Stanford CS224W: GNNs and Algorithmic Reasoning CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu ### **Announcements** Colab 5 due EOD Tuesday # Stanford CS224W: GNNs and Algorithmic Reasoning CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu # **Graphs and Computer Science** - 20th century saw unprecedented development of algorithms - Sorting, shortest paths, graph search, routing - Algorithmic paradigms such as greedy, divide-andconquer, parallelism, recursion, deterministic vs non- # **Graphs and Computer Science** - The study of algorithms and data structures are one of the most coveted areas of computer science - All of computing is built on top of these fundamental algorithms - 100% including ML! - But so far this class has (mostly) treated GNNs as a "new" type of graph algorithm # **Graph Machine Learning** This class: How to <u>learn</u> mapping function f? Connection to classical graph algorithms unclear # Graph ML and Graph Algorithms - So far treated GNNs as a "new" type of graph algorithm. - But in reality, graph ML has deep connections to the theory of computer science #### Today: - Ground development of GNNs in context of prior graph algorithms - Deep connections between "classical" algorithms and GNNs - Use to inform neural networks architecture design # Plan for Today - Part 1 - An algorithm GNNs can run - Part 2 - Algorithmic structure of neural network architectures - Part 3 - What class of graph algorithms can GNNs simulate? - Part 4 - Algorithmic alignment: a principle for neural net design # Other Reading #### The work of Petar Veličković - Lectures at Cambridge, expository papers, tutorials etc. - Some of today's material drawn from Petar's lectures # Stanford CS224W: GNNs and Classical Algorithms CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu ## Graph Neural Networks Determine node computation graph Propagate and transform information aggregator - GNNs defined by computation process - I.e., how information is propagated across the graph to compute node embeddings # GNNs as graph algorithms - We define "message passing" a computational process - Message passing defines a class of algorithms on graphs - But it is not clear what algorithm(s) - A clue to get started: we have already seen one algorithm GNNs can express... ### GNNs can express 1-WL algorithm - GNNs can execute the 1-WL isomorphism test - Recall lecture 6: GNNs at most as expressive as the 1-WL isomorphism test - GIN is exactly as expressive as 1-WL - Argument: show that GIN is a neural version of 1-WL - Let's recall the test... # Stanford CS224W: GNNs and the Weisfeiler-Lehman Isomorphism Test CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu - Simple test for testing if two graphs are the same: - Assign each node a "color" - Randomly hash neighbor colors until stable coloring obtained - Read out the final color histogram - Declare two graphs: - Non-isomorphic if final color histograms differ - Test inconclusive otherwise (i.e., we do not know for sure that two graphs are isomorphic if the counts are the same) Вод в Техни объект по продукт пределяющих развительного доступной пределя доступной пределя доступной пределяющих развительного досту тична зует алгебру ध.« (Г)∞2 (Г)⊗К. Алгебра ध. (Г) пвляется очевидно, инвариантом графа. Некоторые соотношения можд Weisfeiler Running the test... Running the test... $\phi = HASH$ function (i.e., injective function) Running the test... $\phi = HASH$ function (i.e., injective function) Running the test... Running the test... (diagrams thanks to Petar Veličković) $\phi = HASH$ function Test does fail to distinguish some graphs, e.g., - We have seen GIN is as expressive as the 1-WL test - i.e., Given G_1 , G_2 , the following are equivalent: - there exist parameters s.t. $GIN(G_1) \neq GIN(G_2)$ - 1-WL distinguishes G_1 , G_2 - GIN is a "neural version" of the 1-WL algorithm - Replaces HASH function with learnable MLP - We have seen GIN is as expressive as the 1-WL test - i.e., Given G_1 , G_2 , the following are equivalent: - there exist parameters s.t. $GIN(G_1) \neq GIN(G_2)$ - 1-WL distinguishes G_1 , G_2 - GIN is a "neural version" of the 1-WL algorithm - But this does not mean that 1-WL is the only graph algorithm GNNs can simulate - An untrained GNN (random MLP = random hash) is close to the 1-WL test - We have seen GIN is as expressive as the 1-WL test - i.e., Given G_1 , G_2 , the following are equivalent: - there exist parameters s.t. $GIN(G_1) \neq GIN(G_2)$ - 1-WL distinguishes G_1 , G_2 - GIN is a "neural version" of the 1-WL algorithm - But this does not mean that 1-WL is the only graph algorithm GNNs can simulate - An untrained GNN (random MLP = random hash) is close to the 1-WL test - Today's question: what other algorithms can (trained) GNNs simulate? # Plan for Today - Part 1 - An algorithm GNNs can run - Part 2 - Algorithmic structure of neural network architectures - Part 3 - What class of graph algorithms can GNNs simulate? - Part 4 - Algorithmic alignment: a principle for neural net design # Stanford CS224W: Algorithmic structure of neural networks CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu # Neural Networks as Algorithms - A neural network architecture defines a learnable computer program - Eventual Aim: identify a broad class of "classical" (graph) algorithms that GNNs can easily learn - This is different from our previous study of expressive power # Neural Networks as Algorithms #### Key perspective switch: - In this lecture, we are not focusing on expressive power (as in lecture 6). - Instead we are focused on what tasks an architecture can easily learn to solve - For today: easily = sample efficient (not too much training data) - Key intuition: - MLPs easily learn smooth functions (e.g., linear, log, exp) - MLPs bad at learning complex function (e.g., sums of smooth functions - i.e., for-loops) # Neural Networks as Algorithms Approach: define progressively more complex algorithmic problems, and corresponding neural net architectures capable of solving each ## **Neural Nets and Algorithm Structure** - Problem 1 (feature extraction): - Input: "flat" features $\mathbf{x} \in \mathbb{R}^n$ (e.g., color, size, position) - Output: scalar value y (e.g., is it round and yellow?) ### **Neural Nets and Algorithm Structure** - Problem 1 (feature extraction): - Input: "flat" features $\mathbf{x} \in \mathbb{R}^n$ (e.g., color, size, position) - Output: scalar value y (e.g., is it round and yellow?) - No other prior knowledge (minimal assumptions) #### Problem 1: feature extraction - Problem 1 (task on one object): - Input: "flat" features $\mathbf{x} \in \mathbb{R}^n$ (e.g., color, size, position) - Output: scalar value y (e.g., is it round and yellow?) - No other prior knowledge (minimal assumptions) - Q: What neural network choice suits this problem? - A: MLPs (multilayer perceptrons) - Universal approximator - Makes no assumptions on input/output structure # **Architectures and Problem Type** #### MLP - task on one object - ~ feature extraction Lets consider tasks on many objects... # Problem 2: Summary statistics - Problem 2 (summary statistics): - Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$ # Problem 2: Summary statistics #### Problem 2 (summary statistics): - Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$ - Task Output: some aggregate property of the set (e.g., largest x-coordinate) ## Problem 2 (summary statistics): - Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$ - Task Output: some aggregate property of the set (e.g., largest x-coordinate $y(\{x_i\}) = \max_i(x_i^{coordinate})$ $\begin{aligned} &\text{out = -inf} \\ &\text{For i = 1, ...} \\ &\text{if } x_i^{\text{coordinate}} > \text{out} \\ &\text{out = } x_i^{\text{coordinate}} \\ &\text{Return out} \end{aligned}$ - MLP model: $MLP(x_1, ..., x_n)$ - Not well suited to this task - To learn max (and min) MLP has to learn to execute a for-loop - This is a complex operation, MLP needs lots of data to learn - New DeepSet model: - DeepSet($\{x_i\}$) = MLP₁($\sum_i MLP_2(x_i)$) - Well suited to this task - Why? - New DeepSet model: - DeepSet($\{x_i\}$) = MLP₁($\sum_i MLP_2(x_i)$) - Well suited to this task - Why? Can approx. softmax, a simple approx. to max max_i(x_i^{coordinate}) $\approx \log \left(\sum_i e^{x_i^{coordinate}}\right)$ (MLP₁ learns log, MLP₂ learns exp) - New DeepSet model: - DeepSet($\{x_i\}$) = MLP₁($\sum_i MLP_2(x_i)$) - Well suited to this task - Why? Can approx. softmax, a simple approx. to min/max - $\max_{i}(x_{i}^{coordinate}) \approx \log \left(\sum_{i} e^{x_{i}^{coordinate}}\right) (MLP_{1} \text{ learns log, } MLP_{2} \text{ learns exp})$ - Key point: - Consequence: MLPs only must learn simple functions (log / exp) - This can be done easily, without needing much data - MLP can provably also learn this. But must learn complex for-loop, which requires lots of training data ## **Architectures and Problem Type** #### MLP - Task on one object - ~ feature extraction ### DeepSet - Task on many objects - ~ summary statistics - $y({x_i}) = max_i(x_i^{coordinate})$ Lets consider a harder task on many objects... - Problem 3 (relational argmax): - Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$ ## Problem 3 (relational argmax): - Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$ - Task Output: property of pairwise relation (e.g., what are the colors of the two furthest away objects?) ## Problem 3 (relational argmax): - Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$ - Task Output: property of pairwise relation (e.g., what are the colors of the two furthest away objects?) - $y(\lbrace x_i \rbrace) = (x_{i_1}^{color}, x_{i_2}^{color})$ s. t. $i_1, i_2 = argmax_{i_1i_2} ||x_i^{coordinate} x_j^{coordinate}||$ - DeepSet poorly suited to modelling pairwise relations - Recall: DeepSet($\{x_i\}$) = MLP₂(\sum_i MLP₁(x_i)) - Reason: - task requires comparing pairs of objects i.e., a for-loop - each object processed independently by MLP₁ - Consequence: MLP₂ has to learn complex for-loop (hard) - $\sum_i \text{MLP}_1(\mathbf{x}_i)$ provably cannot learn pairwise relations Theorem: Suppose $g(x,y) = \mathbf{0}$ if and only if x = y. Then there is no f such that g(x,y) = f(x) + f(y) $$y(\{x_i\}) = \left(x_{i_1}^{color}, x_{i_2}^{color}\right) s. \ t. \ \ i_1, i_2 = argmax_{i_1i_2} ||x_i^{coordinate} - x_j^{coordinate}||$$ - GNN well suited to this task: for-loop is built in! - E.g., recall GIN update - For i = 1, ..., n: - $h_i^{l+1} = \text{MLP}_2(\text{MLP}_1(h_i^l) + \sum_{j \in N(i)} \text{MLP}_1(h_j^l))$ - Update of node embedding depends on other nodes - MLP_1 computes distance from i to j - MLP₂ identifies which pair is best in $\{(i,j)\}_{j\in N(i)}$ $$y(\{x_i\}) = \left(x_{i_1}^{color}, x_{i_2}^{color}\right) s. \ t. \ \ i_1, i_2 = \underset{}{argmax_{i_1i_2}}||x_i^{coordinate} - x_j^{coordinate}||$$ 12/6/23 In each case, the neural net architecture "fits" the will come back to this computations needed to compute the target... we ## **Architectures and Problem Type** #### MLP - Task on one object - ~ feature extraction #### DeepSet - Task on many objects - ~ summary statistics (max value difference) - $y({x_i}) = max_i(x_i^{coordinate})$ #### GNN - Task on many objects - ~ pairwise relations (relational argmax) - $y(\{x_i\}) = (x_{i_1}^{color}, x_{i_2}^{color}) \text{ s. t. } i_1, i_2 = argmax_{i_1i_2} ||x_i^{coordinate} x_j^{coordinate}||$ ## Results in practice Task 2: maximum value MLP fails due to inability to compute max - Task 3: relational argmax - Both DeepSet and MLP fail # General algorithm class for GNN? - GNNs are good at solving tasks that require relating pairs of objects (nodes) - MLPs/DeepSets cannot do this easily since they have to learn for-loop - "Relational argmax" is just one problem that GNN can solve... - What is the general class of algorithms GNNs can run? ## Plan for Today - Part 1 - An algorithm GNNs can run - Part 2 - Algorithmic structure of neural network architectures - Part 3 - What class of graph algorithms can GNNs simulate? - Part 4 - Algorithmic alignment: a principle for neural net design # Stanford CS224W: Algorithmic Class of GNNs CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu Algorithms that use dynamic programming [odt] # **Dynamic Programming** - Fundamental algorithmic paradigm - One of the most influential algorithm classes in computer science (lecture 6 in MIT's intro to Comp Sci) - Works by recursively breaking a problem into smaller instances of the same problem type # **Dynamic Programming** - Task 4 (shortest path): - Input: a weighted graph and a chosen source node - Output: all shortest paths out of source node (shortest path tree) # **Dynamic Programming** - Task 4 (shortest path): - Input: a weighted graph and a chosen source node - Output: all shortest paths out of source node (shortest path tree) - Algorithmic solution: Bellman-Ford #### Bellman-Ford algorithm for k = 1 ... |S| - 1: for u in S: $d[k][u] = \min_{v} d[k-1][v] + cost(v, u)$ Dynamic programming has very similar form to GNN #### **Graph Neural Network** for k = 1 ... GNN iter: for u in S: No need to learn for-loops $h_{u}^{(k)} = \Sigma_{v} MLP(h_{v}^{(k-1)}, h_{u}^{(k-1)})$ #### Bellman-Ford algorithm for k = 1 ... |S| - 1: for u in S: $d[k][u] = \min_{v} d[k-1][v] + cost(v, u)$ Learns a simple reasoning step - Dynamic programming has very similar form to GNN - Both have nested for-loops over: - Number of GNN layers / iterations of BF - Each node in graph #### **Graph Neural Network** for $k = 1 \dots$ GNN iter: for u in S: No need to learn for-loops $h_{u}^{(k)} = \Sigma_{v} MLP(h_{v}^{(k-1)}, h_{u}^{(k-1)})$ #### Bellman-Ford algorithm for k = 1 ... |S| - 1: for u in S: $d[k][u] = \min_{v} d[k-1][v] + cost(v, u)$ Learns a simple reasoning step - Dynamic programming has very similar form to GNN - Both have nested for-loops over: - Number of GNN layers / iterations of BF - Each node in graph - GNN aggregation + MLP only needs to learn sum + min - An MLP trying to learn a DP has to learn double-nested for loop – really hard to do! #### **Graph Neural Network** #### Bellman-Ford algorithm ``` for k = 1 \dots GNN iter: for u in S: ``` No need to learn for-loops $h_{u}^{(k)} = \Sigma_{v} MLP(h_{v}^{(k-1)}, h_{u}^{(k-1)})$ for k = 1 ... |S| - 1: for u in S: $d[k][u] = \min_{v} d[k-1][v] + cost(v, u)$ Learns a simple reasoning step - There is an even better choice of GNN... - Choose min activation to match DP - Then MLP only needs to learn linear function! #### **GNN Architectures** $$h_u^{(k)} = \sum_{\mathbf{v}} \mathbf{MLP}^{(k)} (h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$ MLP has to learn non-linear steps $$h_u^{(k)} = \min_{v} \mathbf{MLP}^{(k)} (h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$ MLP learns linear steps # DP Algorithm (Target Function) $$d[k][u] = \frac{\min_{\mathbf{v}}}{d[k-1][v] + w(v, u)}$$ - We expect GNNs to be good at solving tasks that can be solved with DP - E.g., shortest paths - Does this actually happen? ## Results in practice Task 2: maximum value MLP fails due to inability to compute max - Task 3: relational argmax - Both DeepSet and MLP fail - Task 4: shortest path (dynamic programming) - Task shortest path length up to 7 - 7 layer GNN gets best performance ## Conclusion - Goal: understand what tasks GNNs are good at solving - We are **not** focusing on expressivity - Instead we are interested in how easy it is to learn the solution (e.g., how much data the model needs to see) - GNN message passing is a dynamic programing algorithm - Consequence: GNNs are a good choice of architecture for tasks that can be solved by a DP (e.g., finding shortest paths) ## Plan for Today - Part 1 - An algorithm GNNs can run - Part 2 - Algorithmic structure of neural network architectures - Part 3 - What class of graph algorithms can GNNs simulate? - Part 4 - Algorithmic alignment: a principle for neural net design # Stanford CS224W: Algorithmic Alignment CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu ## Algorithmic-Centric Principle For Neural Network Design - In the previous section we studied what type of tasks GNNs excel at solving - Key idea: focus on the algorithm that solves the task - If the neural net can express the algorithm easily, then it's a good choice of architecture - How to formulate a general principle? ## **Algorithmic Alignment** ## **Algorithmic Alignment** Given a target algorithm $g=g_m\circ \cdots \circ g_1$, a neural network architecture $f=f_m\circ \cdots \circ f_1$ if: - g_i a simple function - f_i can express g_i - Each f_i has few learnable parameters (so can learn g_i easily) - If you remember any phrase from today, let it be algorithmic alignment all of todays lecture can be understood with this idea - About how a model expresses a target function, not if (i.e., expressive power). Recall that an MLP is a universal approximator - Intuition: overall algorithm can be learned more easily by learning individual simple steps ## Designing New Neural Nets with Algorithmic Alignment - GNN is algorithmically aligned to dynamic programming (DP) - But algorithmic alignment is a general principle for designing neural network architectures - So we should be able to use it to design entirely new neural networks given a particular problem ## Designing New Neural Nets with Algorithmic Alignment - Many successful example of this in the literature - Neural Shuffle-Exchange Networks (Freivalds et al., NeurIPS'19) - Linearithmic algorithms - Neural Execution of Graph Algorithms (Veličković et al., ICLR'20) - Improved dynamic programming - PrediNet (Shanahan et al., ICML'20) - Predicate Logic - IterGNNs (Tang et al., NeurIPS'20) - Iterative algorithms - Pointer Graph Networks (Veličković et al., NeurIPS'20) - Pointer-based data structures - Persistent Message Passing (Strathmann et al., ICLR'21 SimDL) - Persistent data structures # Stanford CS224W: Applications of Algorithmic Alignment CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu ## Designing New Neural Nets with Algorithmic Alignment - Application 1: building a network to solve a new task - The subset-sum problem (NP-hard) - Application 2: building neural networks that can generalize out-of-distribution - The linear algorithmic alignment hypothesis ## Solving an NP-hard Task: Subset Sum Task: given a set of numbers S, decide if there exists a subset that sums to k ## Solving an NP-hard Task: Subset Sum Task: given a set of numbers S, decide if there exists a subset that sums to k Known to be NP-hard, no DP algorithm can solve this (so GNN not suitable) #### Solving an NP-hard Task: Subset Sum - Exhaustive Search Algorithm for solving subset sum: - Loop over all subsets $\tau \in S$ and check if sum is k - Clearly not polynomial time... but can it inspire a neural net architecture? #### Solving an NP-hard Task: Subset Sum - Exhaustive Search Algorithm for solving subset sum: - Loop over all subsets $\tau \in S$ and check if sum is k - Clearly not polynomial time... but can it inspire a neural net architecture? - Neural Exhaustive Search: - Given $S = \{X_1, ..., X_n\}$, - NES(S) = MLP $(\max_{\tau \subseteq S} LSTM(X_1, ..., X_{|\tau|}: X_1, ..., X_{|\tau|} \in \tau)$ - Algorithmically aligned to exhaustive search: - LSTM learns if the sum $X_1 + ... + X_{|\tau|} = k$ (simple function) - Max aggregation identifies best subset - MLP maps to true/false value #### Solving an NP-hard Task: Subset Sum - Result in practice - Random guessing gets50% accuracy #### Neural Exhaustive Search: - Given $S = \{X_1, ..., X_n\}$, - NES(S) = MLP $(\max_{\tau \subseteq S} LSTM(X_1, ..., X_{|\tau|}: X_1, ..., X_{|\tau|} \in \tau)$ - Algorithmically aligned to exhaustive search: - LSTM learns if the sum $X_1 + ... + X_{|\tau|} = k$ (simple function) - Max aggregation identifies best subset - MLP maps to true/false value #### **Designing New Neural Nets with Algorithmic Alignment** - Application 1: building a network to solve a new task - The subset-sum problem (NP-hard) - Application 2: building neural networks that can generalize out-of-distribution - The linear algorithmic alignment hypothesis ## **Algorithmic Alignment and Extrapolation** - We have argued that algorithmic alignment can help inspire architectures well suited to particular tasks - By well suited, we mean generalizes well using little training data - But true AI requires something stronger than this... - Also needs to "extrapolate" to instances that look very different from the training data ## **Algorithmic Alignment and Extrapolation** - Extrapolation is also called out-of-distribution generalization - Extrapolation is a holy grail of AI, necessary for systems to behave reliably in unforeseen future situations - Can algorithmic alignment help with extrapolation? - Let's start with a simple but important observation #### How MLPs extrapolate Observation: ReLU MLPs extrapolate linearly #### How MLPs extrapolate Observation: ReLU MLPs extrapolate linearly - Can be proved that extrapolation is perfect for linear target functions - But ReLU MLPs cannot generalize for non-linear target functions... - The need for linearity for MLP extrapolation suggests a hypothesis for GNN extrapolation... # The Linear Algorithmic Alignment Hypothesis ## **Linear Algorithmic Alignment Hypothesis** Linear algorithmic alignment implies a neural network can extrapolate to unseen data ## The Linear Algorithmic Alignment Hypothesis ### **Linear Algorithmic Alignment Hypothesis** Linear algorithmic alignment implies a neural network can extrapolate to unseen data #### **Linear Algorithmic Alignment** Given a target algorithm $g=g_m\circ\cdots\circ g_1$, a neural network architecture $f=f_m\circ\cdots\circ f_1$ linearly aligns if: - f_i can express g_i - f_i contains a combination of non-linearities and MLPs - Each MLP in f_i only has to learn a linear map to perfectly fit g_i #### How GNNs extrapolate - Recall GNN for learning dynamic programs - GNN aggregation function is key - Min aggregation is linearly algorithmically aligned - Sum aggregation is not - Does linear algorithmic alignment lead to extrapolation? #### **GNN Architectures** $$h_u^{(k)} = \sum_{\mathbf{v}} \mathbf{MLP}^{(k)} (h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$ MLP has to learn non-linear steps $$h_u^{(k)} = \min_{v} \mathbf{MLP}^{(k)} (h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$ # DP Algorithm (Target Function) $$d[k][u] = \frac{\min_{\mathbf{v}}}{d[k-1][v] + w(v, u)}$$ #### How GNNs extrapolate Max degree and shortest paths are DP tasks Does linear algorithmic alignment lead to extrapolation? #### **GNN Architectures** $$h_u^{(k)} = \sum_{\mathbf{v}} \mathbf{MLP}^{(k)} \left(h_v^{(k-1)}, h_u^{(k-1)}, w(v, u) \right)$$ \mathbf{MLP} has to learn non-linear steps $h_u^{(k)} = \min_{\mathbf{v}} \mathbf{MLP}^{(k)} \left(h_v^{(k-1)}, h_u^{(k-1)}, w(v, u) \right)$ \mathbf{MLP} learns linear steps # DP Algorithm (Target Function) $$d[k][u] = \frac{\min_{\mathbf{v}}}{d[k-1][v] + w(v, u)}$$ #### Concusion - Neural networks can be viewed as programs, or algorithms - Different neural network architectures are better suited to learning different algorithms - Graph neural networks are dynamic programs - Algorithmic alignment: make the computations steps of the neural net closely match the computational steps of the target algorithm - Learn quicker, extrapolate better