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Readings

• Readings are updated on the website (syllabus page)

• Readings: 
• LIME (local interpretation)

• SHAP (attribution) 

• GNNExplainer

• GNN Explainability Taxonomy

• Trustworthy Graph Neural Networks

• GraphFramEx Evaluation
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https://homes.cs.washington.edu/~marcotcr/blog/lime/
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1903.03894
https://arxiv.org/abs/2012.15445
https://arxiv.org/pdf/2205.07424.pdf
https://arxiv.org/pdf/2206.09677.pdf


Trustworthy Graph Learning

• Trustworthy AI/GNN includes many components
• Explainability, fairness, robustness, privacy, …

• Algorithms to tackle combination of these aspects

• Challenges
• Role of graph topology is previously unexplored in these problems

• Comprehensive quantiative evaluation
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Big Picture: Aspects of Trustworthy GNNs

• Robustness

• Explainability

• Privacy

• Fairness

• Accountability

• Environmental well-being

• Others
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Each aspect can play a role in 
gaining trust from users of deep 
learning models

Challenges in GNN context
• Role of graph topology is 

previously unexplored in these 
problems

• Quantiative evaluation is often 
difficult



Outline of  Today’s Lecture
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1. Explainability and its Problem Settings

2. GNNExplainer

3. Explainability Evaluation



Outline of  Today’s Lecture
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1. Explainability and its Problem Settings
Motivation, goals and settings

2. GNNExplainer

3. Explainability Evaluation



Explainability

• The black-box nature of deep learning makes it a major challenge to:
• Understand what is learned by the ML model

• Extract insights of the underlying data we are trying to model

• Explainable Artificial Intelligence (XAI) is an umbrella term for any research 
trying to solve the black-box problem for AI 

• Why is it useful? 
• Enable users to understand the decision-making of the model

• Gain trust from human users of the deep learning system

• Simple-to-read guide: 2004.14545.pdf (arxiv.org)
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What was explainable about 
previous ML models?

https://arxiv.org/pdf/2004.14545.pdf


Explainable Models: Linear regression

• Linear regression
• Slope is explainable (how much does one variable 

affects a prediction)

• 𝑦 = 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 +⋯

• Each feature has an associated weights, 
indicating its importance

• “A change of Δ𝑥 amount to feature 𝑥1 will result in 
increase of prediction by Δ𝑦
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Slope

prediction weights features



Explainable Models: Dimension Reduction

• Dimension reduction
• Dimension reduction allows us to visualize the training data distribution

• Decision boundary can be visualized and understood
• Instances at the boundary characterizes how different classes are different
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Source Source

https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://towardsdatascience.com/logistic-regression-and-decision-boundary-eab6e00c1e8


Explainable Models: Decision Tree

• Decision trees are very explainable!

• On every node of the decision tree, we understand a criteria for prediction 

• We can perform statistics for each decision node
• E.g. if the condition of the node is met, 80% of the instances will be classified as 

being positive

Rex Ying, Guest Lecture at Stanford CS 224W
Source Source
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https://www.geeksforgeeks.org/decision-tree/
https://arxiv.org/pdf/2011.07876.pdf


Explainable Characteristics

• What makes model explainable?
• Importance values (for pixels, features, words, nodes in graphs …)

• Attributions: straightforward relationships between prediction 
and input features

• Encourage concepts and prototypes
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https://arxiv.org/abs/2007.04612


Explanation in Computer Vision: 
A particular region of the image displays the predicted class of objects (cat / dog in 
this example)

Example: Computer Vision
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Importance scores on pixels

computation process of CNN and the prediction

explanation of “cat”

explanation of “dog”

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization."

original graph

DOG

CAT

…
…



Example: Natural Language Processing

Rex Ying, Guest Lecture at Stanford CS 224W

Explanation in Natural Language Processing: important tokens that lead to the prediction  

“A mindless but 
entertaining movie 
with cool effectss”

Language 
Model Positive

“These toys were in a really 
bad shape, two tails fell off 
when I opened the package 
and the coloring is peeling 
off everywhere”

Language 
Model Negative

Input text Sentiment Prediction Explanation

Dunn, Andrew, Diana Inkpen, and Răzvan Andonie. "Context-Sensitive Visualization of Deep Learning Natural Language Processing Models."
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Example: Graph Learning

Explanation in Graph Learning: an important subgraph structure and a small subset of 
node features that play a crucial role in GNNs prediction

Rex Ying, Guest Lecture at Stanford CS 224W
Ying, et al. "Gnnexplainer: Generating explanations for graph neural networks."

Explanations for prediction at node 𝒗
A: Import subgraph structure                                B: important subset of features
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Goal of GNN Explainability

• Model’s behavior might be different from the underlying phenomenon 

• Explaining ground truth phenomenon

• Explaining model predictions

Rex Ying, Guest Lecture at Stanford CS 224W

What are the characteristics 
of toxic molecules?

Why does the model 
recommend no loan for 
Person X?
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Graph of 
bank 
transactions



Deep Learning Explainability Methods: Examples

• Proxy Model
• Learn an interpretable model that locally 

approximates the original model. (Example: SHAP)

• Saliency Maps
• Compute the gradients of outputs with respect to 

inputs (example: Grad-CAM)

• Attention Mechanisms
• Visualize attention weights in attention models, 

such as transformer and GAT architectures.
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https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1610.02391
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1710.10903


Reasons for Explainability

Why do we need Explainability?

• Trust: Explainability is a prerequisite for humans to trust and accept the 
model’s prediction.

• Causality: Explainability can sometimes imply causality for the target 
prediction: attribute X causes the data to be Y

• Transferability: The model needs to convey an understanding of decision-
making by humans before it can be safely deployed to unseen data. 

• Fair and Ethical Decision Making: Knowing the reasons for a certain decision 
is a societal need, in order to perceive if the prediction conforms to ethical 
standards.
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Explainability Settings (1)

By target:

• Instance-level: a local explanation for a 
single input 𝑥 and the prediction ො𝑦

• identify the important components of 
individual instances

• Model-level: a global explanation for a 
specific dataset 𝐷 or classes of 𝐷

• provide high-level insights into the model’s 
decision-making behaviors

Rex Ying, Guest Lecture at Stanford CS 224W

original images of 
Retinal 

Detachment

original images
of glaucoma

original images of 
diabetic 

retinopathy

Example: model-level explanations for each class

Engelmann, Justin, Amos Storkey, and Miguel O. Bernabeu. "Global explainability in aligned image modalities."

explanation
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Explainability Settings (2)

Rex Ying, Guest Lecture at Stanford CS 224W

ante-hoc: Explainability is built-in from 
the beginning of the model creation
(for intrinsically interpretable / white-
box models)

post-hoc: Explainability is 
created after model creation 
(for black-box models) model-specific: the 

machanism for generating 
explanation is model-
dependent and works only 
for a specific model.

model-agnostic: 
the machanism for 
generating explnation is 
applicable for many or 
even all model classes 

By stages: By applicability of the method:
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Outline of  Today’s Lecture
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1. Explainability and its Problem Settings

2. GNNExplainer
The first and very commonly used GNN explainability method
Reference: GNNExplainer (NeurIPS 2019)

3. Explainability Evaluation

https://proceedings.neurips.cc/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf


Example: Financial markets as graphs
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GNN Explainability Use Cases

• Questions after training GNNs (post-hoc setting):
• Why is an item recommended to a user?

• Why is the molecule mutagenic?

• Why is the user classified as fraudulent?
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?

Mutagenic MoleculeRecommender System Fraudulent Detection



Explainability: Motivation (2)

• Example questions after training GNNs:

• Why is an item recommended to a user? 

• Why is the molecule mutagenic? 

• Why is the user classified as fraudulent?                      
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?

Mutagenic MoleculeRecommender System Fraudulent Detection

Explain link prediction
Explain graph classification
Explain node classification



GNNExplainer Pipeline

• Training time:
• Optimize GNN on training graphs
• Save the trained model

• Test time:
• Explain predictions made by the GNN
• On unseen instances (nodes, edges, graphs)
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Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurIPS 2019

https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html


Challenges

• Explain predictions for multiple tasks
• Node classification
• Graph classification
• Link prediction

• Model agnostic (post-hoc)
• Need to be applied to a variety of GNN models: GCN, GraphSAGE, GAT etc.

• Predictions on graphs are induced by a complex combination of nodes, edges
between them, and even motifs / subgraph structures.

• Unlike in CV, gradient is a less reliable signal on real-world graphs due to the 
discrete nature of edges

• In many cases (counterfactual explanation, model-level explanations), gradients cannot be 
used at all
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Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurIPS 2019

https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html


How to explain a GNN

• Consider the general message-passing framework

• The importance of node features

• GNNExplainer explain both aspects simultaneously

27

Structural explanation Feature explanation

3/15/2023

Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurIPS 2019

Rex Ying, Guest Lecture at Stanford CS 224W

https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html


GNNExplainer Input

• Without loss of generality, consider node classification task:

• Input computation graph:  𝐺𝑐(𝑣)

• Adjacency matrix of 𝐺𝑐 : 𝐴𝑐 𝑣 ∈ {0,1}𝑛×𝑛

• Node Feature: 𝑋𝑐 𝑣 = 𝑥𝑗 𝑣𝑗 ∈ 𝐺𝑐(𝑣)
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Suppose GNN predicts 
label  ෝ𝒚 for node 𝒗

Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurIPS 2019

https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html


GNNExplainer Output

• GNN model 𝝓
learns 𝑃𝜙 𝑌 𝐴𝑐 𝑣 , 𝑋𝑐 𝑣 )

• 𝑌 denotes predicted label of 𝑣

• GNNExplainer outputs (𝐴𝑆, 𝑋𝑆
𝐹)

• Graph 𝐺𝑆 with adjacency matrix 𝐴𝑆
is a subgraph of graph with 
adjacency matrix 𝐴𝑐 𝑣 (omit 𝑣)

• 𝑋𝑆
𝐹 = 𝑥𝑗

𝐹 𝑣𝑗 ∈ 𝐺𝑆 are features 
for 𝐺𝑆

• Mask 𝐹 masks out unimportant 
dimensions
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Explanation 

𝐺𝑆(𝑣)

𝑥𝑗
𝐹 (unimportant dimensions masked)

Computation 

Graph 𝐺𝑐 𝑣

Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurIPS 2019

https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html


Explain by Mutual Information

• Mutual information (MI)
• A measure of the mutual correlation between the two random variables.

• Good explanation should have high correlation with model prediction

• Relation to entropy:
𝑀𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

• GNNExplainer Objective:
• Maximize MI between label and explanation

max
𝐺𝑆

𝑀𝐼 𝑌; 𝐴𝑆, 𝑋𝑆 = 𝐻 𝑌 − 𝐻(𝑌|𝐴 = 𝐴𝑆, 𝑋 = 𝑋𝑆
𝐹)
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Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurIPS 2019

https://proceedings.neurips.cc/paper/2019/hash/d80b7040b773199015de6d3b4293c8ff-Abstract.html


Explain by Optimization

• By relation to entropy, the objective is equivalent to minimization of 
conditional entropy:

m𝑎𝑥
𝐴𝑆

𝑀𝐼 𝑌| 𝐴𝑆 , 𝑋𝑆 = m𝑖𝑛
𝐴𝑆

𝐻 𝑌 𝐴 = 𝐴𝑆, 𝑋 = 𝑋𝑆
𝐹)

• Finding 𝐴𝑆 that minimizes the conditional entropy is computationally expensive! 
• Issue: Exponentially many possible 𝐴𝑆

• Solution: Treat explanation as a distribution of “plausible explanations”, 
instead of a single graph

• Optimize the expected explanation

• Benefit 1: captures multiple possible explanations for the same node

• Benefit 2: turns discrete optimization to continuous
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Subgraph Feature subset



• Continuous relaxation
• Optimize the expected adjacency matrix 𝐴𝑆

min
𝒜

𝔼𝐴𝑆~𝒜 𝐻(𝑌|𝐴 = 𝐴𝑆, 𝑋 = 𝑋𝑆)

• View 𝔼𝐴𝑆~𝒜 as an adjacency matrix where entries are continuous

• Approximation
min
𝒜

𝐻(𝑌|𝐴 = 𝔼𝒜[𝐴𝑆], 𝑋 = 𝑋𝑆)

• Optimize the expectation by masking

• Use 𝐴𝐶 ⊙Mask to represent 𝔼𝒜[𝐴𝑆]

• If Maskij close to 1, keep edge 𝑖, 𝑗 ; if close to 0, drop edge 𝑖, 𝑗 .

GNNExplainer Model

32

expectation of explanations

Rex Ying, Guest Lecture at Stanford CS 224W

continuous

Element-wise multiply

3/15/2023



GNNExplainer Model

• Let Mask = 𝜎 𝑴 be the adjacency mask
• Continuous relaxation: 𝜎 𝑀 ∈ ℝ instead of binary

• Sigmoid function 𝜎 squashes 𝑴 into [0, 1]

• Masking: Element-wise multiply 𝜎 𝑴 by 𝐴𝑐

• Objective:
min
𝑀

−𝐻(𝑃𝜙 𝑌 = 𝑦 𝐺 = 𝐴𝐶 ⊙𝜎 𝑀 ,𝑋 = 𝑋𝑆))
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GNNExplainer Model

• Optimize 𝑀 :
min
𝑀

−𝐻(𝑃𝜙 𝑌 = 𝑦 𝐴 = 𝐴𝑐 ⊙𝜎 𝑀 ,𝑋 = 𝑋𝑆))

• 𝐴𝑐 ⊙𝜎 𝑀 is the relaxed adjacency matrix
• Entries are real-values in [0, 1], instead of being binary

• Threshold 𝐴𝑐 ⊙𝜎 𝑀 to get 𝐺𝑆. Example:
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𝐴𝑐 ⊙𝜎 𝑀 Graph 𝐺𝑆 after thresholding

Before training After training 𝑀 Before training After training 𝑀

Prediction probability distribution

by the GNN with parameters 𝜙

Relaxed adjacency matrix



Feature Explanation

• Similarly select features by optimizing for feature mask 𝐹
𝑋𝑆
𝐹 = 𝑥𝑗

𝐹 𝑣𝑗 ∈ 𝐺𝑆 , 𝑥𝑗
𝐹 = [𝑥𝑗,𝑡1 , … , 𝑥𝑗,𝑡𝑘]

For the selected dimensions,  𝜎(𝐹𝑡𝑖) → 1

• Problem: Zero value could be important!

• Solution: Measure feature importance by how much drop in model 
confidence when features are replaced with explainability baselines.

• Concept: explainability baseline is the “null model” of a feature, such as the 
mean of the marginal distribution of each feature.
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https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-feature-attribute-shap-baselines.html


• Optimize feature and adjacency masks jointly with regularization

• Concise explanation
• Mask size: Sum 𝜎 𝑀
• Feature size: Sum(𝜎(𝐹))

• Final Objective
min
𝑀

−𝐻 𝑃𝜙 𝑌 = 𝑦 𝐺 = 𝐴𝑐 ⊙𝜎 𝑀 ,𝑋 = 𝑋𝑆
𝐹 + 𝜆1 Sum 𝜎 𝑀 + 𝜆2Sum(𝜎(𝐹))

• Threshold 𝐴𝑐 ⊙𝜎 𝑀 to get the explanation 𝐺𝑆
• The optimization is performed when explaining every instance

Regularization Constraints
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Sum of entries in feature and adjacency masks

𝑀, 𝐹 are learnable Parameters when explaining 𝐺𝑐(𝑣)



GNNExplainer Model

• Explain different tasks
• Node classification: optimize mask (𝑀, 𝐹) on the node’s neighborhood (computation 

graph)
• Link prediction: optimize mask (𝑀, 𝐹) on union of 2 node neighborhoods
• Graph classification: optimize mask (𝑀, 𝐹) on the entire graph

• Can adapt to different architectures
• Graph Attention Networks
• Gated Graph Sequence
• Graph Networks
• GraphSAGE
• …

3/15/2023 Rex Ying, Guest Lecture at Stanford CS 224W 37

We replace 𝑃𝜙 with the respective

architecture



Experiments: Alternative Approaches (1)

• GNN saliency map based on gradients of output score with respect to inputs

• Gradient is a local approximation of the slope

• We compute gradient of objective with respect to the edges and features

38
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Slope



Experiments: Alternative Approaches (2)

• Attention values based on Graph Attention Networks (GAT)
• Edge importance indicated by average attention weights across layers for each edge

• Attention-based importance is available for edges
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Keep that

in mind

𝜶𝟑𝟏

𝜶𝟐𝟏

𝜶𝟒𝟏

Transformers

User

𝛼0

𝛼1

𝛼2𝛼3

𝛼4

Item Item

Item

GATs



Experiments: Datasets (1)

• Synthetic task: is a node part of a given motif?

• 100 Motifs are randomly attached to nodes in base graphs (500 
nodes)

• Node classification (structural roles)
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Barabasi-Albert base Tree base



Experiments: Datasets (2)

• Real-world tasks 
• Social networks (Reddit-binary dataset)

• Reddit community prediction
• Chemistry (Mutagenic molecule dataset)

• Chemical property prediction
• Graph classification
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Results: Quantiative Analysis

• Node classification with ground-truth

• Measures accuracy of explanation with respect to ground-truth
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BA-House BA-Comm Tree-Cycle Tree-Grid

Grad 88.2 73.9 82.4 61.2

Att 81.5 75.0 90.5 66.7

GNN-Explainer 92.5 83.6 94.8 87.5



Results: Qualitative Analysis
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Outline of  Today’s Lecture
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1. Explainability and its Problem Settings

2. GNNExplainer

3. Explainability Evaluation
GNN Explainability Taxonomy and Evaluation
Reference: GraphFramEx (LoG 2022)

https://arxiv.org/abs/2206.09677


GNN Post-hoc Explanation Pipeline

• Goal recap: identify important subgraph structures and node features 
(masks)
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Taxonomy of GNN Explainability Methods
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Graph Neural Networks 
Explanations

Intrinsic Explanations Post-hoc Explanations

Interpretable ML

Model-aware Model-agnostic

Input-level/Local Model-level/Global

Gradients/features Decomposition SurrogatePerturbation Counterfactual

SA
Integrated Gradient

Guided BP
CAM

Grad-CAM

LRP
GNN-LRP

Excitation BP

GNNExplainer
PGExplainer
GraphMask

Refine
Gem

Causal Screening
ZORRO

SubgraphX
GraphSVX

CF-Explainer
STEEX

RG-Explainer

GraphLIME
RelEx

PGM-Explainer
XGNN

Generation

Amara, Kenza, et al. “GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks.”, LoG 2022

Perturbation-based approaches  
(including GNNExplainer) have 
been a very popular approach

https://arxiv.org/abs/2206.09677


Explainability Method Evaluation

• Challenge: groundtruth might not always be available

• Evaluation is multi-dimensional

• Goal (phenomenon vs. model)

• Masking strategy

• Type (sufficiency vs. necessity)

• GraphFramEx
Benchmarks and evaluation criteria for 
graph explainability
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https://arxiv.org/pdf/2206.09677.pdf


Explanation Goal

• Phenomenon Explanation
• Explain the underlying reasons for the ground truth phenomenon

• Model Explanation
• Explain why model makes a particular prediction

• We will explain the fidelity metric in both cases:
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Explanation Goal: Fidelity Metric
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Goal

• Define 2 fidelity metrics: 𝑓𝑖𝑑+ and 𝑓𝑖𝑑− to capture different aspects of explanation quality
• The formula of fidelity depends on the goal:

• Goal 1: explain phenomenon of the data
• Goal 2: explain what has the model learned

groundtruth

prediction



Fidelity Metric Details

• Characteristics of a good explanation

• 𝑓𝑖𝑑+: removal important subgraph will result in dramatic decrease of the 
confidence  

• 𝑓𝑖𝑑−: Using only the important subgraph will result in similar confidence
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Removal of 
important subgraph

Keeping only the 
important subgraph

Original prediction 
probability / confidence



Explanation Evaluation Criteria 

• Notably, the explanation evaluation criteria are multi-dimensional

• Explanation quality
• High fidelity / characterization scores

• Sufficiency and necessity aspects (see the previous slide)

• Explanation stability
• Explanations are consistent across random optimization seeds (measure variance)

• Explanation complexity
• The explanation should be concise and easy to understand by human (measure size)
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Types of Explanations

• Sufficiency
• An explanation is sufficient if it leads by its own to the initial prediction of the 

model explanation.  (𝑓𝑖𝑑− → 0)

• Necessity
• An explanation is necessary if the model prediction changes when removing it 

from the initial graph. (𝑓𝑖𝑑+ → 1)

• Use the Characterization score to summarize the explanation quality

𝑐ℎ𝑎𝑟𝑎𝑐𝑡 =
𝑤++𝑤−

𝑤+
𝑓𝑖𝑑+

+
𝑤−

1−𝑓𝑖𝑑−

=
𝑤++𝑤− ×𝑓𝑖𝑑+× 1−𝑓𝑖𝑑−

𝑤+⋅ 1−𝑓𝑖𝑑− +𝑤−⋅𝑓𝑖𝑑+

Where 𝑤+ and 𝑤− are the weights of both fidelity metrics 
(commonly set 𝑤+ = 𝑤− = 1)
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Characterization Score

• Characterization score to summarize the explanation quality

𝑐ℎ𝑎𝑟𝑎𝑐𝑡 =
𝑤++𝑤−

𝑤+
𝑓𝑖𝑑+

+
𝑤−

1−𝑓𝑖𝑑−

=
𝑤++𝑤− ×𝑓𝑖𝑑+× 1−𝑓𝑖𝑑−

𝑤+⋅ 1−𝑓𝑖𝑑− +𝑤−⋅𝑓𝑖𝑑+

• Necessary AND sufficient
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1
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SUFFICIENT

NECESSARY



Results: Explain Efficiency vs. Characterization Score
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• Multi-dimensional performance comparison of explainability methods

• Explanations have 𝑘 = 10 edges



Explainability on Large-scale Real-world Graphs

• The conclusion can be very different depending on datasets and tasks

• Experiment on the e-commerce graph at eBay 

• GNNExplainer achieves the highest metric in both necessity and sufficiency 
aspects
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Other Types of Explanations (1)

• Counterfactual explanations: what makes an instance belonging to a 
different class (than the predicted / ground-truth class)? 

• Useful in understanding distinctions between classes

• For example, real-world applications often wants to know what does it take 
to convert a user from “inactive / churn” class to “active / premium” class
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Small adjustment to 
switch the instance to 
a different class 

Delete edge

Add edge

Example method: CF-GNNExplainer

https://arxiv.org/abs/2102.03322


Other Types of Explanations (2)

• Model-level explanations: what are the general characteristics of ALL
instances belonging to a certain class?

• Useful in extracting general insights for all instances of a class

3/15/2023 Rex Ying, Guest Lecture at Stanford CS 224W 59

Example method: XGNN

https://arxiv.org/pdf/2006.02587.pdf


Summary of the Lecture

• Trustworthy GNN
• Robustness, explainability, privacy, fairness, accountability, efficiency and

environmental well-being,…

• GNNExplainer
• Perturbation-based approach

• Optimize for masks that indicate important substructure and node features

• Explainability evaluation of GNN
• Explainability evaluation is multi-dimensional in nature

• Fidelity and characterization scores

• Other types of explanations: counterfactual, model-level explanations
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