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Stanford CS224W: GNNs
and Algorithmic
Reasoning



Graphs and Computer Science

20t century saw unprecedented development of
algorithms
Sorting, shortest paths, graph search, routing

Algorithmic paradigms such as greedy, divide-and-
conquer, parallelism, recursion, deterministic vs non-
deterministic REEEEREY
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Graphs and Computer Science

12/6/23

The study of algorithms and data structures
are one of the most coveted areas of
computer science

All of computing is built on top of these
fundamental algorithms

100% including ML!

But so far this class has (mostly) treated GNNs
as a “new” type of graph algorithm



Graph Machine Learning

This class:

Input raph node embeddings

How to learn mapping function f?

Connection to classical graph algorithms unclear
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Graph ML and Graph Algorithms

So far treated GNNs as a “new” type of graph
algorithm.

But in reality, graph ML has deep connections
to the theory of computer science

Today:

Ground development of GNNs in context of prior
graph algorithms
Deep connections between “classical” algorithms and GNNs

Use to inform neural networks architecture design
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Plan for Today

Part 1
An algorithm GNNs can run

Part 2

Algorithmic structure of neural network
architectures

Part 3

What class of graph algorithms can GNNs
simulate?

Part4

Algorithmic alignment: a principle for neural net
design
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Other Reading

The work of Petar Velickovic

Lectures at Cambridge, expository papers,
tutorials etc.

Some of today’s material drawn from Petar’s
lectures
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Stanford CS224W: GNNs
and Classical Algorithms



Graph Neural Networks

Determine node Propagate and
computation graph transform information

GNNs defined by computation process
l.e., how information is propagated across the
graph to compute node embeddings
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GNNs as graph algorithms

We define “message passing” a computational
process

Message passing defines a

But it is not clear what algorithm(s)

A clue to get started: we have already seen one
algorithm GNNSs can express...

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs



GNNs can express 1-WL algorithm

GNNs can execute the 1-WL isomorphism test

Recall lecture 6: GNNs at most as expressive as the 1-
WL isomorphism test

GIN is exactly as expressive as 1-WL
Argument: show that GIN is a neural version of 1-WL

Let’s recall the test...
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Stanford CS224W: GNNs
and the Weisfeiler-Lehman
Isomorphism Test



GNNs and the 1-WL isomorphism test

Simple test for testing if two
graphs are the same:

Assign each node a “color”

Randomly hash neighbor colors
until stable coloring obtained

Read out the final color histogram
Declare two graphs:

Non-isomorphic if final color
histograms differ

Test inconclusive otherwise (i.e., we
do not know for sure that two graphs are
isomorphic if the counts are the same)

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Lehman

L2

o g

L

V& ¢
=

Weisfeiler

15



GNNs and the 1-WL isomorphism test

Running the test... ¢ = HASH function

(i.e., injective function)

(diagrams thanks to Petar Velickovic)
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GNNs and the 1-WL isomorphism test

Running the test... ¢ = HASH function
(i.e., injective function)

$(o, {0, 0})
¢(o, {0,0,0})

(diagrams thanks to Petar Velickovic)
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GNNs and the 1-WL isomorphism test

Running the test... ¢ = HASH function
(i.e., injective function)

$(o, {0, 0}) $(o,
¢(o, {0,0,0}) d(

(diagrams thanks to Petar Velickovic)
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GNNs and the 1-WL isomorphism test

Running the test... ¢ = HASH function
(i.e., injective function)

$(o, {0, 0}) $(o,
¢(o, {0,0,0}) d(

(diagrams thanks to Petar Velickovic)
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GNNs and the 1-WL isomorphism test

Running the test... ¢ = HASH function
(i.e., injective function)

d(o, {o,0}) b (e,
d(o, {0,0,0}) b (

(diagrams thanks to Petar Velickovic)
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GNNs and the 1-WL isomorphism test

Running the test... ¢ = HASH function
(i.e., injective function)

¢(o, {o,0}) $(o,
¢(o, {0,0,0}) ¢(,

(diagrams thanks to Petar Velickovic)

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21



GNNs and the 1-WL isomorphism test

Test does fail to distinguish some graphs, e.g.,

L/
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GNNs and the 1-WL isomorphism test

We have seen GIN is as expressive as the 1-WL
test

i.e., Given G, G,, the following are equivalent:
there exist parameters s.t. GIN(G1) # GIN(G,)
1-WL distinguishes G4, G,
GIN is a “neural version” of the 1-WL algorithm

Replaces HASH function with learnable MLP
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GNNs and the 1-WL isomorphism test

We have seen GIN is as expressive as the 1-WL test
i.e., Given G4, G-, the following are equivalent:

there exist parameters s.t. GIN(G;) # GIN(G,)

1-WL distinguishes Gl,ﬁz .
GIN is a “neural version” of the 1-WL algorithm

But this does not mean that 1-WL is the only
graph algorithm GNNs can simulate
An untrained GNN (random MLP = random hash)

is close to the 1-WL test
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GNNs and the 1-WL isomorphism test

We have seen GIN is as expressive as the 1-WL test

i.e., Given G, G,, the following are equivalent:

there exist parameters s.t. GIN(G;) # GIN(G,)

1-WL distinguishes G, G,
GIN is a “neural version” of the 1-WL algorithm
But this does not mean that 1-WL is the only
graph algorithm GNNs can simulate
An untrained GNN (random MLP = random hash)
is close to the 1-WL test
Today’s question: what other algorithms can
(trained) GNNs simulate?
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Plan for Today

Part 1
An algorithm GNNs can run

Part 2

Algorithmic structure of neural network
architectures

Part 3

What class of graph algorithms can GNNs
simulate?

Part4

Algorithmic alignment: a principle for neural net
design
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Stanford CS224W:
Algorithmic structure of
neural networks



Neural Networks as Algorithms

A neural network architecture defines a learnable
computer program

Eventual Aim: identify a broad class of “classical”
(graph) algorithms that GNNs can easily learn

This is different from our previous study of expressive
power
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Neural Networks as Algorithms

Key perspective switch:
In this lecture, we are not focusing on expressive power (as in
lecture 6).

Instead we are focused on what tasks an architecture can easil
learn to solve
For today: easily = sample efficient (not too much training data)

Key intuition:
MLPs easily learn smooth functions (e.g., linear, log, exp)

MLPs bad at learning complex function (e.g., sums of smooth
functions - i.e., for-loops)
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Neural Networks as Algorithms

Approach: define progressively more complex
algorithmic problems, and corresponding neural net
architectures capable of solving each
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Neural Nets and Algorithm Structure

Problem 1 (feature extraction):

n
Input: “flat” features X € R (e.g., color, size, position)
Output: scalar value y (e.g., is it round and yellow?)
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Neural Nets and Algorithm Structure

Problem 1 (feature extraction):

n
Input: “flat” features X € R (e.g., color, size, position)
Output: scalar value y (e.g., is it round and yellow?)
No other prior knowledge (minimal assumptions)
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Problem 1: feature extraction

Problem 1 (task on one object):

n
Input: “flat” features X € R (e.g., color, size, position)
Output: scalar value y (e.g., is it round and yellow?)
No other prior knowledge (minimal assumptions)

Q: What neural network choice

suits this problem? ) e

A: MLPs (multilayer L 4

perceptrons) . WA
Universal approximator @K & VA A
Makes no assumptions on BN /N
input/output structure

33
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Architectures and Problem Type

f
MLP

./I\ task on one object

~ feature extraction

Lets consider tasks on many objects...
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Problem 2: Summary statistics

Problem 2 (summary statistics):

a set of objects {X;}, each with features containing

their coordinate and color x; = [x£°lor, xfoordinate]

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35


https://arxiv.org/abs/1905.13211

Problem 2: Summary statistics

Problem 2 (summary statistics):

Input: a set of objects {X;}, each with features containing

their coordinate and color x; = [xi“’lor, xico"rdmate]

Task Output: some aggregate property of the set (e.g.,
largest x-coordinate)

(Answer: 5)
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Problem 2: Summary statistics

Problem 2 (summary statistics):

Input: a set of objects {X;}, each with features containing

their coordinate and color x; = [xi“’lor, xi“’"rdmate]

largest x-coordinate
coordinate)

y({Xi}) = max;(X;

coordinate > out:

if x;
OUt = Xi
— — =~ _ N Return out

coordinate

(Answer: i)
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Problem 2: Summary statistics

MLP model: MLP(Xq, ..., X;,)
Not well suited to this task
To learn max (and min) MLP has to learn

to execute a for-loop

This is a complex operation, MLP needs out=-in1f
Fori=1,..

lots of data to learn £ coordinate o o+

coordinate

i
OUt = Xi
Return out

(Answer: 5)

coordinate

y({xi}) = max;(x; )
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Problem 2: Summary statistics

New DeepSet model:
DeepSet({x;}) = MLP; (%; MLP,(x;) )
Well suited to this task

e ¢ 66

’—s ——— e T e e e
-9 -4 -3 —d =1 0 1 2 3 4 9 6
y({x;}) = max_(x_coordinate) (Answer: 5)
i i(&i

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39


https://arxiv.org/abs/1905.13211

Problem 2: Summary statistics

New DeepSet model:

DeepSet({x;}) = MLP; (¥; MLP,(x;) )
Well suited to this task 1N
Why? Can approx. softmax, a simple approx.
to max 6 6 6

i dinat
maXi(Xicoordmate) ~ log (Ziexicoor o e) (MLP; learns log, MLP, learns exp)
% - . > St - " T - . e
-5 -4 -3 =2 -1 0 1 2 3 4 5 B
y({x:}) = max; (x{eordinate) (Answer: 5)
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Problem 2: Summary statistics

New DeepSet model:

DeepSet({x;}) = MLP; (3; MLP,(x;) )
Well suited to this task 1N
Why? Can approx. softmax, a simple approx.
to min/max 6 6 6

coordinate

max; (xoordinatey ~ Jog (Ziexi ) (MLP; learns log, MLP, learns exp)
Key point:

Consequence: MLPs only must learn simple functions (log / exp)

This can be done easily, without needing much data
MLP can provably also learn this. But must learn complex for-loop,

which requires lots of training data
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Architectures and Problem Type

MLP

./I\ Task on one object

~ feature extraction
/" é N

XX

DeepSet

Task on many objects

~ summary statistics
coordinate)

y({Xi}) = max;(xj

Lets consider a harder task on many objects...
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Problem 3: Relational argmax

Problem 3 (relational argmax):

Input: a set of objects {X;}, each with features containing their

coordinate and color x; = [x£elor, xFoordinate]

PR O e X i VR VIR
-5 -4 -3 -2 -1 0 1 2 3 4 5 5
A E O C D

(Answer: red, purple)
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Problem 3: Relational argmax

Problem 3 (relational argmax):

Input: a set of objects {X;}, each with features containing their

coordinate and color x; = [x£elor, xFoordinate]

Task Output: property of pairwise relation (e.g., what are the
colors of the two furthest away objects?)

R s i VS
-9 -4 -3 -2 =3 0 1 2 3 - 9 6
A E O C D

(Answer: red, purple)
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Problem 3: Relational argmax

Problem 3 (relational argmax):
Input: a set of objects {X;}, each with features containing their
coordinate and color x; = [x£elor, xFoordinate]

Task Output: property of pairwise relation (e.g., what are the
colors of the two furthest away objects?)

Y({Xl}) (Xcolor color)

s.t. iq,ip = argmax,llz||xc"°‘“d“““lte xoordinate|
e
0" B s EE sl 0 1 2 3 4 5 g
A E O C D

(Answer: red, purple)
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Problem 3: Relational argmax

DeepSet poorly suited to modelling pairwise relations
Recall: DeepSet({x;}) = MLP,(>;; MLP; (Xx;) )

Reason:
task requires comparing pairs of objects —i.e., a for-loop
each object processed independently by MLP;

Consequence: MLP, has to learn complex for-loop (hard)
Y. MLP; (x;) provably cannot learn pairwise relations

Theorem: Suppose g(x,y) = 0 if and only if x = y. Then there is no
f suchthat g(x,y) = f(x) + f(¥)

— — e ——
-5 -4 -3 -2 -1 0 1 2 3 4 S 6
A FE O C

(Answer: red, purple)
coordinate coordinate | |

y({x;}) (xc"l"r C°1°r) s. t. 11,12 = argmax,112||x — X
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Problem 3: Relational argmax

GNN well suited to this task: for-loop is built in!
E.g., recall GIN update
Fori=1,..,n
hi*' = MLP,( MLP; (h{) + ¥;cn MLP; (h}))
Update of node embedding depends on other nodes

MLP; computes distance from i toj
MLP, identifies which pair is best in {(i, j) }jeni)

e - v S D —g - e -
~5 -4 -3 =2 -1 0 1 2 3 4 6
A E O C N

Y({Xl}) (Xcolor color) s. t. 11 12 — al‘gmaX1112||Xcoordlnate _ X]_coordinate”
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Architectures and Problem Type

N
$3
L,
551

12/6/23

In each case, the neural net
MILP architecture “fits” the
Task on one object tati ded t
~ feature extraction computations heeded to
compute the target... we

DeepSet will come back to this
Task on many objects
~ summary statistics (max value difference)

coordinate)

y({xi}) = max;(x;

GNN

Task on many objects
~ pairwise relations (relational argmax)

y({xi}) =(Xic1°1°r, Xicz"l"r) s.t. iy, i, = argmax;,;, |[x{eordinate — xic""rdi“ate”
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Results in practice

100% 95%, 96% 100%
Task 2: maximum value

MLP fails due to inability 9%

to compute max GNN3 GNN1  Deep  MLP  Sorted
Sets MLP

_ 95% 92%
Task 3: relational argmax

Both DeepSet and MLP- 21% 9%

fail GNN3  GNN1  Deep MLP
Sets
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General algorithm class for GNN?

GNNs are good at solving tasks that require relating
pairs of objects (nodes)

MLPs/DeepSets cannot do this easily since they have to learn
for-loop

“Relational argmax” is just one problem that GNN can
solve...

What is the general class of algorithms GNNs can run?
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Plan for Today

Part 1
An algorithm GNNs can run

Part 2

Algorithmic structure of neural network
architectures

Part 3

What class of graph algorithms can GNNs
simulate?

Part4

Algorithmic alignment: a principle for neural net
design
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Stanford CS224W:
Algorithmic Class of GNNs



Dynamic Programming

Algorithms that use dynamic programming

dit]

This section does not cite any sources. Please help improve this section by adding citations to reliable

L L] L]
|n 0) Unsourced material may be challenged and removed. (May 2013) (Learn how and when o re
« Recurrent solutions to latice models for protein-DNA binding

ackward induction as a solution method for finite-horizon discrete-time dynamic optimization problems

« Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discoun

time-invariant dynamic
‘optimization problems

« Many string algorithms including longest common subsequence, longest incre:

(edit distance)

Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic

tion of the graph

subsequence, longest common substring, Levenshtein distance

m

programming on a tree d
« The Cocke-Younger-Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar
Igorithm that minimizes raggedness when word wrapping text

« Knuth's word wrapping

« The use of trans tables and refutation tables in computer chess
I l I I l « The Viterbi algorithm (used for hidden Markov models, and particularly in part of speech tagging)
« The Earley algorithm (a type of chart parser)

h algorithm and other algorithms used in bioinformatics, including seque:

uctural alignment, RNA structure

« The Needleman-V
"

« Floyd's all-pairs shortest path algorithm

L L L
« Optimizing the order for chain matrix muttiplication
« The dynamic time warping algorithm for computing the global distance between two time series

« The Selinger (ak.a. System R) algorithm for relational database query optimization

« De Boor algorithm for evaluating B-spline curves

« Duckworth-Lewis method for resolving the problem when games of cricket are interrupted

L
« The value iteration method for solving Markov decision processes
« Some graphic image edge following selection methods such as the “magnet" selection tool in Photoshop
val scheduling problems

« Some methods for solving inte
« Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g. via the bitonic tour)

« Recursive least method

« Beat tracking in music information retrieval

L] L[]
« Adaptive-critic training strategy for artificial neural networks
« Stereo algorithms for solving the correspondence problem used in st

« Seam carving (content-aware image resizing)

« The Bellman-Ford algorithm for finding the shortest distance in a graph
« Some approximate solution methods for the linear search problem

MIT’s intro to COIIIp Cl

60001 1 Fall 2016 | Undergraduate.

Introduction To Computer Science And Programming In Python

Syllabus Lecture Slides and Code
Readings
The slides and code from each lecture are available below.
Lecture Videos
SES# TOPICS LECTURE SLIDES LECTURE CODES
Lecture Slides and Code

Works by recursively

Code for Lecture 1

Inlass Questons and 1 Whatis computation? Siides for Leclure 1 (PDF) 0
L4 [ ] Video Solutions
Code for Lecture 2
reaking a problem into — || i
s sung Guess and Check, Sides for Locture 3 (°DF) Code for Lecture 3
Bisection D ®Y)
Code for Lecture 4
° 4 Decomposition, Abstractions, Functions Slides for Lecture 4 (PDF 1.1MB) “f““‘)#m
Code for Lect
smaller instances of the i
1
Siides for Lecure 6 (P Code for Lecture 6
6 Recursion, Dictionaries
1.3uB) =

Code for Lecture 7

S a m e r O b I e m t e S — Sl om0
v
p y p 8 Object Oriented Programming Slides for Lecture 8 (PDF) Coda for Locture §

(Y)
R Python Classes and Inheritance Siides for Lecture 9 (PDF - Code for Lecture 8
1.6MB) (BY)
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Dynamic Programming

Task 4 (shortest path):

a weighted graph and a chosen source node

all shortest paths out of source node (shortest path
tree)

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54


https://arxiv.org/abs/1905.13211

Dynamic Programming

Task 4 (shortest path):

Input: a weighted graph and a chosen source node

Output: all shortest paths out of source node (shortest path
tree)

Algorithmic solution: Bellman-Ford

Bellman-Ford algorithm

| for uin S:
d[k][u] = min, d[k-1][v] + cost (v, u)
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GNNs are Dynamic Programs

Dynamic programming has very similar form to GNN

Graph Neural Network Bellman-Ford algorithm

_ for u in S: EENVREEVICICHGNIE-C0  for u in S:
hu® = Zy MLP(h(%1), hyk1) d[k][u] = min, d[k-1][v] + cost (v, u)

Learns a simple reasoning step
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GNNs are Dynamic Programs

Dynamic programming has very similar form to GNN
Both have nested for-loops over:

Number of GNN layers / iterations of BF
Each node in graph

Graph Neural Network Bellman-Ford algorithm

_ for u in S: EENVREEVICICHGNIE-C0  for u in S:
hu® = Zy MLP(h(%1), hyk1) d[k][u] = min, d[k-1][v] + cost (v, u)

Learns a simple reasoning step
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GNNs are Dynamic Programs

Dynamic programming has very similar form to GNN
Both have nested for-loops over:

Number of GNN layers / iterations of BF

Each node in graph
GNN aggregation + MLP only needs to learn sum + min
An MLP trying to learn a DP has to learn double-nested for loop

— really hard to do!
Graph Neural Network Bellman-Ford algorithm

XN Noneed to learn for-loops  [IEITEKLCTN
hu® = Zv MLP(hy(1), hyfk1) d[K[u] = min, d[k-1][v] + cost (v, u)

Learns a simple reasoning step
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GNNs are Dynamic Programs

There is an even better choice of GNN...
Choose min activation to match DP
Then MLP only needs to learn linear function!

GNN Architectures DP Algorithm
(Target Function)
h(k)_ .' y MLp(k)(h(k D hz(ak D w(y, u))
, " MLP has to learn non-linear steps dTkI[u] =
hﬁ"')= Wi MLP® (%D, D, wiv,w)) & [ gtk = 1301 + wiv, u)

v/ MLP learns linear steps
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GNNs are Dynamic Programs

We expect GNNs to be good at solving tasks that can be
solved with DP
E.g., shortest paths

Does this actually happen?
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Results in practice

_ 100% __  95% 96%
Task 2: maximum value

MLP fails due to inability

9%

to compute max GNN3 GNN1 Deep  MLP

Sets

Task 3: relational argmax _95%  92%

Both DeepSet and MLP
fail

21%

9%

GNN3  GNN1  Deep MLP

Sets
Task 4: shortest path
(dynamic programming) g28%_94%  0o1%

Task shortest path

62%
27 %

7 layer GNN gets best
performance
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Conclusion

Goal: understand what tasks GNNs are good at solving

We are not focusing on expressivity

Instead we are interested in how easy it is to learn the solution (e.g.,
how much data the model needs to see)

GNN message passing is a dynamic programing algorithm

Consequence: GNNs are a good choice of architecture for tasks
that can be solved by a DP (e.g., finding shortest paths)
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Plan for Today

Part 1
An algorithm GNNs can run

Part 2

Algorithmic structure of neural network
architectures

Part 3

What class of graph algorithms can GNNs
simulate?

Part4

Algorithmic alignment: a principle for neural net
design
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Stanford CS224W:
Algorithmic Alignment



Algorithmic-Centric Principle For Neural Network Design

In the previous section we studied what type of tasks GNNs
excel at solving

Key idea: focus on the algorithm that solves the task

If the neural net can express the algorithm easily, then it’s a
good choice of architecture

How to formulate a general principle?
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Algorithmic Alignment

Algorithmic Alignment

Given a target algorithm g = g,, © =2 g4, a
neural network architecture f = f,, o -0 f4 if:

g a simple function
f; can express g;

Yi

If you remember any phrase from today, let it be algorithmic
alignment — all of todays lecture can be understood with this idea
About how a model expresses a target function, not if (i.e.,
expressive power). Recall that an MLP is a universal approximator
Intuition: overall algorithm can be learned more easily by learning
individual simple steps
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Designing New Neural Nets with Algorithmic Alignment

GNN is algorithmically aligned to dynamic programming
(DP)

But algorithmic alignment is a general principle for
designing neural network architectures

So we should be able to use it to design entirely new
neural networks given a particular problem
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Designing New Neural Nets with Algorithmic Alignment

Many successful example of this in the literature

Neural Shuffle-Exchange Networks (Freivalds et al., NeurIPS’19)
Linearithmic algorithms

Neural Execution of Graph Algorithms (Veli¢kovi¢ et al., ICLR’20)
Improved dynamic programming

PrediNet (Shanahan et al., ICML20)
Predicate Logic

lterGNNSs (Tang et al., NeurlPS’20)
Iterative algorithms

Pointer Graph Networks (Velickovi¢ et al., NeurlPS’20)
Pointer-based data structures

Persistent Message Passing (Strathmann et al., ICLR’21 SimDL)
Persistent data structures
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Stanford CS224W:
Applications of Algorithmic
Alignment



Designing New Neural Nets with Algorithmic Alignment

Application 1: building a network to solve a new task
The subset-sum problem (NP-hard)

Application 2: building neural networks that can generalize
out-of-distribution

The linear algorithmic alignment hypothesis
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Solving an NP-hard Task: Subset Sum

given a set of numbers S, decide if there exists a
subset that sums to k
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Solving an NP-hard Task: Subset Sum

given a set of numbers S, decide if there exists a
subset that sums to k

10|]0| 5| 8| 6| 2|4 sum =15

M0|0| 5| 8| 6| 2] 4 5+8+2=15
v v v

Known to be NP-hard, no DP algorithm can solve this (so
GNN not suitable)
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Solving an NP-hard Task: Subset Sum

Exhaustive Search Algorithm for solving subset sum:

Loop over all subsets T € S and check if sum is k

Clearly not polynomial time... but can it inspire a neural net
architecture?

10|]0)| 5| 8|6|2]| 4 sum =15

10|/]0)| 5| 8|6| 2] 4 5+8+2=15
v v v
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Solving an NP-hard Task: Subset Sum

Exhaustive Search Algorithm for solving subset sum:

Loop over all subsets T € S and check if sum is k

Clearly not polynomial time... but can it inspire a neural net
architecture?

Neural Exhaustive Search:
Given S = {X4, ..., X,;},
NES(S) = MLP (masx LSTM( X1, ..o, X|71: X1, -, X|z € T)
TC

Algorithmically aligned to exhaustive search:
LSTM learns if the sum X; + ... + X = k (simple function)

Max aggregation identifies best subset
MLP maps to true/false value
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Solving an NP-hard Task: Subset Sum

Result in practice

98%
Random 2% 69% 61% 60%
guessing gets
50% accuracy NES GNN6 GNN1 Deep  MLP

Sets

Neural Exhaustive Search:
Given S = {X4, ..., X, },
NES(S) = MLP (masx LSTM( X1, -, X|z[: X1, -+, Xjz € T)
TC

Algorithmically aligned to exhaustive search:
LSTM learns if the sum X; + ... + X|;| = k (simple function)

Max aggregation identifies best subset
MLP maps to true/false value
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Designing New Neural Nets with Algorithmic Alignment

Application 1: building a network to solve a new task
The subset-sum problem (NP-hard)

Application 2: building neural networks that can generalize
out-of-distribution

The linear algorithmic alignment hypothesis
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Algorithmic Alignment and Extrapolation

We have argued that algorithmic alignment
can help inspire architectures well suited to
particular tasks

By well suited, we mean generalizes well using
little training data

But true Al requires something stronger than
this...

Also needs to “extrapolate” to instances that look
very different from the training data
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Algorithmic Alignment and Extrapolation

Extrapolation is also called out-of-distribution
generalization

Extrapolation is a holy grail of Al, necessary
for systems to behave reliably in unforeseen
future situations

Can algorithmic alignment help with
extrapolation?
Let’s start with a simple but important observation
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How MLPs extrapolate

Observation: ReLU MLPs extrapolate linearly

|
d \/
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How MLPs extrapolate

Observation: ReLU MLPs extrapolate linearly

Can be proved that extrapolation is perfect for linear
target functions

But ReLU MLPs cannot generalize for non-linear target
functions...

The need for linearity for MLP extrapolation suggests
a hypothesis for GNN extrapolation...
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The Linear Algorithmic Alignment Hypothesis

Linear Algorithmic Alignment Hypothesis
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The Linear Algorithmic Alignment Hypothesis

Linear Algorithmic Alignment Hypothesis

Linear Algorithmic Alignment

Given a target algorithm g = g,,, © -** © g4, a neural
network architecture f = f,, o --- o f1 linearly aligns if:

f; can express g;
f; contains a combination of non-linearities and MLPs

12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 82


https://arxiv.org/abs/2009.11848

How GNNs extrapolate

Recall GNN for learning dynamic programs
GNN aggregation function is key
Min aggregation is linearly algorithmically aligned
Sum aggregation is not
Does linear algorithmic alignment lead to extrapolation?

GNN Architectures DP Algorithm

(Target Function)
hf‘k)= Zv MLP(k)(h(" D R&=D w(y, u))

U

\\\\\

. MLP has to learn non-linear steps

A0 =08 MLP® (R4 %D (v, u))

=gl

dk][u] =

dlk — 1][v] + w(v, u)

v/ MLP learns linear steps
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How GNNs extrapolate

sum pooling max/min pooling Max degree and
70.6 shortest paths
Error 43.8 are DP tasks
0.0 22 0.0 0.0 81 00
extrapolate interpolate extrapolate interpolate Y I
max degree shortest path e S

Does linear algorithmic alignment lead to extrapolation?

GNN Architectures DP Algorithm
(Target Function)

U

h® = MLP(")(h(" D R&=D w(y, u))
¥ MLP has to learn non-linear steps

dlk][u] =
AP = MLP® (A%, h%=D (v, u)) {d[k- A w0

W MLP learns linear steps '*

|
J
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Concusion

Neural networks can be viewed as programs, or
algorithms

Different neural network architectures are better
suited to learning different algorithms

Graph neural networks are dynamic programs

Algorithmic alignment: make the computations
steps of the neural net closely match the
computational steps of the target algorithm

Learn quicker, extrapolate better
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