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EXAM: LOGISTICS
• Open from Tuesday 3/7 10 AM to Wednesday 3/8 

9:59AM; you can take it in any 2 hour 15 min period.
• If you need an extension (OAE), please request now!

• If you have any clarifying questions, make a private 
Ed post about it.

• Open-everything, but do not discuss the exam with 
any other students until after Wednesday.
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EXAM: WHAT TO EXPECT
• 9 questions with subparts, each should take 5-15 min

• The exam is long and covers many topics 
• We don't expect you to finish it all, but want to give you the 

chance to show your knowledge on topics you know well
• Read over our “Exam Information” Ed announcement and 

watch Exam Prep Session for details on topics, submission, etc.

• Pace yourself: if you find yourself stuck on a question, move 
on to the next one.

• Good luck!!! You're going to do great!



 Recommender systems:
▪ Amazon

▪ YouTube

▪ Pinterest

▪ Etc.
 ML tasks:
▪ Recommend items

(link prediction)

▪ Classify users/items
(node classification)
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 Social networks:

▪ Facebook

▪ Twitter

▪ Instagram

▪ Etc.

 ML tasks:

▪ Friend recommendation

(link-level)

▪ User property prediction

(node-level)
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 Academic graph:

▪ Microsoft Academic Graph

 ML tasks:

▪ Paper categorization

(node classification)

▪ Author collaboration

recommendation

▪ Paper citation

recommendation

(link prediction)
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 Knowledge Graphs (KGs):

▪ Wikidata

▪ Freebase

 ML tasks:

▪ KG completion

▪ Reasoning
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 Large-scale:

▪ #nodes ranges from 10M to 10B.

▪ #edges ranges from 100M to 100B.

 Tasks

▪ Node-level: User/item/paper classification.

▪ Link-level: Recommendation, completion.

 Todays’ lecture

▪ Scale up GNNs to large graphs!
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 Recall: How we usually train an ML model on 
large data (𝑵=#data is large)

 Objective: Minimize the averaged loss

▪ 𝜽: model parameters, ℓ𝑖 𝜽 : loss for 𝑖-th data point.

 We perform Stochastic Gradient Descent (SGD).

▪ Randomly sample 𝑀 (≪ 𝑁) data (mini-batches). 

▪ Compute the ℓ𝑠𝑢𝑏(𝜽) over the 𝑀 data points.

▪ Perform SGD: 𝜽 ← 𝜽 − ∇ℓ𝑠𝑢𝑏(𝜽)
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What if we were to use the standard SGD for GNN?
 In mini-batch, we sample 𝑴 (≪ 𝑵) nodes 

independently:

▪ Sampled nodes tend to be isolated from each other.

▪ Recall: GNN generates node embeddings by aggregating neighboring 
node features.

▪ GNN does not access to neighboring nodes within the mini-batch!

 Standard SGD cannot effectively train GNNs.
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 Naïve full-batch
implementation: Generate 
embeddings of all the nodes at 
the same time:
𝐻(𝑘+1) = 𝜎( ሚ𝐴𝐻 𝑘 𝑊𝑘

T + 𝐻 𝑘 𝐵𝑘
T)

▪ Load the entire graph 𝐴 and features X. 
Set 𝐻 0 = 𝑋.

▪ At each GNN layer: Compute 
embeddings of all nodes using all the 
node embeddings from the previous 
layer.

▪ Compute the loss

▪ Perform gradient descent
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 However, Full-batch implementation is not 
feasible for a large graphs. Why?

 Because we want to use GPU for fast training, 
but GPU memory is extremely limited (only 
10GB--20GB).

▪ The entire graph and the features cannot be 
loaded on GPU.
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We introduce three methods for scaling up GNNs:
 Two methods perform message-passing over small 

subgraphs in each mini-batch; only the subgraphs 
need to be loaded on a GPU at a time.

▪ Neighbor Sampling [Hamilton et al. NeurIPS 2017]

▪ Cluster-GCN [Chiang et al. KDD 2019]

 One method simplifies a GNN into feature-
preprocessing operation (can be efficiently 
performed even on a CPU)

▪ Simplified GCN [Wu et al. ICML 2019]
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 Recall: GNNs generate node embeddings via 
neighbor aggregation.

▪ Represented as a computational graph (right).
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 Observation: A 2-layer GNN generates 
embedding of node “0” using 2-hop 
neighborhood structure and features.
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 Observation: More generally, 𝐾-layer GNNs 
generate embedding of a node using 𝐾-hop 
neighborhood structure and features.
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 Key insight: To compute embedding of a single 
node, all we need is the 𝑲-hop neighborhood 
(which defines the computation graph).

 Given a set of 𝑀 different nodes in a mini-batch, 
we can generate their embeddings using 𝑀
computational graphs. Can be computed on GPU!
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 We can now consider the following SGD 
strategy for training 𝑲-layer GNNs:

▪ Randomly sample𝑀 (≪ 𝑁) nodes. 

▪ For each sampled node 𝑣:

▪ Get 𝑲-hop neighborhood, and construct the 
computation graph.

▪ Use the above to generate 𝑣’s embedding.

▪ Compute the loss ℓ𝑠𝑢𝑏(𝜽) averaged over 
the 𝑀 nodes.

▪ Perform SGD: 𝜽 ← 𝜽 − ∇ℓ𝑠𝑢𝑏(𝜽)
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 For each node, we need to get the entire 
𝑲-hop neighborhood and pass it through 
the computation graph.

 We need to aggregate lot of information 
just to compute one node embedding.

 Some computational redundancy:
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https://cs.stanford.edu/people/jure/pubs/hags-kdd20.pdf


 2nd issue:

▪ Computation graph 
becomes exponentially 
large with respect to the 
layer size 𝐾.

▪ Computation graph 
explodes when it hits a 
hub node (high-degree 
node).

 Next: Make the comp. 
graph more compact!
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Key idea: Construct the computational graph by 
(randomly) sampling at most 𝐻 neighbors at each 
hop.
 Example (𝑯 = 𝟐):
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We can use the pruned computational graph to 
more efficiently compute node embeddings. 
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Neighbor sampling for 𝑲-layer GNN
 For 𝑘 = 1, 2,… , 𝐾:

▪ For each node in 𝑘-hop neighborhood:

▪ (Randomly) sample at most 𝐻𝑘 neighbors:

 𝐾-layer GNN will at most involve
ς𝑘=1
𝐾 𝐻𝑘 leaf nodes in comp. graph. 
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 Remark 1: Trade-off in sampling number 𝑯

▪ Smaller 𝐻 leads to more efficient neighbor 
aggregation, but results in more unstable training 
due to the larger variance in neighbor aggregation.

 Remark 2: Computational time

▪ Even with neighbor sampling, the size of the 
computational graph is still exponential with 
respect to number of GNN layers 𝑲.

▪ Adding one GNN layer would make computation 𝐻
times more expensive.
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 Remark 3: How to sample the nodes

▪ Random sampling: fast but many times not 
optimal (may sample many “unimportant” nodes)

▪ Random Walk with Restarts:

▪ Natural graphs are “scale free”, sampling random 
neighbors, samples many low degree “leaf” nodes.

▪ Strategy to sample important nodes:
▪ Compute Random Walk with Restarts score
𝑅𝑖 starting at the green node

▪ At each level sample 𝐻 neighbors 𝑖 with
the highest 𝑅𝑖

▪ This strategy works much better in 
practice.

3/2/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 26



 A computational graph is constructed for each 
node in a mini-batch.

 In neighbor sampling, the comp. graph is 
pruned/sub-sampled to increase 
computational efficiency.

 The pruned comp. graph is used to generate a 
node embedding.

 However, computational graphs can still 
become large, especially for GNNs with many 
message-passing layers.
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 The size of computational graph becomes 
exponentially large w.r.t. the #GNN layers.

 Computation is redundant, especially when 
nodes in a mini-batch share many neighbors.
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 In full-batch GNN implementation, all the 
node embeddings are updated together 
using embeddings of the previous layer.
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Message passing

Message

▪ In each layer, only 2*#(edges) 
messages need to be computed.

▪ For 𝐾-layer GNN, only 2𝐾*#(edges) 
messages need to be computed.

▪ GNN’s entire computation is only linear 
in #(edges) and #(GNN layers). Fast!

Update for all 𝒗 ∈ 𝑽



 The layer-wise node embedding update 
allows the re-use of embeddings from the 
previous layer.

 This significantly reduces the 
computational redundancy 
of neighbor sampling.

▪ Of course, the layer-wise update is not 
feasible for a large graph due to limited GPU 
memory.

▪ Requires putting the entire graph and features on 
GPU. 
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Layer-wise update



 Key idea: We can sample a small subgraph of 
the large graph and then perform the 
efficient layer-wise node embeddings update 
over the subgraph.
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 Key question: What subgraphs are good for 
training GNNs?

▪ Recall: GNN performs node embedding by 
passing messages via the edges.

▪ Subgraphs should retain edge connectivity 
structure of the original graph as much as possible.

▪ This way, the GNN over the subgraph generates 
embeddings closer to the GNN over the original 
graph.
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 Which subgraph is good for training GNN?

 Left subgraph retains the essential community 
structure among the 4 nodes → Good

 Right subgraph drops many connectivity 
patterns, even leading to isolated nodes → Bad
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Real-world graph exhibits community structure

▪ A large graph can be decomposed into many small 
communities.

 Key insight [Chiang et al. KDD 2019]:
Sample a community as a subgraph.
Each subgraph retains essential
local connectivity pattern of the
original graph.
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 We first introduce “vanilla” Cluster-GCN.
 Cluster-GCN consists of two steps:

▪ Pre-processing: Given a large graph, partition it into 
groups of nodes (i.e., subgraphs).

▪ Mini-batch training: Sample one node group at a 
time. Apply GNN’s message passing over the 
induced subgraph.
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 Given a large graph 𝐺 = (𝑉, 𝐸), partition its 
nodes 𝑽 into 𝑪 groups: 𝑽𝟏, … , 𝑽𝑪.

▪ We can use any scalable community detection 
methods, e.g., Louvain, METIS [Karypis et al. SIAM 1998].

 𝑉1, … , 𝑉𝐶 induces 𝐶 subgraphs, 𝐺1, … , 𝐺𝐶, 

▪ Recall: 𝐺𝑐 ≡ (𝑉𝑐 , 𝐸𝑐),

▪ where 𝐸𝑐 = { 𝑢, 𝑣 |𝑢, 𝑣 ∈ 𝑉𝑐}
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 For each mini-batch, randomly sample a node 
group 𝑽𝒄.

 Construct induced subgraph 𝑮𝒄 = (𝑽𝒄, 𝑬𝒄)
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 Apply GNN’s layer-wise node update over 𝑮𝒄 to 
obtain embedding 𝒉𝑣 for each node 𝑣 ∈ 𝑉𝑐.

 Compute the loss for each node 𝑣 ∈ 𝑉𝑐 and take 
average:   ℓ𝑠𝑢𝑏 𝜽 = (1/|𝑉𝑐|) ⋅ σ𝑣∈𝑉𝑐 ℓ𝑣(𝜽)

 Update params: 𝜽 ← 𝜽 − ∇ℓ𝑠𝑢𝑏(𝜽)
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 The induced subgraph removes between-
group links.

 As a result, messages from other groups will 
be lost during message passing, which could 
hurt the GNN’s performance.
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 Graph community detection algorithm puts 
similar nodes together in the same group.

 Sampled node group tends to only cover the 
small-concentrated portion of the entire data.
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Sampled nodes are not diverse enough to be 
represent the entire graph structure:
 As a result, the gradient averaged over the 

sampled nodes, , becomes 

unreliable.

▪ Fluctuates a lot from a node group to another.

▪ In other words, the gradient has high variance.

 Leads to slow convergence of SGD
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 Solution: Aggregate multiple node groups per 
mini-batch.

 Partition the graph into relatively-small groups 
of nodes.

 For each mini-batch:

▪ Sample and aggregate multiple node groups.

▪ Construct the induced subgraph of the aggregated
node group. 

▪ The rest is the same as vanilla Cluster-GCN (compute 
node embeddings and the loss, update parameters)
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 Why does the solution work?
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Sampling multiple node groups
→ Makes the sampled nodes more representative of the entire 

nodes. Leads to less variance in gradient estimation.

The induced subgraph over 

aggregated node groups
→ Includes edges between groups

→ Message can flow across groups.



Similar to vanilla Cluster-GCN, advanced 
Cluster-GCN also follows 2-step approaches.
Pre-processing step:
 Given a large graph 𝐺 = (𝑉, 𝐸), partition its 

nodes 𝑉 into 𝐶 relatively-small groups: 
𝑉1, … , 𝑉𝐶.

▪ 𝑉1 , … , 𝑉𝐶 needs to be small so that even if multiple 
of them are aggregated, the resulting group would 
not be too large.
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Mini-batch training:
 For each mini-batch, randomly sample a set of 
𝒒 node groups: {𝑉𝑡1, … , 𝑉𝑡𝑞} ⊂ {𝑉1, … ,𝑉𝐶}.

 Aggregate all nodes across the sampled node 
groups: 𝑉𝑎𝑔𝑔𝑟 = 𝑉𝑡1 ∪⋯∪ 𝑉𝑡𝑞

 Extract the induced subgraph

𝑮𝒂𝒈𝒈𝒓 = 𝑽𝒂𝒈𝒈𝒓, 𝑬𝒂𝒈𝒈𝒓 ,

where 𝐸𝑎𝑔𝑔𝑟 = { 𝑢, 𝑣 | 𝑢, 𝑣 ∈ 𝑉𝑎𝑔𝑔𝑟}

▪ 𝑬𝒂𝒈𝒈𝒓 also includes between-group edges!
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 Generate 𝑴 (≪ 𝑵) node embeddings using 𝑲-
layer GNN (𝑵 : #all nodes). 

 Neighbor-sampling (sampling 𝐻 nodes per layer):
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▪ For each node, the size of 𝐾-layer 
computational graph is 𝐻𝐾.
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𝐻𝐾 𝐻𝐾 𝐻𝐾

𝑴 computational graphs

…



 Generate 𝑴 (≪ 𝑵) node embeddings using 
𝑲-layer GNN (𝑵 : #all nodes).

 Cluster-GCN:

▪ Perform message passing over a subgraph induced 
by the 𝑀 nodes. 

▪ The subgraph contains 𝑀 ⋅ 𝐷𝑎𝑣𝑔 edges, where 

𝐷𝑎𝑣𝑔 is the average node degree.

▪ 𝐾-layer message passing over the subgraph costs 
at most  𝑲 ⋅ 𝑴 ⋅ 𝑫𝒂𝒗𝒈. 
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 In summary, the cost to generate embeddings 
for 𝑀 nodes using 𝐾-layer GNN is:

▪ Neighbor-sampling (sample 𝑯 nodes per layer): 
𝑴 ⋅ 𝑯𝑲

▪ Cluster-GCN: 𝑲 ⋅𝑴 ⋅ 𝑫𝒂𝒗𝒈

 Assume 𝑯 = 𝑫𝒂𝒗𝒈/𝟐. In other words, 50% of 

neighbors are sampled.

▪ Then, Cluster-GCN (cost: 𝟐𝑴𝑯𝑲) is much more 
efficient than neighbor sampling (cost: 𝑴𝑯𝑲).

▪ Linear (instead of exponential) dependency w.r.t. 𝑲.
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 Cluster-GCN first partitions the entire nodes 
into a set of small node groups.

 At each mini-batch, multiple node groups are 
sampled, and their nodes are aggregated.

 GNN performs layer-wise node embeddings 
update over the induced subgraph.

 Cluster-GCN is more computationally efficient 
than neighbor sampling, especially when #(GNN 
layers) is large.

 But Cluster-GCN leads to systematically biased 
gradient estimates (due to missing cross-community edges)
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 We start from Graph Convolutional Network 
(GCN) [Kipf & Welling ICLR 2017].

 We simplify GCN (“SimplGCN”) by removing the 
non-linear activation from the GCN [Wu et al. ICML 2019]. 

▪ SimplGCN demonstrated that the performance on 
benchmark is not much lower by the simplification.

▪ Simplified GCN turns out to be extremely scalable by 
the model design.

▪ The simplification strategy is very similar to the one 
used by LightGCN for recommender systems.
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 Adjacency matrix: 𝑨
 Degree matrix: 𝑫
 Normalized adjacency matrix: 
෩𝑨 ≡ 𝑫−1/2𝑨𝑫−1/2

 Let 𝑬(𝑘) be the embedding matrix at 𝑘-th layer.
 Let 𝑬 be the input embedding matrix.

▪ We backprop into 𝑬.

 GCN’s aggregation in the matrix form

▪ 𝑬(𝑘+1) = ReLU ෩𝑨𝑬(𝑘)𝑾(𝑘)
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 Removing ReLU non-linearity gives us

▪ 𝑬(𝐾) = ෩𝑨𝐾 𝑬𝑾, where 𝑾 ≡𝑾(0)⋯𝑾(𝐾−1)

 Efficient algorithm to obtain ෩𝑨𝐾 𝑬

▪ Start from input embedding matrix 𝑬.

▪ Apply 𝑬 ← ෩𝑨 𝑬 for 𝐾 times.

 Weight matrix 𝑾 can be ignored for now.

▪ 𝑾 acts as a linear classifier over the diffused node 

embeddings ෩𝑨𝐾 𝑬 .
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 SimplGCN adds self-loops to adjacency matrix 𝑨:

▪ 𝑨 ← 𝑨 + 𝑰

▪ Follows the original GCN by Kipf & Welling.

 SimplGCN assumes input node embeddings 𝑬 to 
be given as features:

▪ Input embedding matrix 𝑬 is fixed rather than 
learned.

▪ Important consequence: ෩𝑨𝐾 𝑬 needs to be 
calculated only once.

▪ Can be treated as a pre-processing step.
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 Let ෩𝑬 = ෩𝑨𝐾 𝑬 be pre-processed 
feature matrix.

▪ Each row stores the pre-processed 
feature for each node.

▪ ෩𝑬 can be used as input to any 
scalable ML models (e.g., linear 
model, MLP).

 SimplGCN empirically shows 
learning a linear model over 
෩𝑬 often gives performance 
comparable to GCN!
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𝑣

Feature 
matrix ෩𝑬



 Compared to neighbor sampling and cluster-
GCN, SimplGCN is much more efficient.

▪ SimplGCN computes ෩𝑬 only once at the beginning.

▪ The pre-processing (sparse matrix vector product, 𝑬 ←
෩𝑨 𝑬) can be performed efficiently on CPU.

▪ Once ෩𝑬 is obtained, getting an embedding for node 
𝑣 only takes constant time!

▪ Just look up a row for node 𝑣 in ෩𝑬. 

▪ No need to build a computational graph or sample a 
subgraph.

 But the model is less expressive (next).
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 Compared to the original GNN models, 
SimplGCN’s expressive power is limited due 
to the lack of non-linearity in generating 
node embeddings.
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 Surprisingly, in semi-supervised node 
classification benchmark, SimplGCN works 
comparably to the original GNNs despite 
being less expressive.

 Why?
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 Many node classification tasks exhibit 
homophily structure, i.e., nodes connected by 
edges tend to share the same target labels.

 Examples:
▪ Paper category classification in paper-citation 

network
▪ Two papers tend to share the same category if one cites 

another.

▪ Movie recommendation for users in social 
networks
▪ Two users tend to like the same movie if they are friends 

in a social network.
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 Recall the preprocessing step of the simplified 
GCN: Do 𝑬 ← ෩𝑨 𝑬 for 𝑲 times.
▪ 𝑬 is node feature matrix 𝑬 = 𝑿

 Pre-processed features are obtained by 
iteratively averaging their neighboring node 
features. 
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Average

 As a result, nodes 
connected by edges tend to 
have similar pre-processed 
features.



 Premise: Model uses the pre-processed node 
features to make prediction.

 Nodes connected by edges tend to get similar 
pre-processed features.

→ Nodes connected by edges tend to be 
predicted the same labels by the model

 Simplified SGC’s prediction aligns well with 
the graph homophily in many node 
classification benchmark datasets.
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 Simplified GCN removes non-linearity in GCN 
and reduces to the simple pre-processing of 
node features.

 Once the pre-processed features are obtained, 
scalable mini-batch SGD can be directly 
applied to optimize the parameters.

 Simplified GCN works surprisingly well in 
node classification benchmark.

▪ The feature pre-processing aligns well with graph 
homophily in real-world prediction tasks.
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