Stanford CS224W: GNNs and Algorithmic Reasoning

CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu

Announcements

Colab 5 due EOD Tuesday

Stanford CS224W: GNNs and Algorithmic Reasoning

CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu

Graphs and Computer Science

- 20th century saw unprecedented development of algorithms
 - Sorting, shortest paths, graph search, routing
 - Algorithmic paradigms such as greedy, divide-andconquer, parallelism, recursion, deterministic vs non-

Graphs and Computer Science

- The study of algorithms and data structures are one of the most coveted areas of computer science
- All of computing is built on top of these fundamental algorithms
 - 100% including ML!
- But so far this class has (mostly) treated GNNs as a "new" type of graph algorithm

Graph Machine Learning

This class:

How to <u>learn</u> mapping function f?

Connection to classical graph algorithms unclear

Graph ML and Graph Algorithms

- So far treated GNNs as a "new" type of graph algorithm.
- But in reality, graph ML has deep connections to the theory of computer science

Today:

- Ground development of GNNs in context of prior graph algorithms
 - Deep connections between "classical" algorithms and GNNs
- Use to inform neural networks architecture design

Plan for Today

- Part 1
 - An algorithm GNNs can run
- Part 2
 - Algorithmic structure of neural network architectures
- Part 3
 - What class of graph algorithms can GNNs simulate?
- Part 4
 - Algorithmic alignment: a principle for neural net design

Other Reading

The work of Petar Veličković

- Lectures at Cambridge, expository papers, tutorials etc.
- Some of today's material drawn from Petar's lectures

Stanford CS224W: GNNs and Classical Algorithms

CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu

Graph Neural Networks

Determine node computation graph

Propagate and transform information

aggregator

- GNNs defined by computation process
- I.e., how information is propagated across the graph to compute node embeddings

GNNs as graph algorithms

- We define "message passing" a computational process
- Message passing defines a class of algorithms on graphs
- But it is not clear what algorithm(s)
- A clue to get started: we have already seen one algorithm GNNs can express...

GNNs can express 1-WL algorithm

- GNNs can execute the 1-WL isomorphism test
 - Recall lecture 6: GNNs at most as expressive as the 1-WL isomorphism test
 - GIN is exactly as expressive as 1-WL
 - Argument: show that GIN is a neural version of 1-WL
- Let's recall the test...

Stanford CS224W: GNNs and the Weisfeiler-Lehman Isomorphism Test

CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu

- Simple test for testing if two graphs are the same:
 - Assign each node a "color"
 - Randomly hash neighbor colors until stable coloring obtained
 - Read out the final color histogram
- Declare two graphs:
 - Non-isomorphic if final color histograms differ
 - Test inconclusive otherwise (i.e., we do not know for sure that two graphs are isomorphic if the counts are the same)

Вод в Техни объект по продукт пределяющих развительного доступной пределя доступной пределя доступной пределяющих развительного доступной досту

тична зует алгебру ध.« (Г)∞2 (Г)⊗К. Алгебра ध. (Г) пвляется очевидно, инвариантом графа. Некоторые соотношения можд

Weisfeiler

Running the test...

Running the test...

 $\phi = HASH$ function (i.e., injective function)

Running the test...

 $\phi = HASH$ function (i.e., injective function)

Running the test...

Running the test...

(diagrams thanks to Petar Veličković)

 $\phi = HASH$ function

Test does fail to distinguish some graphs, e.g.,

- We have seen GIN is as expressive as the 1-WL test
 - i.e., Given G_1 , G_2 , the following are equivalent:
 - there exist parameters s.t. $GIN(G_1) \neq GIN(G_2)$
 - 1-WL distinguishes G_1 , G_2
- GIN is a "neural version" of the 1-WL algorithm
 - Replaces HASH function with learnable MLP

- We have seen GIN is as expressive as the 1-WL test
 - i.e., Given G_1 , G_2 , the following are equivalent:
 - there exist parameters s.t. $GIN(G_1) \neq GIN(G_2)$
 - 1-WL distinguishes G_1 , G_2
- GIN is a "neural version" of the 1-WL algorithm
- But this does not mean that 1-WL is the only graph algorithm GNNs can simulate
- An untrained GNN (random MLP = random hash) is close to the 1-WL test

- We have seen GIN is as expressive as the 1-WL test
 - i.e., Given G_1 , G_2 , the following are equivalent:
 - there exist parameters s.t. $GIN(G_1) \neq GIN(G_2)$
 - 1-WL distinguishes G_1 , G_2
- GIN is a "neural version" of the 1-WL algorithm
- But this does not mean that 1-WL is the only graph algorithm GNNs can simulate
- An untrained GNN (random MLP = random hash)
 is close to the 1-WL test
- Today's question: what other algorithms can (trained) GNNs simulate?

Plan for Today

- Part 1
 - An algorithm GNNs can run
- Part 2
 - Algorithmic structure of neural network architectures
- Part 3
 - What class of graph algorithms can GNNs simulate?
- Part 4
 - Algorithmic alignment: a principle for neural net design

Stanford CS224W: Algorithmic structure of neural networks

CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu

Neural Networks as Algorithms

- A neural network architecture defines a learnable computer program
- Eventual Aim: identify a broad class of "classical" (graph) algorithms that GNNs can easily learn
 - This is different from our previous study of expressive power

Neural Networks as Algorithms

Key perspective switch:

- In this lecture, we are not focusing on expressive power (as in lecture 6).
- Instead we are focused on what tasks an architecture can easily learn to solve
 - For today: easily = sample efficient (not too much training data)
- Key intuition:
 - MLPs easily learn smooth functions (e.g., linear, log, exp)
 - MLPs bad at learning complex function (e.g., sums of smooth functions - i.e., for-loops)

Neural Networks as Algorithms

 Approach: define progressively more complex algorithmic problems, and corresponding neural net architectures capable of solving each

Neural Nets and Algorithm Structure

- Problem 1 (feature extraction):
 - Input: "flat" features $\mathbf{x} \in \mathbb{R}^n$ (e.g., color, size, position)
 - Output: scalar value y (e.g., is it round and yellow?)

Neural Nets and Algorithm Structure

- Problem 1 (feature extraction):
 - Input: "flat" features $\mathbf{x} \in \mathbb{R}^n$ (e.g., color, size, position)
 - Output: scalar value y (e.g., is it round and yellow?)
- No other prior knowledge (minimal assumptions)

Problem 1: feature extraction

- Problem 1 (task on one object):
 - Input: "flat" features $\mathbf{x} \in \mathbb{R}^n$ (e.g., color, size, position)
 - Output: scalar value y (e.g., is it round and yellow?)
- No other prior knowledge (minimal assumptions)
- Q: What neural network choice suits this problem?
- A: MLPs (multilayer perceptrons)
 - Universal approximator
 - Makes no assumptions on input/output structure

Architectures and Problem Type

MLP

- task on one object
- ~ feature extraction

Lets consider tasks on many objects...

Problem 2: Summary statistics

- Problem 2 (summary statistics):
 - Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$

Problem 2: Summary statistics

Problem 2 (summary statistics):

- Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$
- Task Output: some aggregate property of the set (e.g., largest x-coordinate)

Problem 2 (summary statistics):

- Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$
- Task Output: some aggregate property of the set (e.g.,

largest x-coordinate

 $y(\{x_i\}) = \max_i(x_i^{coordinate})$

 $\begin{aligned} &\text{out = -inf} \\ &\text{For i = 1, ...} \\ &\text{if } x_i^{\text{coordinate}} > \text{out} \\ &\text{out = } x_i^{\text{coordinate}} \\ &\text{Return out} \end{aligned}$

- MLP model: $MLP(x_1, ..., x_n)$
- Not well suited to this task
- To learn max (and min) MLP has to learn to execute a for-loop
- This is a complex operation, MLP needs lots of data to learn

- New DeepSet model:
 - DeepSet($\{x_i\}$) = MLP₁($\sum_i MLP_2(x_i)$)
- Well suited to this task
- Why?

- New DeepSet model:
 - DeepSet($\{x_i\}$) = MLP₁($\sum_i MLP_2(x_i)$)
- Well suited to this task
- Why? Can approx. softmax, a simple approx. to max

max_i(x_i^{coordinate}) $\approx \log \left(\sum_i e^{x_i^{coordinate}}\right)$ (MLP₁ learns log, MLP₂ learns exp)

- New DeepSet model:
 - DeepSet($\{x_i\}$) = MLP₁($\sum_i MLP_2(x_i)$)
- Well suited to this task
- Why? Can approx. softmax, a simple approx. to min/max

- $\max_{i}(x_{i}^{coordinate}) \approx \log \left(\sum_{i} e^{x_{i}^{coordinate}}\right) (MLP_{1} \text{ learns log, } MLP_{2} \text{ learns exp})$
- Key point:
 - Consequence: MLPs only must learn simple functions (log / exp)
 - This can be done easily, without needing much data
- MLP can provably also learn this. But must learn complex for-loop, which requires lots of training data

Architectures and Problem Type

MLP

- Task on one object
- ~ feature extraction

DeepSet

- Task on many objects
- ~ summary statistics
- $y({x_i}) = max_i(x_i^{coordinate})$

Lets consider a harder task on many objects...

- Problem 3 (relational argmax):
 - Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$

Problem 3 (relational argmax):

- Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$
- Task Output: property of pairwise relation (e.g., what are the colors of the two furthest away objects?)

Problem 3 (relational argmax):

- Input: a set of objects $\{x_i\}$, each with features containing their coordinate and color $x_i = [x_i^{color}, x_i^{coordinate}]$
- Task Output: property of pairwise relation (e.g., what are the colors of the two furthest away objects?)
- $y(\lbrace x_i \rbrace) = (x_{i_1}^{color}, x_{i_2}^{color})$ s. t. $i_1, i_2 = argmax_{i_1i_2} ||x_i^{coordinate} x_j^{coordinate}||$

- DeepSet poorly suited to modelling pairwise relations
 - Recall: DeepSet($\{x_i\}$) = MLP₂(\sum_i MLP₁(x_i))
- Reason:
 - task requires comparing pairs of objects i.e., a for-loop
 - each object processed independently by MLP₁
 - Consequence: MLP₂ has to learn complex for-loop (hard)
- $\sum_i \text{MLP}_1(\mathbf{x}_i)$ provably cannot learn pairwise relations Theorem: Suppose $g(x,y) = \mathbf{0}$ if and only if x = y. Then there is no f such that g(x,y) = f(x) + f(y)

$$y(\{x_i\}) = \left(x_{i_1}^{color}, x_{i_2}^{color}\right) s. \ t. \ \ i_1, i_2 = argmax_{i_1i_2} ||x_i^{coordinate} - x_j^{coordinate}||$$

- GNN well suited to this task: for-loop is built in!
 - E.g., recall GIN update
 - For i = 1, ..., n:
 - $h_i^{l+1} = \text{MLP}_2(\text{MLP}_1(h_i^l) + \sum_{j \in N(i)} \text{MLP}_1(h_j^l))$
 - Update of node embedding depends on other nodes
 - MLP_1 computes distance from i to j
 - MLP₂ identifies which pair is best in $\{(i,j)\}_{j\in N(i)}$

$$y(\{x_i\}) = \left(x_{i_1}^{color}, x_{i_2}^{color}\right) s. \ t. \ \ i_1, i_2 = \underset{}{argmax_{i_1i_2}}||x_i^{coordinate} - x_j^{coordinate}||$$

12/6/23

In each case, the neural net

architecture "fits" the

will come back to this

computations needed to

compute the target... we

Architectures and Problem Type

MLP

- Task on one object
- ~ feature extraction

DeepSet

- Task on many objects
- ~ summary statistics (max value difference)
- $y({x_i}) = max_i(x_i^{coordinate})$

GNN

- Task on many objects
- ~ pairwise relations (relational argmax)
- $y(\{x_i\}) = (x_{i_1}^{color}, x_{i_2}^{color}) \text{ s. t. } i_1, i_2 = argmax_{i_1i_2} ||x_i^{coordinate} x_j^{coordinate}||$

Results in practice

Task 2: maximum value
 MLP fails due to inability
 to compute max

- Task 3: relational argmax
 - Both DeepSet and MLP fail

General algorithm class for GNN?

- GNNs are good at solving tasks that require relating pairs of objects (nodes)
 - MLPs/DeepSets cannot do this easily since they have to learn for-loop
- "Relational argmax" is just one problem that GNN can solve...
- What is the general class of algorithms GNNs can run?

Plan for Today

- Part 1
 - An algorithm GNNs can run
- Part 2
 - Algorithmic structure of neural network architectures
- Part 3
 - What class of graph algorithms can GNNs simulate?
- Part 4
 - Algorithmic alignment: a principle for neural net design

Stanford CS224W: Algorithmic Class of GNNs

CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu

Algorithms that use dynamic programming [odt]

Dynamic Programming

- Fundamental algorithmic paradigm
- One of the most influential algorithm classes in computer science (lecture 6 in MIT's intro to Comp Sci)
- Works by recursively breaking a problem into smaller instances of the same problem type

Dynamic Programming

- Task 4 (shortest path):
 - Input: a weighted graph and a chosen source node
 - Output: all shortest paths out of source node (shortest path tree)

Dynamic Programming

- Task 4 (shortest path):
 - Input: a weighted graph and a chosen source node
 - Output: all shortest paths out of source node (shortest path tree)
- Algorithmic solution: Bellman-Ford

Bellman-Ford algorithm

for k = 1 ... |S| - 1: for u in S:

 $d[k][u] = \min_{v} d[k-1][v] + cost(v, u)$

Dynamic programming has very similar form to GNN

Graph Neural Network

for k = 1 ... GNN iter:

for u in S:

No need to learn for-loops

 $h_{u}^{(k)} = \Sigma_{v} MLP(h_{v}^{(k-1)}, h_{u}^{(k-1)})$

Bellman-Ford algorithm

for k = 1 ... |S| - 1:

for u in S:

 $d[k][u] = \min_{v} d[k-1][v] + cost(v, u)$

Learns a simple reasoning step

- Dynamic programming has very similar form to GNN
- Both have nested for-loops over:
 - Number of GNN layers / iterations of BF
 - Each node in graph

Graph Neural Network

for $k = 1 \dots$ GNN iter:

for u in S:

No need to learn for-loops

 $h_{u}^{(k)} = \Sigma_{v} MLP(h_{v}^{(k-1)}, h_{u}^{(k-1)})$

Bellman-Ford algorithm

for k = 1 ... |S| - 1:

for u in S:

 $d[k][u] = \min_{v} d[k-1][v] + cost(v, u)$

Learns a simple reasoning step

- Dynamic programming has very similar form to GNN
- Both have nested for-loops over:
 - Number of GNN layers / iterations of BF
 - Each node in graph
- GNN aggregation + MLP only needs to learn sum + min
- An MLP trying to learn a DP has to learn double-nested for loop – really hard to do!

Graph Neural Network

Bellman-Ford algorithm

```
for k = 1 \dots GNN iter:
for u in S:
```

No need to learn for-loops

 $h_{u}^{(k)} = \Sigma_{v} MLP(h_{v}^{(k-1)}, h_{u}^{(k-1)})$

for k = 1 ... |S| - 1:

for u in S:

 $d[k][u] = \min_{v} d[k-1][v] + cost(v, u)$

Learns a simple reasoning step

- There is an even better choice of GNN...
 - Choose min activation to match DP
 - Then MLP only needs to learn linear function!

GNN Architectures

$$h_u^{(k)} = \sum_{\mathbf{v}} \mathbf{MLP}^{(k)} (h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$

MLP has to learn non-linear steps

$$h_u^{(k)} = \min_{v} \mathbf{MLP}^{(k)} (h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$

MLP learns linear steps

DP Algorithm (Target Function)

$$d[k][u] = \frac{\min_{\mathbf{v}}}{d[k-1][v] + w(v, u)}$$

- We expect GNNs to be good at solving tasks that can be solved with DP
 - E.g., shortest paths
- Does this actually happen?

Results in practice

 Task 2: maximum value MLP fails due to inability to compute max

- Task 3: relational argmax
 - Both DeepSet and MLP fail

- Task 4: shortest path (dynamic programming)
 - Task shortest path length up to 7
 - 7 layer GNN gets best performance

Conclusion

- Goal: understand what tasks GNNs are good at solving
 - We are **not** focusing on expressivity
 - Instead we are interested in how easy it is to learn the solution (e.g., how much data the model needs to see)
- GNN message passing is a dynamic programing algorithm
- Consequence: GNNs are a good choice of architecture for tasks that can be solved by a DP (e.g., finding shortest paths)

Plan for Today

- Part 1
 - An algorithm GNNs can run
- Part 2
 - Algorithmic structure of neural network architectures
- Part 3
 - What class of graph algorithms can GNNs simulate?
- Part 4
 - Algorithmic alignment: a principle for neural net design

Stanford CS224W: Algorithmic Alignment

CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu

Algorithmic-Centric Principle For Neural Network Design

- In the previous section we studied what type of tasks GNNs excel at solving
 - Key idea: focus on the algorithm that solves the task
 - If the neural net can express the algorithm easily, then it's a good choice of architecture
- How to formulate a general principle?

Algorithmic Alignment

Algorithmic Alignment

Given a target algorithm $g=g_m\circ \cdots \circ g_1$, a neural network architecture $f=f_m\circ \cdots \circ f_1$ if:

- g_i a simple function
- f_i can express g_i
- Each f_i has few learnable parameters (so can learn g_i easily)
- If you remember any phrase from today, let it be algorithmic
 alignment all of todays lecture can be understood with this idea
- About how a model expresses a target function, not if (i.e., expressive power). Recall that an MLP is a universal approximator
- Intuition: overall algorithm can be learned more easily by learning individual simple steps

Designing New Neural Nets with Algorithmic Alignment

- GNN is algorithmically aligned to dynamic programming (DP)
- But algorithmic alignment is a general principle for designing neural network architectures
- So we should be able to use it to design entirely new neural networks given a particular problem

Designing New Neural Nets with Algorithmic Alignment

- Many successful example of this in the literature
 - Neural Shuffle-Exchange Networks (Freivalds et al., NeurIPS'19)
 - Linearithmic algorithms
 - Neural Execution of Graph Algorithms (Veličković et al., ICLR'20)
 - Improved dynamic programming
 - PrediNet (Shanahan et al., ICML'20)
 - Predicate Logic
 - IterGNNs (Tang et al., NeurIPS'20)
 - Iterative algorithms
 - Pointer Graph Networks (Veličković et al., NeurIPS'20)
 - Pointer-based data structures
 - Persistent Message Passing (Strathmann et al., ICLR'21 SimDL)
 - Persistent data structures

Stanford CS224W: Applications of Algorithmic Alignment

CS224W: Machine Learning with Graphs Joshua Robinson, Stanford University http://cs224w.stanford.edu

Designing New Neural Nets with Algorithmic Alignment

- Application 1: building a network to solve a new task
 - The subset-sum problem (NP-hard)
- Application 2: building neural networks that can generalize out-of-distribution
 - The linear algorithmic alignment hypothesis

Solving an NP-hard Task: Subset Sum

Task: given a set of numbers S, decide if there exists a subset that sums to k

Solving an NP-hard Task: Subset Sum

 Task: given a set of numbers S, decide if there exists a subset that sums to k

 Known to be NP-hard, no DP algorithm can solve this (so GNN not suitable)

Solving an NP-hard Task: Subset Sum

- Exhaustive Search Algorithm for solving subset sum:
 - Loop over all subsets $\tau \in S$ and check if sum is k
- Clearly not polynomial time... but can it inspire a neural net architecture?

Solving an NP-hard Task: Subset Sum

- Exhaustive Search Algorithm for solving subset sum:
 - Loop over all subsets $\tau \in S$ and check if sum is k
- Clearly not polynomial time... but can it inspire a neural net architecture?
- Neural Exhaustive Search:
 - Given $S = \{X_1, ..., X_n\}$,
 - NES(S) = MLP $(\max_{\tau \subseteq S} LSTM(X_1, ..., X_{|\tau|}: X_1, ..., X_{|\tau|} \in \tau)$
 - Algorithmically aligned to exhaustive search:
 - LSTM learns if the sum $X_1 + ... + X_{|\tau|} = k$ (simple function)
 - Max aggregation identifies best subset
 - MLP maps to true/false value

Solving an NP-hard Task: Subset Sum

- Result in practice
- Random guessing gets50% accuracy

Neural Exhaustive Search:

- Given $S = \{X_1, ..., X_n\}$,
- NES(S) = MLP $(\max_{\tau \subseteq S} LSTM(X_1, ..., X_{|\tau|}: X_1, ..., X_{|\tau|} \in \tau)$
 - Algorithmically aligned to exhaustive search:
 - LSTM learns if the sum $X_1 + ... + X_{|\tau|} = k$ (simple function)
 - Max aggregation identifies best subset
 - MLP maps to true/false value

Designing New Neural Nets with Algorithmic Alignment

- Application 1: building a network to solve a new task
 - The subset-sum problem (NP-hard)
- Application 2: building neural networks that can generalize out-of-distribution
 - The linear algorithmic alignment hypothesis

Algorithmic Alignment and Extrapolation

- We have argued that algorithmic alignment can help inspire architectures well suited to particular tasks
 - By well suited, we mean generalizes well using little training data
- But true AI requires something stronger than this...
 - Also needs to "extrapolate" to instances that look very different from the training data

Algorithmic Alignment and Extrapolation

- Extrapolation is also called out-of-distribution generalization
- Extrapolation is a holy grail of AI, necessary for systems to behave reliably in unforeseen future situations
- Can algorithmic alignment help with extrapolation?
 - Let's start with a simple but important observation

How MLPs extrapolate

Observation: ReLU MLPs extrapolate linearly

How MLPs extrapolate

Observation: ReLU MLPs extrapolate linearly

- Can be proved that extrapolation is perfect for linear target functions
- But ReLU MLPs cannot generalize for non-linear target functions...
- The need for linearity for MLP extrapolation suggests a hypothesis for GNN extrapolation...

The Linear Algorithmic Alignment Hypothesis

Linear Algorithmic Alignment Hypothesis

Linear algorithmic alignment implies a neural network can extrapolate to unseen data

The Linear Algorithmic Alignment Hypothesis

Linear Algorithmic Alignment Hypothesis

Linear algorithmic alignment implies a neural network can extrapolate to unseen data

Linear Algorithmic Alignment

Given a target algorithm $g=g_m\circ\cdots\circ g_1$, a neural network architecture $f=f_m\circ\cdots\circ f_1$ linearly aligns if:

- f_i can express g_i
- f_i contains a combination of non-linearities and MLPs
- Each MLP in f_i only has to learn a linear map to perfectly fit g_i

How GNNs extrapolate

- Recall GNN for learning dynamic programs
- GNN aggregation function is key
 - Min aggregation is linearly algorithmically aligned
 - Sum aggregation is not
- Does linear algorithmic alignment lead to extrapolation?

GNN Architectures

$$h_u^{(k)} = \sum_{\mathbf{v}} \mathbf{MLP}^{(k)} (h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$

MLP has to learn non-linear steps

$$h_u^{(k)} = \min_{v} \mathbf{MLP}^{(k)} (h_v^{(k-1)}, h_u^{(k-1)}, w(v, u))$$

DP Algorithm (Target Function)

$$d[k][u] = \frac{\min_{\mathbf{v}}}{d[k-1][v] + w(v, u)}$$

How GNNs extrapolate

Max degree and shortest paths are DP tasks

Does linear algorithmic alignment lead to extrapolation?

GNN Architectures

$$h_u^{(k)} = \sum_{\mathbf{v}} \mathbf{MLP}^{(k)} \left(h_v^{(k-1)}, h_u^{(k-1)}, w(v, u) \right)$$
 \mathbf{MLP} has to learn non-linear steps

 $h_u^{(k)} = \min_{\mathbf{v}} \mathbf{MLP}^{(k)} \left(h_v^{(k-1)}, h_u^{(k-1)}, w(v, u) \right)$
 \mathbf{MLP} learns linear steps

DP Algorithm (Target Function)

$$d[k][u] = \frac{\min_{\mathbf{v}}}{d[k-1][v] + w(v, u)}$$

Concusion

- Neural networks can be viewed as programs, or algorithms
- Different neural network architectures are better suited to learning different algorithms
- Graph neural networks are dynamic programs
- Algorithmic alignment: make the computations steps of the neural net closely match the computational steps of the target algorithm
 - Learn quicker, extrapolate better