
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

EXAM: LOGISTICS
• Open from Tuesday 3/7 10 AM to Wednesday 3/8

9:59AM; you can take it in any 2 hour 15 min period.
• If you need an extension (OAE), please request now!

• If you have any clarifying questions, make a private
Ed post about it.

• Open-everything, but do not discuss the exam with
any other students until after Wednesday.

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

EXAM: WHAT TO EXPECT
• 9 questions with subparts, each should take 5-15 min

• The exam is long and covers many topics
• We don't expect you to finish it all, but want to give you the

chance to show your knowledge on topics you know well
• Read over our “Exam Information” Ed announcement and

watch Exam Prep Session for details on topics, submission, etc.

• Pace yourself: if you find yourself stuck on a question, move
on to the next one.

• Good luck!!! You're going to do great!

 Recommender systems:
▪ Amazon

▪ YouTube

▪ Pinterest

▪ Etc.
 ML tasks:
▪ Recommend items

(link prediction)

▪ Classify users/items
(node classification)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Users

100M~1B
Products/Videos

10M ~ 1B

Bought/saw

 Social networks:

▪ Facebook

▪ Twitter

▪ Instagram

▪ Etc.

 ML tasks:

▪ Friend recommendation

(link-level)

▪ User property prediction

(node-level)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Users

300M~3B

Friend/follow

 Academic graph:

▪ Microsoft Academic Graph

 ML tasks:

▪ Paper categorization

(node classification)

▪ Author collaboration

recommendation

▪ Paper citation

recommendation

(link prediction)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Paper

Author

Institution

writes

affiliated with

cites

Papers

120M
Authors

120M

 Knowledge Graphs (KGs):

▪ Wikidata

▪ Freebase

 ML tasks:

▪ KG completion

▪ Reasoning

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 7

is a

Geoffrey Hinton

Person

affiliated

with

University of

Toronto

Canada

located in

Paul Martin

graduated from

born in

UK
Graduated

from

King’s College,

Cambridge

Entities

80M—90M

 Large-scale:

▪ #nodes ranges from 10M to 10B.

▪ #edges ranges from 100M to 100B.

 Tasks

▪ Node-level: User/item/paper classification.

▪ Link-level: Recommendation, completion.

 Todays’ lecture

▪ Scale up GNNs to large graphs!

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 8

 Recall: How we usually train an ML model on
large data (𝑵=#data is large)

 Objective: Minimize the averaged loss

▪ 𝜽: model parameters, ℓ𝑖 𝜽 : loss for 𝑖-th data point.

 We perform Stochastic Gradient Descent (SGD).

▪ Randomly sample 𝑀 (≪ 𝑁) data (mini-batches).

▪ Compute the ℓ𝑠𝑢𝑏(𝜽) over the 𝑀 data points.

▪ Perform SGD: 𝜽 ← 𝜽 − ∇ℓ𝑠𝑢𝑏(𝜽)
3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 9

What if we were to use the standard SGD for GNN?
 In mini-batch, we sample 𝑴 (≪ 𝑵) nodes

independently:

▪ Sampled nodes tend to be isolated from each other.

▪ Recall: GNN generates node embeddings by aggregating neighboring
node features.

▪ GNN does not access to neighboring nodes within the mini-batch!

 Standard SGD cannot effectively train GNNs.
3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

All the nodes in G

: Sampled nodes
X

X

 Naïve full-batch
implementation: Generate
embeddings of all the nodes at
the same time:
𝐻(𝑘+1) = 𝜎(ሚ𝐴𝐻 𝑘 𝑊𝑘

T + 𝐻 𝑘 𝐵𝑘
T)

▪ Load the entire graph 𝐴 and features X.
Set 𝐻 0 = 𝑋.

▪ At each GNN layer: Compute
embeddings of all nodes using all the
node embeddings from the previous
layer.

▪ Compute the loss

▪ Perform gradient descent
3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

Given all node

embeddings at layer K

Perform message-

passing

Obtain all node

embeddings at layer K+1

 However, Full-batch implementation is not
feasible for a large graphs. Why?

 Because we want to use GPU for fast training,
but GPU memory is extremely limited (only
10GB--20GB).

▪ The entire graph and the features cannot be
loaded on GPU.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 12

CPU
1TB—10TB

GPU
10GB—20GB

Fast computation,

limited memory

Slow computation,

large memory

We introduce three methods for scaling up GNNs:
 Two methods perform message-passing over small

subgraphs in each mini-batch; only the subgraphs
need to be loaded on a GPU at a time.

▪ Neighbor Sampling [Hamilton et al. NeurIPS 2017]

▪ Cluster-GCN [Chiang et al. KDD 2019]

 One method simplifies a GNN into feature-
preprocessing operation (can be efficiently
performed even on a CPU)

▪ Simplified GCN [Wu et al. ICML 2019]

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Recall: GNNs generate node embeddings via
neighbor aggregation.

▪ Represented as a computational graph (right).

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 15

Neighbor

aggr.
0

1

7

6

2

3

4

8

5

9
Neighbor aggr.

0

1
2

3

0

4
5

6 0 7 8 0
8

9

 Observation: A 2-layer GNN generates
embedding of node “0” using 2-hop
neighborhood structure and features.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16

2-hop neighborhood

0
1

7

6

2

3

4

8

5

9
Neighbor aggr

0

1
2

3

0

4
5

6 0 7 8 0
8

9

 Observation: More generally, 𝐾-layer GNNs
generate embedding of a node using 𝐾-hop
neighborhood structure and features.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 17

2-hop neighborhood

0
1

7

6

2

3

4

8

5

9
Neighbor aggr

0

1
2

3

0

4
5

6 0 7 8 0
8

9

 Key insight: To compute embedding of a single
node, all we need is the 𝑲-hop neighborhood
(which defines the computation graph).

 Given a set of 𝑀 different nodes in a mini-batch,
we can generate their embeddings using 𝑀
computational graphs. Can be computed on GPU!

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 18

…

Comp. graph

for 1-st node
Comp. graph

for 2-nd node
Comp. graph

for 𝑀-th node

M
in

i-
b

a
tc

h

 We can now consider the following SGD
strategy for training 𝑲-layer GNNs:

▪ Randomly sample𝑀 (≪ 𝑁) nodes.

▪ For each sampled node 𝑣:

▪ Get 𝑲-hop neighborhood, and construct the
computation graph.

▪ Use the above to generate 𝑣’s embedding.

▪ Compute the loss ℓ𝑠𝑢𝑏(𝜽) averaged over
the 𝑀 nodes.

▪ Perform SGD: 𝜽 ← 𝜽 − ∇ℓ𝑠𝑢𝑏(𝜽)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 19

𝑲-hop

neighborhood

Computational

graph

 For each node, we need to get the entire
𝑲-hop neighborhood and pass it through
the computation graph.

 We need to aggregate lot of information
just to compute one node embedding.

 Some computational redundancy:

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20
Redundancy-Free Computation for Graph Neural Networks, KDD 202

https://cs.stanford.edu/people/jure/pubs/hags-kdd20.pdf

 2nd issue:

▪ Computation graph
becomes exponentially
large with respect to the
layer size 𝐾.

▪ Computation graph
explodes when it hits a
hub node (high-degree
node).

 Next: Make the comp.
graph more compact!

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

Exponential

growth

Hub node

Key idea: Construct the computational graph by
(randomly) sampling at most 𝐻 neighbors at each
hop.
 Example (𝑯 = 𝟐):

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 22

0

1
2

3

0

4
5

6 0 7 8 0
8

9

1st-hop

neighborhood

2nd-hop

neighborhood

First, sample 2 and 3

(drop node 1)

Sample

neighborhood from

the root to leaves

Sample 0 and 8

(drop 7)

Sample 8 and 9

(drop 0)

We can use the pruned computational graph to
more efficiently compute node embeddings.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 23

0

1
2

3

0

4
5

6 0 7 8 0
8

9

Neighbor sampling for 𝑲-layer GNN
 For 𝑘 = 1, 2,… , 𝐾:

▪ For each node in 𝑘-hop neighborhood:

▪ (Randomly) sample at most 𝐻𝑘 neighbors:

 𝐾-layer GNN will at most involve
ς𝑘=1
𝐾 𝐻𝑘 leaf nodes in comp. graph.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 24

0

1 2
3

0
4 5 6 0 7 8 0 8

9

1st-hop

neighborhood

2nd-hop

neighborhood

Sample 𝐻1 = 2
neighbors

Sample𝐻2 = 2
neighbors

 Remark 1: Trade-off in sampling number 𝑯

▪ Smaller 𝐻 leads to more efficient neighbor
aggregation, but results in more unstable training
due to the larger variance in neighbor aggregation.

 Remark 2: Computational time

▪ Even with neighbor sampling, the size of the
computational graph is still exponential with
respect to number of GNN layers 𝑲.

▪ Adding one GNN layer would make computation 𝐻
times more expensive.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

 Remark 3: How to sample the nodes

▪ Random sampling: fast but many times not
optimal (may sample many “unimportant” nodes)

▪ Random Walk with Restarts:

▪ Natural graphs are “scale free”, sampling random
neighbors, samples many low degree “leaf” nodes.

▪ Strategy to sample important nodes:
▪ Compute Random Walk with Restarts score
𝑅𝑖 starting at the green node

▪ At each level sample 𝐻 neighbors 𝑖 with
the highest 𝑅𝑖

▪ This strategy works much better in
practice.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 26

 A computational graph is constructed for each
node in a mini-batch.

 In neighbor sampling, the comp. graph is
pruned/sub-sampled to increase
computational efficiency.

 The pruned comp. graph is used to generate a
node embedding.

 However, computational graphs can still
become large, especially for GNNs with many
message-passing layers.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 27

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 The size of computational graph becomes
exponentially large w.r.t. the #GNN layers.

 Computation is redundant, especially when
nodes in a mini-batch share many neighbors.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 29

A B

Same comp. graph

(except for sampling) Same comp. graph

(except for sampling)

C D C D E

Input graph Computational

graph
A B

C D E

 In full-batch GNN implementation, all the
node embeddings are updated together
using embeddings of the previous layer.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Message passing

Message

▪ In each layer, only 2*#(edges)
messages need to be computed.

▪ For 𝐾-layer GNN, only 2𝐾*#(edges)
messages need to be computed.

▪ GNN’s entire computation is only linear
in #(edges) and #(GNN layers). Fast!

Update for all 𝒗 ∈ 𝑽

 The layer-wise node embedding update
allows the re-use of embeddings from the
previous layer.

 This significantly reduces the
computational redundancy
of neighbor sampling.

▪ Of course, the layer-wise update is not
feasible for a large graph due to limited GPU
memory.

▪ Requires putting the entire graph and features on
GPU.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 31

Layer-wise update

 Key idea: We can sample a small subgraph of
the large graph and then perform the
efficient layer-wise node embeddings update
over the subgraph.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 32

Large graph Sampled subgraph

(small enough to

be put on a GPU)

Layer-wise

node embeddings

update on the GPU

 Key question: What subgraphs are good for
training GNNs?

▪ Recall: GNN performs node embedding by
passing messages via the edges.

▪ Subgraphs should retain edge connectivity
structure of the original graph as much as possible.

▪ This way, the GNN over the subgraph generates
embeddings closer to the GNN over the original
graph.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 33

 Which subgraph is good for training GNN?

 Left subgraph retains the essential community
structure among the 4 nodes → Good

 Right subgraph drops many connectivity
patterns, even leading to isolated nodes → Bad

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

Subgraphs (both 4-node induced subgraph)Original graph

v.s.

Left Right

Real-world graph exhibits community structure

▪ A large graph can be decomposed into many small
communities.

 Key insight [Chiang et al. KDD 2019]:
Sample a community as a subgraph.
Each subgraph retains essential
local connectivity pattern of the
original graph.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 35

 We first introduce “vanilla” Cluster-GCN.
 Cluster-GCN consists of two steps:

▪ Pre-processing: Given a large graph, partition it into
groups of nodes (i.e., subgraphs).

▪ Mini-batch training: Sample one node group at a
time. Apply GNN’s message passing over the
induced subgraph.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 36

Mini-batch training
Input large graph Partitioning

Sample

Message-passing

over induced subgraph

to compute the loss

 Given a large graph 𝐺 = (𝑉, 𝐸), partition its
nodes 𝑽 into 𝑪 groups: 𝑽𝟏, … , 𝑽𝑪.

▪ We can use any scalable community detection
methods, e.g., Louvain, METIS [Karypis et al. SIAM 1998].

 𝑉1, … , 𝑉𝐶 induces 𝐶 subgraphs, 𝐺1, … , 𝐺𝐶,

▪ Recall: 𝐺𝑐 ≡ (𝑉𝑐 , 𝐸𝑐),

▪ where 𝐸𝑐 = { 𝑢, 𝑣 |𝑢, 𝑣 ∈ 𝑉𝑐}

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 37

𝐺1 𝐺2

𝐺3

Notice: Between-group

edges are not included in

𝑮𝟏 , … , 𝑮𝑪.

 For each mini-batch, randomly sample a node
group 𝑽𝒄.

 Construct induced subgraph 𝑮𝒄 = (𝑽𝒄, 𝑬𝒄)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 38

Sampled node

group 𝑽𝒄

Induced

subgraph 𝑮𝒄

 Apply GNN’s layer-wise node update over 𝑮𝒄 to
obtain embedding 𝒉𝑣 for each node 𝑣 ∈ 𝑉𝑐.

 Compute the loss for each node 𝑣 ∈ 𝑉𝑐 and take
average: ℓ𝑠𝑢𝑏 𝜽 = (1/|𝑉𝑐|) ⋅ σ𝑣∈𝑉𝑐 ℓ𝑣(𝜽)

 Update params: 𝜽 ← 𝜽 − ∇ℓ𝑠𝑢𝑏(𝜽)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 39

Layer-wise node

embedding update

Embedding
Induced subgraph 𝑮𝒄

 The induced subgraph removes between-
group links.

 As a result, messages from other groups will
be lost during message passing, which could
hurt the GNN’s performance.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 40

Between-

group links

are removed Lost messages

Induced subgraph

 Graph community detection algorithm puts
similar nodes together in the same group.

 Sampled node group tends to only cover the
small-concentrated portion of the entire data.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 41

Entire

nodes

Sampled

node

group

Sampled nodes are not diverse enough to be
represent the entire graph structure:
 As a result, the gradient averaged over the

sampled nodes, , becomes

unreliable.

▪ Fluctuates a lot from a node group to another.

▪ In other words, the gradient has high variance.

 Leads to slow convergence of SGD

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 42

 Solution: Aggregate multiple node groups per
mini-batch.

 Partition the graph into relatively-small groups
of nodes.

 For each mini-batch:

▪ Sample and aggregate multiple node groups.

▪ Construct the induced subgraph of the aggregated
node group.

▪ The rest is the same as vanilla Cluster-GCN (compute
node embeddings and the loss, update parameters)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 43

 Why does the solution work?

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

Sampling multiple node groups
→ Makes the sampled nodes more representative of the entire

nodes. Leads to less variance in gradient estimation.

The induced subgraph over

aggregated node groups
→ Includes edges between groups

→ Message can flow across groups.

Similar to vanilla Cluster-GCN, advanced
Cluster-GCN also follows 2-step approaches.
Pre-processing step:
 Given a large graph 𝐺 = (𝑉, 𝐸), partition its

nodes 𝑉 into 𝐶 relatively-small groups:
𝑉1, … , 𝑉𝐶.

▪ 𝑉1 , … , 𝑉𝐶 needs to be small so that even if multiple
of them are aggregated, the resulting group would
not be too large.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Mini-batch training:
 For each mini-batch, randomly sample a set of
𝒒 node groups: {𝑉𝑡1, … , 𝑉𝑡𝑞} ⊂ {𝑉1, … ,𝑉𝐶}.

 Aggregate all nodes across the sampled node
groups: 𝑉𝑎𝑔𝑔𝑟 = 𝑉𝑡1 ∪⋯∪ 𝑉𝑡𝑞

 Extract the induced subgraph

𝑮𝒂𝒈𝒈𝒓 = 𝑽𝒂𝒈𝒈𝒓, 𝑬𝒂𝒈𝒈𝒓 ,

where 𝐸𝑎𝑔𝑔𝑟 = { 𝑢, 𝑣 | 𝑢, 𝑣 ∈ 𝑉𝑎𝑔𝑔𝑟}

▪ 𝑬𝒂𝒈𝒈𝒓 also includes between-group edges!

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 46

 Generate 𝑴 (≪ 𝑵) node embeddings using 𝑲-
layer GNN (𝑵 : #all nodes).

 Neighbor-sampling (sampling 𝐻 nodes per layer):

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 47

▪ For each node, the size of 𝐾-layer
computational graph is 𝐻𝐾.

▪ For 𝑀 nodes, the cost is 𝑴 ⋅𝑯𝑲

𝐻𝐾 𝐻𝐾 𝐻𝐾

𝑴 computational graphs

…

 Generate 𝑴 (≪ 𝑵) node embeddings using
𝑲-layer GNN (𝑵 : #all nodes).

 Cluster-GCN:

▪ Perform message passing over a subgraph induced
by the 𝑀 nodes.

▪ The subgraph contains 𝑀 ⋅ 𝐷𝑎𝑣𝑔 edges, where

𝐷𝑎𝑣𝑔 is the average node degree.

▪ 𝐾-layer message passing over the subgraph costs
at most 𝑲 ⋅ 𝑴 ⋅ 𝑫𝒂𝒗𝒈.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 48

 In summary, the cost to generate embeddings
for 𝑀 nodes using 𝐾-layer GNN is:

▪ Neighbor-sampling (sample 𝑯 nodes per layer):
𝑴 ⋅ 𝑯𝑲

▪ Cluster-GCN: 𝑲 ⋅𝑴 ⋅ 𝑫𝒂𝒗𝒈

 Assume 𝑯 = 𝑫𝒂𝒗𝒈/𝟐. In other words, 50% of

neighbors are sampled.

▪ Then, Cluster-GCN (cost: 𝟐𝑴𝑯𝑲) is much more
efficient than neighbor sampling (cost: 𝑴𝑯𝑲).

▪ Linear (instead of exponential) dependency w.r.t. 𝑲.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 49

 Cluster-GCN first partitions the entire nodes
into a set of small node groups.

 At each mini-batch, multiple node groups are
sampled, and their nodes are aggregated.

 GNN performs layer-wise node embeddings
update over the induced subgraph.

 Cluster-GCN is more computationally efficient
than neighbor sampling, especially when #(GNN
layers) is large.

 But Cluster-GCN leads to systematically biased
gradient estimates (due to missing cross-community edges)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 50

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 We start from Graph Convolutional Network
(GCN) [Kipf & Welling ICLR 2017].

 We simplify GCN (“SimplGCN”) by removing the
non-linear activation from the GCN [Wu et al. ICML 2019].

▪ SimplGCN demonstrated that the performance on
benchmark is not much lower by the simplification.

▪ Simplified GCN turns out to be extremely scalable by
the model design.

▪ The simplification strategy is very similar to the one
used by LightGCN for recommender systems.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 52

 Adjacency matrix: 𝑨
 Degree matrix: 𝑫
 Normalized adjacency matrix:
෩𝑨 ≡ 𝑫−1/2𝑨𝑫−1/2

 Let 𝑬(𝑘) be the embedding matrix at 𝑘-th layer.
 Let 𝑬 be the input embedding matrix.

▪ We backprop into 𝑬.

 GCN’s aggregation in the matrix form

▪ 𝑬(𝑘+1) = ReLU ෩𝑨𝑬(𝑘)𝑾(𝑘)

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 53

Embedding

matrix 𝑬(𝑘)

Embedding

of node 𝑣

𝑣

 Removing ReLU non-linearity gives us

▪ 𝑬(𝐾) = ෩𝑨𝐾 𝑬𝑾, where 𝑾 ≡𝑾(0)⋯𝑾(𝐾−1)

 Efficient algorithm to obtain ෩𝑨𝐾 𝑬

▪ Start from input embedding matrix 𝑬.

▪ Apply 𝑬 ← ෩𝑨 𝑬 for 𝐾 times.

 Weight matrix 𝑾 can be ignored for now.

▪ 𝑾 acts as a linear classifier over the diffused node

embeddings ෩𝑨𝐾 𝑬 .

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 54

Diffusing node embeddings

along the graph

 SimplGCN adds self-loops to adjacency matrix 𝑨:

▪ 𝑨 ← 𝑨 + 𝑰

▪ Follows the original GCN by Kipf & Welling.

 SimplGCN assumes input node embeddings 𝑬 to
be given as features:

▪ Input embedding matrix 𝑬 is fixed rather than
learned.

▪ Important consequence: ෩𝑨𝐾 𝑬 needs to be
calculated only once.

▪ Can be treated as a pre-processing step.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 55

 Let ෩𝑬 = ෩𝑨𝐾 𝑬 be pre-processed
feature matrix.

▪ Each row stores the pre-processed
feature for each node.

▪ ෩𝑬 can be used as input to any
scalable ML models (e.g., linear
model, MLP).

 SimplGCN empirically shows
learning a linear model over
෩𝑬 often gives performance
comparable to GCN!

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 56

Feature for

node 𝑣

𝑣

Feature
matrix ෩𝑬

 Compared to neighbor sampling and cluster-
GCN, SimplGCN is much more efficient.

▪ SimplGCN computes ෩𝑬 only once at the beginning.

▪ The pre-processing (sparse matrix vector product, 𝑬 ←
෩𝑨 𝑬) can be performed efficiently on CPU.

▪ Once ෩𝑬 is obtained, getting an embedding for node
𝑣 only takes constant time!

▪ Just look up a row for node 𝑣 in ෩𝑬.

▪ No need to build a computational graph or sample a
subgraph.

 But the model is less expressive (next).

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 57

 Compared to the original GNN models,
SimplGCN’s expressive power is limited due
to the lack of non-linearity in generating
node embeddings.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 58

 Surprisingly, in semi-supervised node
classification benchmark, SimplGCN works
comparably to the original GNNs despite
being less expressive.

 Why?

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 59

 Many node classification tasks exhibit
homophily structure, i.e., nodes connected by
edges tend to share the same target labels.

 Examples:
▪ Paper category classification in paper-citation

network
▪ Two papers tend to share the same category if one cites

another.

▪ Movie recommendation for users in social
networks
▪ Two users tend to like the same movie if they are friends

in a social network.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 60

 Recall the preprocessing step of the simplified
GCN: Do 𝑬 ← ෩𝑨 𝑬 for 𝑲 times.
▪ 𝑬 is node feature matrix 𝑬 = 𝑿

 Pre-processed features are obtained by
iteratively averaging their neighboring node
features.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 61

Average

 As a result, nodes
connected by edges tend to
have similar pre-processed
features.

 Premise: Model uses the pre-processed node
features to make prediction.

 Nodes connected by edges tend to get similar
pre-processed features.

→ Nodes connected by edges tend to be
predicted the same labels by the model

 Simplified SGC’s prediction aligns well with
the graph homophily in many node
classification benchmark datasets.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 62

 Simplified GCN removes non-linearity in GCN
and reduces to the simple pre-processing of
node features.

 Once the pre-processed features are obtained,
scalable mini-batch SGD can be directly
applied to optimize the parameters.

 Simplified GCN works surprisingly well in
node classification benchmark.

▪ The feature pre-processing aligns well with graph
homophily in real-world prediction tasks.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 63

	Slide 1: Scaling Up GNNs
	Slide 2
	Slide 3
	Slide 4: Graphs in Modern Applications
	Slide 5: Graphs in Modern Applications
	Slide 6: Graphs in Modern Applications
	Slide 7: Graphs in Modern Applications
	Slide 8: What is in Common?
	Slide 9: Why is it Hard?
	Slide 10: Why is it Hard?
	Slide 11: Why is it Hard?
	Slide 12: Why is it Hard?
	Slide 13: Today’s Lecture
	Slide 14: GraphSAGE Neighbor Sampling: Scaling up GNNs
	Slide 15: Recall: Computational Graph
	Slide 16: Recall: Computational Graph
	Slide 17: Recall: Computational Graph
	Slide 18: Computing Node Embeddings
	Slide 19: Stochastic Training of GNNs
	Slide 20: Issue with Stochastic Training (1)
	Slide 21: Issue with Stochastic Training (2)
	Slide 22: Neighborhood Sampling
	Slide 23: Neighborhood Sampling
	Slide 24: Neighborhood Sampling Algorithm
	Slide 25: Remarks on Neighbor Sampling (1)
	Slide 26: Remarks on Neighbor Sampling (2)
	Slide 27: Summary: Neighbor Sampling
	Slide 28: Cluster-GCN: Scaling up GNNs
	Slide 29: Issues with Neighbor Sampling
	Slide 30: Recall: Full Batch GNN
	Slide 31: Insight from Full-batch GNN
	Slide 32: Subgraph Sampling
	Slide 33: Subgraph Sampling
	Slide 34: Subgraph Sampling: Case Study
	Slide 35: Exploiting Community Structure
	Slide 36: Cluster-GCN: Overview
	Slide 37: Cluster-GCN: Pre-processing
	Slide 38: Cluster-GCN: Mini-batch Training
	Slide 39
	Slide 40: Issues with Cluster-GCN (1)
	Slide 41: Issues with Cluster-GCN (2)
	Slide 42: Issues with Cluster-GCN (3)
	Slide 43: Advanced Cluster-GCN: Overview
	Slide 44: Advanced Cluster-GCN: Overview
	Slide 45: Advanced Cluster-GCN
	Slide 46: Advanced Cluster-GCN
	Slide 47: Comparison of Time Complexity
	Slide 48: Comparison of Time Complexity
	Slide 49: Comparison of Time Complexity
	Slide 50: Cluster-GCN: Summary
	Slide 51: Scaling up by Simplifying GNN Architecture
	Slide 52: Roadmap of Simplifying GCN
	Slide 53: Quick Overview of LightGCN (1)
	Slide 54: Quick Overview of LightGCN (2)
	Slide 55: Differences to LightGCN
	Slide 56: Simplified GCN: “SimplGCN”
	Slide 57: Comparison with Other Methods
	Slide 58: Potential Issue of Simplified GCN
	Slide 59: Performance of Simplified GCN
	Slide 60: Graph Homophily
	Slide 61: When does Simplified GCN Work?
	Slide 62: When does Simplified GCN Work?
	Slide 63: Simplified GCN: Summary

