GNN Design Space

Learning configurations

- Often neglected in current literature
- But we found they have high impact on performance

Summary: GNN Design Space

0, 52, 04 0.1, 0.01, 0.001 SOD, ADAM 100, 200, 400

In total: 315K possible designs

Our Purpose:

- We don't want to (and we cannot) cover all the possible designs
- A mindset transition: We want to demonstrate that studying a design space is more effective than studying individual GNN designs

Categorizing GNN tasks

- Common practice: node / edge / graph level task
- Reasonable but not precise
 - Node prediction: predict clustering coefficient vs. predict a node's subject area in a citation networks – completely different task
- But creating a precise taxonomy of GNN tasks is very hard!
 - Subjective; Novel GNN tasks can always emerge

Our innovation: a quantitative task similarity metric

Purpose: understand GNN tasks, transfer the best GNN models across tasks

Quantitative task similarity metric

- **1)** Select **"anchor" models** (*M*₁, ..., *M*₅)
- 2) Characterize a task by ranking the performance of anchor models
- **3)** Tasks with similar rankings are considered as similar

Task Similarity Metric

		Anc	Similarity			
	Performance ranking					to Task A
Task A	M_1	<i>M</i> ₂	<i>M</i> ₃	M_4	M_5	1.0
Task B	<i>M</i> ₁	<i>M</i> ₃	<i>M</i> ₂	M_4	M_5	0.8
Task C	M_5	M_1	M_4	M_3	M_2	-0.4

Task A is similar to Task BTask A is not similar to Task C

How do we select the anchor models?

Selecting the anchor models

- 1) Select a small dataset
 - E.g., node classification on Cora
- 2) Randomly sample N models from our design space, run on the dataset
 - E.g., we sample 100 models
- 3) Sort these models based on their N = 100 performance: evenly select M models as models
 the anchor models, whose performance range from the worst to the best
 - E.g., we sample 12 models in our experiments
- Goal: Cover a wide spectrum of models: A bad model in one task could be great for another task

Sorted by performance

We collect 32 tasks: node / graph classification

Task name

node-AmazonComputers-N/A-N/A node-AmazonPhoto-N/A-N/A node-CiteSeer-N/A-N/A node-CoauthorCS-N/A-N/A node-CoauthorPhysics-N/A-N/A node-Cora-N/A-N/A node-scalefree-clustering-pagerank node-scalefree-const-clustering node-scalefree-const-pagerank node-scalefree-onehot-clustering node-scalefree-onehot-pagerank node-scalefree-pagerank-clustering node-smallworld-clustering-pagerank node-smallworld-const-clustering node-smallworld-const-pagerank node-smallworld-onehot-clustering node-smallworld-onehot-pagerank node-smallworld-pagerank-clustering

graph-PROTEINS-N/A-N/A graph-BZR-N/A-N/A graph-COX2-N/A-N/A graph-DD-N/A-N/A graph-ENZYMES-N/A-N/A graph-IMDB-N/A-N/A graph-scalefree-clustering-path graph-scalefree-const-path graph-scalefree-pagerank-path graph-scalefree-pagerank-path graph-smallworld-clustering-path graph-smallworld-const-path graph-smallworld-onehot-path graph-smallworld-onehot-path graph-smallworld-pagerank-path graph-smallworld-pagerank-path graph-smallworld-pagerank-path (We include link prediction results in the Appendix)

6 Real-world node classification tasks

12 Synthetic node classification tasks Predict node properties:

- Clustering coefficient
 - PageRank
- 6 Real-world graph classification tasks

8 Synthetic graph classification tasks

- Predict graph properties:
- Average path length

Evaluating GNN Designs

- Evaluating a design dimension:
 - "Is BatchNorm generally useful for GNNs?"
- The common practice:
 - (1) Pick one model (e.g., a 5-layer 64-dim GCN)
 - (2) Compare two models, with BN = True / False
- Our approach:
 - Note that we have defined 315K (models) ∗ 32 (tasks) ≈ 10M model-task combinations
 - (1) Sample from 10M possible model-task combinations
 - (2) Rank the models with BN = True / False
- How do we make it scalable & convincing?

Evaluating GNN Designs

- Evaluating a design dimension: Controlled random search
 - a) Sample random model-task configurations, perturb BatchNorm = [True, False]
 - Here we control the computational budget for all the models

	G	GNN Task Space				
BatchNorm Activation			Message layers Layer Connectivity		Task level	dataset
True	relu		8	skip_sum	node	CiteSeer
False	relu		8	skip_sum	node	CiteSeer
True	relu		2	skip_cat	graph	BZR
False	relu		2	skip_cat	graph	BZR
True	prelu		4	stack	graph	scale free
False	prelu		4	stack	graph	scale free

(a) Controlled Random Search

Evaluating GNN Designs

- **b)** Rank BatchNorm = [True, False] by their performance (lower ranking is better)
- c) Plot Average / Distribution of the ranking of BatchNorm = [True, False]

(b)	Rank Design	Choices by	y Performance
-----	-------------	------------	---------------

• •					
GNN Design Space					
BatchNorm					
True					
False					
True					
False					
True					
False					

Experimental ResultsVal. AccuracyDesign Choice Ranking0.7510.5420.881 (a tie)0.881 (a tie)0.8910.362

Summary: Convincingly evaluate any new design dimension, e.g., evaluate a new GNN layer we propose

Results 1: A Guideline for GNN Design

- Certain design choices exhibit clear advantages
 - Intra-layer designs:

Results 1: A Guideline for GNN Design

Certain design choices exhibit clear advantages

Inter-layer designs

Optimal number of layers is hard to decide Highly dependent on the task

Results 1: A Guideline for GNN Design

Certain design choices exhibit clear advantages

Learning configurations

Optimal batch size and learning rate is hard to decide Highly dependent on the task

Explanation: Adam is more robust More training epochs is better

Results 2: Understanding GNN Tasks

- Best GNN designs in different tasks vary significantly
 - Motivate that studying a task space is crucial

Results 2: Understanding GNN Tasks

Build a GNN task space

Proposed task similarity (computed from 12 models) node-AmazonComputers-N/A-N/A-node-AmazonPhoto-N/A-N/Anode-CiteSeer-N/A-N/Anode-CoauthorCS-N/A-N/A-

node-CoauthorPhysics-N/A-N/Anode-Cora-N/A-N/Agraph-PROTEINS-N/A-N/Agraph-BZR-N/A-N/Agraph-COX2-N/A-N/Agraph-DD-N/A-N/Agraph-ENZYMES-N/A-N/A graph-IMDB-N/A-N/Agraph-scalefree-clustering-path graph-scalefree-const-pathgraph-scalefree-onehot-path graph-scalefree-pagerank-path graph-smallworld-clustering-path graph-smallworld-const-path graph-smallworld-onehot-path graph-smallworld-pagerank-path node-scalefree-clustering-pagerank node-scalefree-const-clustering node-scalefree-const-pagerank node-scalefree-onehot-clustering node-scalefree-onehot-pagerank node-scalefree-pagerank-clustering node-smallworld-clustering-pagerank node-smallworld-const-clustering node-smallworld-const-pagerank node-smallworld-onehot-clustering node-smallworld-onehot-pagerank node-smallworld-pagerank-clustering

We compute pairwise similarities between all GNN tasks

Recall how we compute task similarity

	Anchor Model Performance ranking					Similarity to Task A
Task A	<i>M</i> ₁	<i>M</i> ₂	M_3	M_4	M_5	1.0
Task B	<i>M</i> ₁	M_3	<i>M</i> ₂	M_4	M_5	0.8
Task C	M_5	M_1	M_4	<i>M</i> ₃	<i>M</i> ₂	-0.4

Task similarity computation is cheap:

Using 12 anchor models is a good approximation!

Results 2: Understanding GNN Tasks

GNN task space is informative

Group 1 Proposed task similarity (computed from 12 models) node-AmazonComputers-N/A-N/A node-AmazonPhoto-N/A-N/Anode-CiteSeer-N/A-N/A node-CoauthorCS-N/A-N/A node-CoauthorPhysics-N/A-N/A node-Cora-N/A-N/A graph-PROTEINS-N/A-N/A graph-BZR-N/A-N/A graph-COX2-N/A-N/A raph-DD-N/A-N/A graph-ENZYMES-N/A-N/A graph-IMDB-N/A-N/Agraph-scalefree-clustering-path graph-scalefree-const-path graph-scalefree-onehot-path graph-scalefree-pagerank-path graph-smallworld-clustering-path graph-smallworld-const-path graph-smallworld-onehot-path graph-smallworld-pagerank-path node-scalefree-clustering-pagerank node-scalefree-const-clustering node-scalefree-const-pagerank node-scalefree-onehot-clustering node-scalefree-onehot-pagerank node-scalefree-pagerank-clustering node-smallworld-clustering-pagerank node-smallworld-const-clustering node-smallworld-const-pagerank node-smallworld-onehot-clustering node-smallworld-onehot-pagerank node-smallworld-pagerank-clustering Pairwise similarities between GNN tasks graph-Pi node node-Co node-Coauth

Group 1:

1.00

-0.75

-0.50

-0.25

-0.00

--0.25

-0.50

-0.75

-1.00

Tasks rely on **feature information** Node/graph classification tasks, where input graphs have highdimensional features

 Cora graph has 1000+ dim node feature

Group 2:

Tasks rely on **structural information** Nodes have few features Predictions are highly dependent on graph structure

Predicting clustering coefficients

Format of tasks: Level-Dataset-Feature-Label

GNN task space is informative

	Best GNN Designs Found in Different Tasks								
_		Pre layers	MP layers	Post layers	Connectivity	AGG			
	Task A	2	8	2	skip-sum	sum			
	Task B	1	8	2	skip-sum	sum			
	Task C	2	6	2	skip-cat	mean			

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Results 3: Transfer to Novel Tasks

- Case study: generalize best models to unseen OGB ogbg-molhiv task:
 - ogbg-molhiv is unique from other tasks: 20x larger, imbalanced (1.4% positive) and requires out-of-distribution generalization
- Concrete steps for applying to a novel task:
 - Step 1: Measure 12 anchor model performance on the new task
 Step 2: Compute similarity between the new task and existing tasks
 Step 3: Recommend the best designs from existing tasks with high similarity

 - existing tasks with high similarity

Results 3: Transfer to Novel Tasks

Our task space can guide best model transfer to novel tasks!

Findings:

We pick 2 tasks:

Task A: Similar to OGB Task B: Not similar to OGB Transfer the best model from Task A achieves SOTA on OGB

Transfer the best model from Task B performs badly on OGB

	Task A: graph- scalefree-const-path	Task <i>B</i> : node- Coauthor Physics
Best design in our design space	(1, 8, 3, skipcat, sum)	(1, 4, 2, skipcat, max)
Task Similarity with ogbg-molhiv	0.47	-0.61
Performance after transfer to ogbg-molhiv	0.785	0.736

Previous SOTA: 0.771

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Design Space: Summary

- Systematic investigation of:
 - General guidelines for GNN design
 - **Understandings of GNN tasks**
 - **Transferring best GNN designs across tasks**
 - GraphGym: Easy-to-use code platform for GNN

Pre-Training Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Graph ML in Scientific Domains

Biology: Protein-protein association graphs

Protein function prediction

f() = biological activity?

GNNs for Graph Classification

- GNNs obtain an embedding of an entire graph by following two steps
 - Iteratively aggregate neighboring information to obtain node embeddings
 - Pool node embeddings to obtain a graph

GNNs for Graph Classification

- Node embeddings capture local neighborhood structure
- The embedding of an entire graph is a global aggregation of such node embeddings

Challenges of Applying ML

- Two fundamental challenges in applying ML to scientific domains
- 1. Scarcity of labeled data
 - Obtaining labels requires expensive lab experiments
 - \rightarrow ML models overfit to small training data
- 2. Out-of-distribution prediction
 - Test examples tend to be very different from training examples
 - \rightarrow ML models extrapolate poorly

Challenges for Deep Learning (1)

- Deep learning models have a lot parameters to train (e.g., in the order of millions).
- #(Labeled training data) << #(Parameters)</p>
- Deep learning models are extremely prone to overfitting on small labeled data.

Challenges for Deep Learning (2)

Deep learning models extrapolate poorly

- Models often make predictions based on spurious correlations in a dataset [Sagawa et al. ICML 2020]
- Ex) Image classification between "polar bear" and "brown bear"
- During training:

Adapted from Wikipedia

- Most "polar bears" have the snow background
- Most "brown bears" have the grass background
- Model can learn to make prediction based on the image background, rather than the animal itself.
- At test time, what if we see "polar bear" on the grass?

Injecting Domain Knowledge

- Goal: Improve model's out-of-distribution prediction performance even with limited data.
- Key idea: Inject domain knowledge into a model before training on scarcely-labeled tasks!
 - The model already knows the domain knowledge before training on data
 - So that the model can
 - Generalize well without many task-specific labeled data
 - Extract essential (non-spurious) pattern that allows better extrapolation.

Effective Solution: Pre-Training

- We pre-train a model on relevant tasks, where data is abundant.
 - After pre-training, the model parameters already contain domain knowledge.
- For downstream tasks (what we care about, typically with small #labeled data)
 - We start from the pre-trained parameters and finetuning them.

Fine-tuning on downstream tasks

Pre-Training is Successful

- Pre-training has been hugely successful in computer vision and natural language processing.
 - Pre-training improves label-efficiency.
 - Pre-training improves out-of-distribution performance [Hendrycks et al. ICML 2019]
- Pre-training is a powerful solution to the two ML challenges in scientific applications
 - Scarce labels
 - Out-of-distribution prediction

Pre-training GNNs

- Let's consider pre-training GNNs!
- We design GNN pre-training strategies and systematically investigate
- **Q1.** How effective is pre-training GNNs?
- **Q2.** What is the effective pre-training strategy?

How Effective is Pre-training GNNs?

Let's think about molecular property prediction for drug discovery.

Naïve strategy

Multi-task supervised pre-training on relevant labels.

Experimental Setting

Molecule classification

- Task: Binary classification. ROC-AUC as metric $f(1) = \{0,1\}$
- Supervised pre-training data
 - 1310 diverse binary bioassays annotated over ~450K molecules
- Downstream task (what we care about!)
 - 8 molecular classification datasets (relatively-small, 1K— 100K molecules)
- Data split: Scaffold (test molecules are out-ofdistribution)

How Effective is Pre-training GNNs?

Naïve strategy:

Multi-task supervised pre-training on relevant labels. → Limited performance improvement on downstream tasks. Often leads to negative transfer

Molecule classification performance

What is the Effective Strategy?

Key idea: Pre-train both node and graph embeddings.

→ GNN can capture domain-specific knowledge of both local and global structure Pre-training on

What is the Effective Strategy?

Key idea: Pre-train both node and graph embeddings.

Proposed Pre-Training Methods

Attribute Masking: Algorithm

- Mask node attributes
- Use GNNs to generate node embeddings.
- Use the embeddings to predict masked attributes.

Attribute Masking: Intuition

Intuition

 Through solving the masked attribute prediction task, a GNN is forced to learn domain knowledge, .e.g., chemical rules.

Context Prediction: Algorithm

- For each graph, sample one center node.
- Extract neighborhood and context graphs.
- Use GNNs to encode neighborhood and context graphs into vectors.
- Maximize/minimize the inner product between true/false (neighborhood, context) pairs.

Context Prediction: Intuition

Intuition

Subgraphs that are surrounded by similar contexts are semantically similar.

In natural language processing, this is called distributional hypothesis, and is exploited in the word2vec model [Mikolov et al. NIPS 2013].

Supervised Attribute Prediction

Multi-task supervised training on many relevant labels.

Overall Strategy

Node-level pre-training Graph-level pre-training Fine-tuning on downstream tasks

Results of Our Strategy

- Avoids negative transfer.
- Significantly improve the performance.

Comparison of GNN models

- When different GNN models are pre-trained, the most expressive model (GIN) benefits the most from pre-training.
- Intuition: Expressive model can learn to capture more domain knowledge than less expressive models.

	Chemistry			Biology		
	Non-pre-trained	Pre-trained	Gain	Non-pre-trained	Pre-trained	Gain
GIN	67.0	74.2	+7.2	64.8 ± 1.0	$\textbf{74.2} \pm \textbf{1.5}$	+9.4
GCN	68.9	72.2	+3.4	63.2 ± 1.0	70.9 ± 1.7	+7.7
GraphSAGE	68.3	70.3	+2.0	65.7 ± 1.2	68.5 ± 1.5	+2.8
GAT	66.8	60.3	-6.5	$\textbf{68.2} \pm \textbf{1.1}$	67.8 ± 3.6	-0.4

Pre-Training GNNs: Summary

- GNNs have important applications in scientific applications, but they present challenges of
 - Label scarcity
 - Out-of-distribution prediction
- Pre-training is promising to tackle the challenges.
- However, naïve pre-training strategy gives suboptimal performance and even leads to negative transfer.
- Our strategy: Pre-train both node and graph embeddings → Leads to significant performance gain on downstream tasks.

CS224W: Wrap-Up

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Modern ML Toolbox

Modern deep learning toolbox is designed for simple sequences & grids

This Course

How can we develop neural networks that are much more broadly applicable?

<u>Graphs</u> are the new frontier of deep learning

Graphs and Relational Data

3/16/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

CS224W: Deep Learning in Graphs

Models of Interest: Invariances

The Bottom Line

 There is exciting relational structure in many many real-world problems

- Molecules/Proteins as strings vs. graphs
- Travel time duration over the map graph
- Identifying and harnessing this relational structure leads to better predictions
 - AlphaFold
 - Biomedicine
 - Recommender systems

You learned a lot!

Theory:

Models, architectures, approaches

Practice:

- Collab notebooks
- Homeworks
- Creative research:
 - Course project

The real-world use cases and applications

What Next?

Project write-ups:

Tues March 21 Midnight (11:59PM) Pacific Time No late days!

Courses:

CS246: Mining Massive Datasets (Spring)

- Data Mining & Machine Learning for big data
 - (big==doesn't fit in memory/single machine)
 - Fast clever algorithms for real-world problems
 - Distributed data processing frameworks: MapReduce, Spark

In Closing...

It has been a challenging year for everyone

- Back to campus, work from home, social distancing, fatigue, disease, well-being
- Virtual office hours, take home exam
- But we *all* did our best and did best given the challenging circumstances

Thank you, team!!!

Course Assistants

Hamed Nilforoshan Head CA

Mohammad Aljubran

Sharmila Nangi

Xuan Su

Serina Chang

Lun Yu (Tina) Li

Feiyang (Kathy) Yu

Anirudh Sriram

Aman Bansal

Paridhi Maheshwari

Arvind Sridhar

Zhuoyi Huang

I am very proud of everyone!

- You Have Done a Lot!!!
- And (hopefully) learned a lot!!!
 - Answered questions and proved many interesting results
 - Implemented a number of methods
 - And did excellently on the project!

Thank You for the Hard Work!!!