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¡ 20th century saw unprecedented development of 
algorithms 
§ Sorting, shortest paths, graph search, routing
§ Algorithmic paradigms such as greedy, divide-and-

conquer, parallelism, recursion, deterministic vs non-
deterministic 
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¡ The study of algorithms and data structures 
are one of the most coveted areas of 
computer science

¡ All of computing is built on top of these 
fundamental algorithms
§ 100% including ML!

¡ But so far this class has (mostly) treated GNNs 
as a “new” type of graph algorithm



¡ This class: 

6

f (    ) =
Input graph node embeddings

How to learn mapping function 𝒇?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Connection to classical graph algorithms unclear
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¡ So far treated GNNs as a “new” type of graph 
algorithm. 

¡ But in reality, graph ML has deep connections 
to the theory of computer science

¡ Today:
§ Ground development of GNNs in context of prior 

graph algorithms
§ Deep connections between “classical” algorithms and GNNs

§ Use to inform neural networks architecture design



¡ Part 1 
§ An algorithm GNNs can run

¡ Part 2
§ Algorithmic structure of neural network 

architectures 

¡ Part 3
§ What class of graph algorithms can GNNs 

simulate?

¡ Part 4
§ Algorithmic alignment: a principle for neural net 

design
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¡ The work of Petar Veličković
§ Lectures at Cambridge, expository papers, 

tutorials etc.
§ Some of today’s material drawn from Petar’s

lectures
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Determine node 
computation graph

𝑖

Propagate and
transform information

𝑖
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¡ GNNs defined by computation process
¡ I.e., how information is propagated across the 

graph to compute node embeddings
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¡ We define “message passing” a computational 
process

¡ Message passing defines a class of algorithms on 
graphs

¡ But it is not clear what algorithm(s)

¡ A clue to get started: we have already seen one 
algorithm GNNs can express…
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¡ GNNs can execute the 1-WL isomorphism test
§ Recall lecture 6: GNNs at most as expressive as the 1-

WL isomorphism test
§ GIN is exactly as expressive as 1-WL
§ Argument: show that GIN is a neural version of 1-WL

¡ Let’s recall the test…



CS224W: Machine Learning with Graphs
Joshua Robinson, Stanford University

http://cs224w.stanford.edu



12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 15

¡ Simple test for testing if two 
graphs are the same: 
§ Assign each node a “color”
§ Randomly hash neighbor colors 

until stable coloring obtained
§ Read out the final color histogram

¡ Declare two graphs:
§ Non-isomorphic if final color 

histograms differ
§ Test inconclusive otherwise (i.e., we 

do not know for sure that two graphs are 
isomorphic if the counts are the same)

Lehman Weisfeiler
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¡ Running the test…

(diagrams thanks to Petar Veličković)

𝜙 = 𝐻𝐴𝑆𝐻	function 
(i.e., injective function)
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¡ Running the test…

(diagrams thanks to Petar Veličković)

𝜙 = 𝐻𝐴𝑆𝐻	function 
(i.e., injective function)
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¡ Running the test…

(diagrams thanks to Petar Veličković)

𝜙 = 𝐻𝐴𝑆𝐻	function 
(i.e., injective function)
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¡ Running the test…

(diagrams thanks to Petar Veličković)

𝜙 = 𝐻𝐴𝑆𝐻	function 
(i.e., injective function)
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¡ Running the test…

(diagrams thanks to Petar Veličković)

𝜙 = 𝐻𝐴𝑆𝐻	function 
(i.e., injective function)
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¡ Running the test…

(diagrams thanks to Petar Veličković)

𝜙 = 𝐻𝐴𝑆𝐻	function 
(i.e., injective function)



12/6/23 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 22

¡ Test does fail to distinguish some graphs, e.g., 
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¡ We have seen GIN is as expressive as the 1-WL 
test 
§ i.e., Given 𝐺!, 𝐺", the following are equivalent:

§ there exist parameters s.t. GIN(𝐺.) ≠ GIN(𝐺/)
§ 1-WL distinguishes 𝐺., 𝐺/

¡ GIN is a “neural version” of the 1-WL algorithm
§ Replaces HASH function with learnable MLP
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¡ We have seen GIN is as expressive as the 1-WL test 
§ i.e., Given 𝐺!, 𝐺", the following are equivalent:

§ there exist parameters s.t. GIN(𝐺") ≠ GIN(𝐺#)
§ 1-WL distinguishes 𝐺", 𝐺#

¡ GIN is a “neural version” of the 1-WL algorithm
¡ But this does not mean that 1-WL is the only 

graph algorithm GNNs can simulate
¡ An untrained GNN (random MLP = random hash) 

is close to the 1-WL test
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¡ We have seen GIN is as expressive as the 1-WL test 
§ i.e., Given 𝐺!, 𝐺", the following are equivalent:

§ there exist parameters s.t. GIN(𝐺") ≠ GIN(𝐺#)
§ 1-WL distinguishes 𝐺", 𝐺#

¡ GIN is a “neural version” of the 1-WL algorithm
¡ But this does not mean that 1-WL is the only 

graph algorithm GNNs can simulate
¡ An untrained GNN (random MLP = random hash) 

is close to the 1-WL test
¡ Today’s question: what other algorithms can 

(trained) GNNs simulate?



¡ Part 1 
§ An algorithm GNNs can run

¡ Part 2
§ Algorithmic structure of neural network 

architectures 

¡ Part 3
§ What class of graph algorithms can GNNs 

simulate?

¡ Part 4
§ Algorithmic alignment: a principle for neural net 

design
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¡ A neural network architecture defines a learnable 
computer program

¡ Eventual Aim: identify a broad class of “classical” 
(graph) algorithms that GNNs can easily learn
§ This is different from our previous study of expressive 

power 
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¡ Key perspective switch:
§ In this lecture, we are not focusing on expressive power (as in 

lecture 6). 
§ Instead we are focused on what tasks an architecture can easily 

learn to solve
§ For today: easily = sample efficient (not too much training data)

¡ Key intuition: 
§ MLPs easily learn smooth functions (e.g., linear, log, exp)
§ MLPs bad at learning complex function (e.g., sums of smooth 

functions - i.e., for-loops)
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¡ Approach: define progressively more complex 
algorithmic problems, and corresponding neural net 
architectures capable of solving each
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¡ Problem 1 (feature extraction):
§ Input: “flat” features 𝐱 ∈ (e.g., color, size, position) 
§ Output: scalar value 𝒚 (e.g., is it round and yellow?)

𝑛

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Problem 1 (feature extraction):
§ Input: “flat” features 𝐱 ∈ (e.g., color, size, position) 
§ Output: scalar value 𝒚 (e.g., is it round and yellow?)

¡ No other prior knowledge (minimal assumptions)

𝑛

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Problem 1 (task on one object):
§ Input: “flat” features 𝐱 ∈ (e.g., color, size, position) 
§ Output: scalar value 𝒚 (e.g., is it round and yellow?)

¡ No other prior knowledge (minimal assumptions)

𝑛

¡ Q: What neural network choice 
suits this problem?

¡ A: MLPs (multilayer 
perceptrons)
§ Universal approximator
§ Makes no assumptions on 

input/output structure

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ MLP
§ task	on	one	object
§ ~	feature	extraction

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

Lets consider tasks on many objects…

https://arxiv.org/abs/1905.13211
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¡ Problem 2 (summary statistics):
§ Input: a set of objects {𝐱𝐢}, each with features containing 

their coordinate and color 𝐱𝐢 = [𝐱𝐢𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞]

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Problem 2 (summary statistics):
§ Input: a set of objects {𝐱𝐢}, each with features containing 

their coordinate and color 𝐱𝐢 = [𝐱𝐢𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞]
§ Task Output: some aggregate property of the set (e.g., 

largest x-coordinate) 

(Answer: 5)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Problem 2 (summary statistics):
§ Input: a set of objects {𝐱𝐢}, each with features containing 

their coordinate and color 𝐱𝐢 = [𝐱𝐢𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞]
§ Task Output: some aggregate property of the set (e.g., 

largest x-coordinate 
§ 𝐲({𝐱𝐢}) = 𝐦𝐚𝐱𝐢(𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞)

(Answer: 5)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

out = -inf
For 𝐢 = 𝟏,…
    if  𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 > 𝐨𝐮𝐭:
           out = 𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞
Return out

https://arxiv.org/abs/1905.13211
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¡ MLP model: MLP(𝐱𝟏, … , 𝐱𝒏)
¡ Not well suited to this task
¡ To learn max (and min) MLP has to learn 

to execute a for-loop
¡ This is a complex operation, MLP needs 

lots of data to learn

(Answer: 5)𝐲({𝐱𝐢})	=	𝐦𝐚𝐱𝐢(𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

out = -inf
For 𝐢 = 𝟏,…
    if  𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 > 𝐨𝐮𝐭:
           out = 𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞
Return out

https://arxiv.org/abs/1905.13211
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¡ New DeepSet model:
§ DeepSet {𝐱𝐢 ) = MLP.(∑\MLP/(𝐱\) )

¡ Well suited to this task
¡ Why?  

(Answer: 5)𝐲({𝐱𝐢})	=	𝐦𝐚𝐱𝐢(𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ New DeepSet model:
§ DeepSet {𝐱𝐢 ) = MLP.(∑\MLP/(𝐱𝐢) )

¡ Well suited to this task
¡ Why?  Can approx. softmax, a simple approx. 

to max 
§ max!(x!"##$%!&'()) ≈ 𝐥𝐨𝐠 ∑! e𝐱𝐢

𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞
(MLP+ learns log, MLP, learns exp)

(Answer: 5)𝐲({𝐱𝐢})	=	𝐦𝐚𝐱𝐢(𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ New DeepSet model:
§ DeepSet {𝐱𝐢 ) = MLP.(∑\MLP/(𝐱\) )

¡ Well suited to this task
¡ Why?  Can approx. softmax, a simple approx. 

to min/max 
§ max!(x!"##$%!&'()) ≈ 𝐥𝐨𝐠 ∑! e𝐱𝐢

𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞
(MLP+ learns log, MLP, learns exp)

¡ Key point: 
§ Consequence: MLPs only must learn simple functions (log / exp)
§ This can be done easily, without needing much data

¡ MLP can provably also learn this. But must learn complex for-loop, 
which requires lots of training data

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ MLP
§ Task	on	one	object	
§ ~	feature	extraction

¡ DeepSet
§ Task	on	many	objects	
§ ~	summary	statistics
§ 𝐲({𝐱𝐢}) = 𝐦𝐚𝐱𝐢(𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

Lets consider a harder task on many objects…

https://arxiv.org/abs/1905.13211
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¡ Problem 3 (relational argmax):
§ Input: a set of objects {𝐱𝐢}, each with features containing their 

coordinate and color 𝐱𝐢 = [𝐱𝐢𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞]

(Answer: red, purple)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Problem 3 (relational argmax):
§ Input: a set of objects {𝐱𝐢}, each with features containing their 

coordinate and color 𝐱𝐢 = [𝐱𝐢𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞]
§ Task Output: property of pairwise relation (e.g., what are the 

colors of the two furthest away objects?) 

(Answer: red, purple)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Problem 3 (relational argmax):
§ Input: a set of objects {𝐱𝐢}, each with features containing their 

coordinate and color 𝐱𝐢 = [𝐱𝐢𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞]
§ Task Output: property of pairwise relation (e.g., what are the 

colors of the two furthest away objects?) 

§ 𝐲 {𝐱𝐢 ) =(𝐱𝐢𝟏
𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝟐

𝐜𝐨𝐥𝐨𝐫)
𝐬. 𝐭. 𝐢𝟏, 𝐢𝟐 = 𝐚𝐫𝐠𝐦𝐚𝐱𝐢𝟏𝐢𝟐||𝐱𝐢

𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 − 𝐱𝐣𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞||

(Answer: red, purple)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ DeepSet poorly suited to modelling pairwise relations
§ Recall: DeepSet {𝐱𝐢 ) = MLP#(∑%MLP"(𝐱%) )

¡ Reason: 
§ task requires comparing pairs of objects – i.e., a for-loop
§ each object processed independently by MLP"
§ Consequence: MLP# has	to	learn	complex	for-loop	 (hard)

¡ ∑#MLP!(𝐱#) provably cannot learn pairwise relations
Theorem: Suppose 𝒈 𝒙, 𝒚 = 𝟎 if and only if 𝒙 = 𝒚. Then there is no 
𝒇 such that 𝒈 𝒙, 𝒚 = 𝒇 𝒙 + 𝒇(𝒚)

(Answer: red, purple)
𝐲 {𝐱𝐢 )	= 𝐱𝐢𝟏

𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝟐
𝐜𝐨𝐥𝐨𝐫 	𝐬. 𝐭. 	 𝐢𝟏, 𝐢𝟐 = 𝐚𝐫𝐠𝐦𝐚𝐱𝐢𝟏𝐢𝟐||𝐱𝐢

𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 − 𝐱𝐣𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞||

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ GNN well suited to this task: for-loop is built in!
§ E.g., recall GIN update

§ For 𝒊 = 𝟏,… , 𝒏:
§ 𝒉𝒊𝒍e𝟏 = 𝐌𝐋𝐏𝟐( 𝐌𝐋𝐏𝟏 𝒉𝒊𝒍 + ∑𝒋∈𝑵 𝒊 𝐌𝐋𝐏𝟏 𝒉𝒋

𝒍 )

§ Update of node embedding depends on other nodes
§ 𝐌𝐋𝐏𝟏 computes distance from 𝑖 to j
§ 𝐌𝐋𝐏𝟐 identifies which pair is best in 𝒊, 𝒋 𝒋∈𝑵(𝒊)

(Answer: red, purple)
𝐲 {𝐱𝐢 )	= 𝐱𝐢𝟏

𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝟐
𝐜𝐨𝐥𝐨𝐫 	𝐬. 𝐭. 	 𝐢𝟏, 𝐢𝟐 = 𝐚𝐫𝐠𝐦𝐚𝐱𝐢𝟏𝐢𝟐||𝐱𝐢

𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 − 𝐱𝐣𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞||

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ MLP
§ Task	on	one	object
§ ~	feature	extraction

¡ DeepSet
§ Task	on	many	objects
§ ~	summary	statistics	(max	value	difference)
§ 𝐲({𝐱𝐢}) = 𝐦𝐚𝐱𝐢(𝐱𝐢𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞)

¡ GNN
§ Task	on	many	objects
§ ~	pairwise	relations	(relational	argmax)
§ 𝐲 {𝐱𝐢 ) = 𝐱𝐢𝟏

𝐜𝐨𝐥𝐨𝐫, 𝐱𝐢𝟐
𝐜𝐨𝐥𝐨𝐫 𝐬. 𝐭. 𝐢𝟏, 𝐢𝟐 = 𝐚𝐫𝐠𝐦𝐚𝐱𝐢𝟏𝐢𝟐||𝐱𝐢

𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞 − 𝐱𝐣𝐜𝐨𝐨𝐫𝐝𝐢𝐧𝐚𝐭𝐞||

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

In each case, the neural net 
architecture “fits” the 
computations needed to 
compute the target… we 
will come back to this

https://arxiv.org/abs/1905.13211
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¡ Task 2: maximum value 
MLP fails due to inability 
to compute max

¡ Task 3: relational argmax
§ Both DeepSet and MLP 

fail 

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ GNNs are good at solving tasks that require relating 
pairs of objects (nodes)
§ MLPs/DeepSets cannot do this easily since they have to learn 

for-loop

¡ “Relational argmax” is just one problem that GNN can 
solve…

¡ What is the general class of algorithms GNNs can run?

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211


¡ Part 1 
§ An algorithm GNNs can run

¡ Part 2
§ Algorithmic structure of neural network 

architectures 

¡ Part 3
§ What class of graph algorithms can GNNs 

simulate?

¡ Part 4
§ Algorithmic alignment: a principle for neural net 

design
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¡ Fundamental algorithmic paradigm

¡ One of the most 
influential algorithm 
classes in computer 
science (lecture 6 in 
MIT’s intro to Comp Sci)

¡ Works by recursively 
breaking a problem into 
smaller instances of the 
same problem type 

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Task 4 (shortest path):
§ Input: a weighted graph and a chosen source node
§ Output: all shortest paths out of source node (shortest path 

tree)

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Task 4 (shortest path):
§ Input: a weighted graph and a chosen source node
§ Output: all shortest paths out of source node (shortest path 

tree)
¡ Algorithmic solution: Bellman-Ford

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Dynamic programming has very similar form to GNN

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Dynamic programming has very similar form to GNN
¡ Both have nested for-loops over:

§ Number of GNN layers / iterations of BF
§ Each node in graph

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Dynamic programming has very similar form to GNN
¡ Both have nested for-loops over:

§ Number of GNN layers / iterations of BF
§ Each node in graph

¡ GNN aggregation + MLP only needs to learn sum + min
¡ An MLP trying to learn a DP has to learn double-nested for loop 

– really hard to do!

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ There is an even better choice of GNN…
§ Choose min activation to match DP
§ Then MLP only needs to learn linear function! 

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ We expect GNNs to be good at solving tasks that can be 
solved with DP
§ E.g., shortest paths

¡ Does this actually happen?

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Task 2: maximum value 
MLP fails due to inability 
to compute max

¡ Task 3: relational argmax
§ Both DeepSet and MLP 

fail 

¡ Task 4: shortest path 
(dynamic programming)
§ Task shortest path 

length up to 7
§ 7 layer GNN gets best 

performance

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Goal: understand what tasks GNNs are good at solving
§ We are not focusing on expressivity
§ Instead we are interested in how easy it is to learn the solution (e.g., 

how much data the model needs to see)

¡ GNN message passing is a dynamic programing algorithm

¡ Consequence: GNNs are a good choice of architecture for tasks 
that can be solved by a DP (e.g., finding shortest paths)



¡ Part 1 
§ An algorithm GNNs can run

¡ Part 2
§ Algorithmic structure of neural network 

architectures 

¡ Part 3
§ What class of graph algorithms can GNNs 

simulate?

¡ Part 4
§ Algorithmic alignment: a principle for neural net 

design
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¡ In the previous section we studied what type of tasks GNNs 
excel at solving
§ Key idea: focus on the algorithm that solves the task
§ If the neural net can express the algorithm easily, then it’s a 

good choice of architecture

¡ How to formulate a general principle?
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¡ If you remember any phrase from today, let it be algorithmic 
alignment – all of todays lecture can be understood with this idea

¡ About how a model expresses a target function, not if (i.e., 
expressive power). Recall that an MLP is a universal approximator

¡ Intuition: overall algorithm can be learned more easily by learning 
individual simple steps

Algorithmic Alignment
Given a target algorithm 𝒈 = 𝒈𝒎 ∘ ⋯ ∘ 𝒈𝟏, a 
neural network architecture 𝒇 = 𝒇𝒎 ∘ ⋯ ∘ 𝒇𝟏 if:

¡ 𝒈𝒊 a simple function
¡ 𝒇𝒊	 can express 𝒈𝒊
¡ Each 𝒇𝒊 has few learnable parameters (so can learn 
𝒈𝒊 easily) 

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ GNN is algorithmically aligned to dynamic programming 
(DP)

¡ But algorithmic alignment is a general principle for 
designing neural network architectures 

¡ So we should be able to use it to design entirely new 
neural networks given a particular problem

What	Can	Neural	Networks	Reason	about?	Xu	et	al.	ICLR	2020

https://arxiv.org/abs/1905.13211
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¡ Many successful example of this in the literature
§ Neural Shuffle-Exchange Networks (Freivalds et al., NeurIPS’19)  

§ Linearithmic algorithms
§ Neural Execution of Graph Algorithms (Veličković et al., ICLR’20)  

§ Improved dynamic programming 
§ PrediNet (Shanahan et al., ICML’20)

§ Predicate Logic  
§ IterGNNs (Tang et al., NeurIPS’20)  

§ Iterative algorithms
§ Pointer Graph Networks (Veličković et al., NeurIPS’20)  

§ Pointer-based data structures
§ Persistent Message Passing (Strathmann et al., ICLR’21 SimDL)

§ Persistent data structures



CS224W: Machine Learning with Graphs
Joshua Robinson, Stanford University
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¡ Application 1: building a network to solve a new task
§ The subset-sum problem (NP-hard)

¡ Application 2: building neural networks that can generalize 
out-of-distribution
§ The linear algorithmic alignment hypothesis
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¡ Task: given a set of numbers 𝑆, decide if there exists a 
subset that sums to k
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¡ Task: given a set of numbers 𝑆, decide if there exists a 
subset that sums to k

¡ Known to be NP-hard, no DP algorithm can solve this (so 
GNN not suitable)
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¡ Exhaustive Search Algorithm for solving subset sum: 
§ Loop over all subsets 𝜏 ∈ 𝑆 and check if sum is k

¡ Clearly not polynomial time… but can it inspire a neural net 
architecture?
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¡ Exhaustive Search Algorithm for solving subset sum: 
§ Loop over all subsets 𝜏 ∈ 𝑆 and check if sum is k

¡ Clearly not polynomial time… but can it inspire a neural net 
architecture?

¡ Neural Exhaustive Search:
§ Given 𝑆 = {𝑋., … , 𝑋i}, 
§ NES(𝑆) = MLP (max

&⊆(
LSTM(𝑋", … , 𝑋 ) : 𝑋", … , 𝑋 ) ∈ 𝜏)

§ Algorithmically aligned to exhaustive search:
§ LSTM learns if the sum 𝑋* + … + 𝑋 + = 𝑘 (simple function)
§ Max aggregation identifies best subset
§ MLP maps to true/false value
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¡ Neural Exhaustive Search:
§ Given 𝑆 = {𝑋., … , 𝑋i}, 
§ NES(𝑆) = MLP (max

&⊆(
LSTM(𝑋", … , 𝑋 ) : 𝑋", … , 𝑋 ) ∈ 𝜏)

§ Algorithmically aligned to exhaustive search:
§ LSTM learns if the sum 𝑋* + … + 𝑋 + = 𝑘 (simple function)
§ Max aggregation identifies best subset
§ MLP maps to true/false value

¡ Result in practice
¡ Random 

guessing gets 
50% accuracy
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¡ Application 1: building a network to solve a new task
§ The subset-sum problem (NP-hard)

¡ Application 2: building neural networks that can generalize 
out-of-distribution
§ The linear algorithmic alignment hypothesis
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¡ We have argued that algorithmic alignment 
can help inspire architectures well suited to 
particular tasks
§ By well suited, we mean generalizes well using 

little training data

¡ But true AI requires something stronger than 
this…
§ Also needs to “extrapolate” to instances that look 

very different from the training data

How	Neural	Networks	Extrapolate:	From	Feedforward	to	Graph	Neural	Networks,	Xu	et	al.	ICLR	2021

https://arxiv.org/abs/2009.11848
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¡ Extrapolation is also called out-of-distribution 
generalization

¡ Extrapolation is a holy grail of AI, necessary 
for systems to behave reliably in unforeseen 
future situations

¡ Can algorithmic alignment help with 
extrapolation?
§ Let’s start with a simple but important observation

How	Neural	Networks	Extrapolate:	From	Feedforward	to	Graph	Neural	Networks,	Xu	et	al.	ICLR	2021

https://arxiv.org/abs/2009.11848
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¡ Observation: ReLU MLPs extrapolate linearly

How	Neural	Networks	Extrapolate:	From	Feedforward	to	Graph	Neural	Networks,	Xu	et	al.	ICLR	2021

https://arxiv.org/abs/2009.11848
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¡ Observation: ReLU MLPs extrapolate linearly

¡ Can be proved that extrapolation is perfect for linear 
target functions 

¡ But ReLU MLPs cannot generalize for non-linear target 
functions… 

¡ The need for linearity for MLP extrapolation suggests 
a hypothesis for GNN extrapolation…

How	Neural	Networks	Extrapolate:	From	Feedforward	to	Graph	Neural	Networks,	Xu	et	al.	ICLR	2021

https://arxiv.org/abs/2009.11848
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Linear Algorithmic Alignment Hypothesis
Linear algorithmic alignment implies a neural 
network can extrapolate to unseen data 

How	Neural	Networks	Extrapolate:	From	Feedforward	to	Graph	Neural	Networks,	Xu	et	al.	ICLR	2021

https://arxiv.org/abs/2009.11848
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Linear Algorithmic Alignment
Given a target algorithm 𝒈 = 𝒈𝒎 ∘ ⋯ ∘ 𝒈𝟏, a neural 
network architecture 𝒇 = 𝒇𝒎 ∘ ⋯ ∘ 𝒇𝟏 linearly aligns if:

¡ 𝑓L  can express 𝑔L
¡ 𝑓L  contains a combination of non-linearities and MLPs
¡ Each MLP in 𝑓L  only has to learn a linear map to 

perfectly fit	𝑔L

Linear Algorithmic Alignment Hypothesis
Linear algorithmic alignment implies a neural 
network can extrapolate to unseen data 

How	Neural	Networks	Extrapolate:	From	Feedforward	to	Graph	Neural	Networks,	Xu	et	al.	ICLR	2021

https://arxiv.org/abs/2009.11848
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¡ Recall GNN for learning dynamic programs
¡ GNN aggregation function is key

§ Min aggregation is linearly algorithmically aligned
§ Sum aggregation is not

¡ Does linear algorithmic alignment lead to extrapolation? 

How	Neural	Networks	Extrapolate:	From	Feedforward	to	Graph	Neural	Networks,	Xu	et	al.	ICLR	2021

https://arxiv.org/abs/2009.11848
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¡ Does linear algorithmic alignment lead to extrapolation? 

Error

Max degree and 
shortest paths 
are DP tasks

Yes!

How	Neural	Networks	Extrapolate:	From	Feedforward	to	Graph	Neural	Networks,	Xu	et	al.	ICLR	2021

https://arxiv.org/abs/2009.11848
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¡ Neural networks can be viewed as programs, or 
algorithms

¡ Different neural network architectures are better 
suited to learning different algorithms

¡ Graph neural networks are dynamic programs

¡ Algorithmic alignment: make the computations 
steps of the neural net closely match the 
computational steps of the target algorithm
§ Learn quicker, extrapolate better


