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UPCOMING EXAM
• Exam coming up next Tuesday 3/7

• Make-up exam on Sunday 3/5
• Administered on Gradescope: open-book, take-home
• Exam is open for 24 hours, you can take it in any 2-hour window
• If you need an extension (OAE), please request it now!

• Resources for exam prep:
• Practice exam released by midnight tonight
• Review session tomorrow, Wednesday 2-4pm on Zoom (Highly 

recommended!) We will cover exam topics, format, and studying tips; 
review key concepts, etc.

• Don't stress! Exam will be curved. HW/Colab grades so far show that 
people are doing great!
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Course improvements
• Thank you for the feedback!
• EdStem response rate

• Previously response rate was around ~95%
• Re-designed our workflow to ensure no message falls through the 

cracks
• 100% of messages have now been responded to
• Moving forward, you should expect to receive a response in < 12 

hours
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Course improvements
• Thank you for the feedback!
• Releasing homework and Colab solutions

• We really appreciate the feedback from many students that these will 
be helpful. We hear you and have changed our policy.

• Please do not share these as it would mean an Honor Code violation
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(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020c

https://arxiv.org/pdf/2011.08843.pdf
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Prediction 
head

Predictions Labels

Loss 
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Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

Dataset split

Today’s lecture: Can we make GNN 
representation more expressive?
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 A thought experiment: What should a perfect 
GNN do?

▪ A 𝑘-layer GNN embeds a node based on the 𝐾-hop 
neighborhood structure

▪ A perfect GNN should build an injective function 
between neighborhood structure (regardless of 
hops) and node embeddings
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 Therefore, for a perfect GNN:

▪ Observation 1: If two nodes have the same neighborhood 
structure, they must have the same embedding

▪ Observation 2: If two nodes have different neighborhood 
structure, they must have different embeddings

2/28/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 9

𝑣1 𝑣2

𝑣3

ℎ𝑣1 = ℎ𝑣2

ℎ𝑣1 ≠ ℎ𝑣3𝑣1



 However, Observations 1 & 2 are imperfect
 Observation 1 could have issues:
▪ Even though two nodes may have the same neighborhood 

structure, we may want to assign different embeddings to them

▪ Because these nodes appear in different positions in the graph

▪ We call these tasks Position-aware tasks

▪ Even a perfect GNN will fail for these tasks:
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𝑣1

𝑣2

𝑣1

𝑣2

A grid graph NYC road network

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817


 Observation 2 often cannot be satisfied:

▪ The GNNs we have introduced so far are not perfect

▪ In Lecture 9, we discussed that their expressive power 
is upper bounded by the WL test

▪ For example, message passing GNNs cannot count the 
cycle length:
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𝑣1 𝑣2

𝑣1 resides in a cycle 
with length 3

𝑣2 resides in a cycle 
with length 4

The computational graphs 
for nodes 𝒗𝟏 and 𝒗𝟐 are 
always the same

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


 We will resolve both issues by building more 
expressive GNNs

 Fix issues in Observation 1:

▪ Create node embeddings based on their positions 
in the graph

▪ Example method: Position-aware GNNs

 Fix issues in Observation 2:

▪ Build message passing GNNs that are more 
expressive than WL test

▪ Example method: Identity-aware GNNs
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 We use the following thinking:

▪ Two different inputs (nodes, edges, graphs) are labeled differently

▪ A “failed” model will always assign the same embedding to them

▪ A “successful” model will assign different embeddings to them

▪ Embeddings are determined by GNN computational graphs:
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Two inputs: nodes 𝑣1 and 𝑣2
Different labels: A and B

Goal: assign different embeddings to 𝑣1 and 𝑣2



 A naïve solution: One-hot encoding

▪ Encode each node with a different ID, then we can 
always differentiate different nodes/edges/graphs
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 A naïve solution: One-hot encoding

▪ Encode each node with a different ID, then we can 
always differentiate different nodes/edges/graphs

▪ Issues:

▪ Not scalable: Need 𝑂(𝑁) feature dimensions (𝑁 is the 
number of nodes)

▪ Not inductive: Cannot generalize to new nodes/graphs
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 There are two types of tasks on graphs
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Structure-aware task

Position-aware task

 Nodes are labeled by 
their structural roles in 
the graph

 Nodes are labeled by 
their positions in the 
graph

J. You, R. Ying, J. Leskovec. Postion-aware Graph Neural Networks, ICML 2019

https://arxiv.org/abs/1906.04817


 GNNs often work well for structure-aware 
tasks
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Structure-aware task

 GNNs work ☺
 Can differentiate 𝑣1 and 
𝑣2 by using different 
computational graphs



 GNNs will always fail for position-aware 
tasks
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 GNNs fail 
 𝑣1 and 𝑣2 will always 

have the same 
computational graph, 
due to structure 
symmetry

 Can we define deep 
learning methods that 
are position-aware?

Position-aware task



 Randomly pick a node 𝑠1 as an anchor node
 Represent 𝑣1 and 𝑣2 via their relative distances w.r.t.

the anchor 𝑠1, which are different
 An anchor node serves as a coordinate axis

▪ Which can be used to locate nodes in the graph
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 Pick more nodes 𝑠1 , 𝑠2 as anchor nodes
 Observation: More anchors can better characterize 

node position in different regions of the graph
 Many anchors –> Many coordinate axes
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𝑠1 𝑠2

𝑣1 1 2

𝑣2 2 1
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 Generalize anchor from a single node to a set of nodes

▪ We define distance to an anchor-set as the minimum distance 
to all the nodes in the ancho-set

 Observation: Large anchor-sets can sometimes provide 
more precise position estimate 

▪ We can save the total number of anchors
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𝑠1 𝑠2 𝑠3

𝑣1 1 2 1

𝑣3 1 2 0

Relative Distances
𝑣1

𝑣3

𝑠1 𝑠2

A

A

BA
B

B

Size-2

Anchor-set

Anchor

𝑠3

Anchor 𝑠1, 𝑠2 cannot differentiate 
node 𝑣1, 𝑣3, but anchor-set 𝑠3 can



 Goal: Embed the metric space 𝑉, 𝑑 into the 
Euclidian space ℝ𝑘 such that the original 
distance metric is preserved.

▪ For every node pairs 𝑢, 𝑣 ∈ 𝑉, the Euclidian 
embedding distance 𝒛𝑢 − 𝒛𝑣 2 is close to the 
original distance metric 𝑑 𝑢, 𝑣 .
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 Bourgain Theorem [Informal] [Bourgain 1985]

▪ Consider the following embedding function of node 𝑣 ∈ 𝑉.

𝑓 𝑣 = 𝑑min 𝑣, 𝑆1,1 , 𝑑min 𝑣,𝑆1,2 , … , 𝑑min 𝑣,𝑆log 𝑛,𝑐log 𝑛 ∈ ℝ𝑐 log2 𝑛

▪ where
▪ 𝑐 is a constant.

▪ 𝑆𝑖,𝑗 ⊂ 𝑉 is chosen by including each node in 𝑉 independently with 

probability 
1

2𝑖
.

▪ 𝑑min 𝑣, 𝑆𝑖,𝑗 ≡ min
𝑢∈𝑆𝑖,𝑗

𝑑 𝑣, 𝑢 .

▪ The embedding distance produced by 𝒇 is provably close to 
the original distance metric 𝑽, 𝒅 .
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P-GNN follows the theory of Bourgain theorem

▪ First samples 𝑂(log2 𝑛) anchor sets 𝑆𝑖,𝑗.  

▪ Embed each node 𝑣 via

𝑑min 𝑣, 𝑆1,1 , 𝑑min 𝑣,𝑆1,2 , … , 𝑑min 𝑣, 𝑆log 𝑛,𝑐log 𝑛 ∈ ℝ𝑐 log2 𝑛.

P-GNN maintains the inductive capability

▪ During training, new anchor sets are re-sampled 
every time.

▪ P-GNN is learned to operate over the new anchor 
sets.

▪ At test time, given a new unseen graph, new 
anchor sets are sampled.

2/28/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25



 Position encoding for graphs: Represent a node’s 
position by its distance to randomly selected anchor-sets

▪ Each dimension of the position encoding is tied to an anchor-set
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 The simple way: Use position encoding as an 
augmented node feature (works well in 
practice)

▪ Issue: Since each dimension of position encoding is 
tied to a random anchor set, dimensions of 
positional encoding can be randomly permuted, 
without changing its meaning

▪ Imagine you permute the input dimensions of a 
normal NN, the output will surely change
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 The rigorous solution: Requires a special NN 
that can maintain the permutation invariant 
property of position encoding

▪ Permuting the input feature dimension will only 
result in the permutation of the output dimension, 
the value in each dimension won’t change

▪ Position-aware GNN paper has more details
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 We learned that GNNs would fail for 
position-aware tasks

 But can GNN perform perfectly in structure-
aware tasks?

▪ Unfortunately, NO.

 GNNs exhibit three levels of failure cases in 
structure-aware tasks:

▪ Node level

▪ Edge level

▪ Graph level
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J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks
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Existing GNNs’ 
computational 
graphs

𝑣1 𝑣2A B

=

…

𝑣1

…

𝑣2A B

Example input 
graphs

Different Inputs but the same computational graph → GNN fails
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B

𝑣0

𝑣1 𝑣2

…

𝑣1 A B

…

𝑣2

A

=

Different Inputs but the same computational graph → GNN fails

Existing GNNs’ 
computational 
graphs

Example input 
graphs

Edge A and B share 

node 𝑣0
We look at embeddings 

for 𝑣1 and 𝑣2
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Existing GNNs’ 
computational 
graphs

A B

We look at embeddings 
for each node

=

A B

Example input 
graphs

Different Inputs but the same computational graph → GNN fails

For each node: For each node:



 Idea: We can assign a color to the node we 
want to embed

2/28/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

𝑣1

𝑣2

𝑣3

…
𝑣2 𝑣3

𝑣1

𝑣3 𝑣1

𝑣2

𝑣1 𝑣2

𝑣3

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

To assist understanding,

we label the nodes

𝑣1

…

𝑣1

Input graph

The node we want to embed

The rest of nodes

Computational 

graph



 This coloring is inductive:

▪ It is invariant to node ordering/identities
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𝑣1

𝑣3

𝑣2

…
𝑣3 𝑣2

𝑣1

𝑣2 𝑣1

𝑣3

𝑣1 𝑣3

𝑣2

𝑣3 𝑣2

𝑣1

𝑣3 𝑣2

𝑣1

Permute the node ordering 

between 𝑣2 and 𝑣3

Input graph

The node we want to embed

The rest of nodes

Computational 

graph

𝑣1

𝑣2

𝑣3

…
𝑣2 𝑣3

𝑣1

𝑣3 𝑣1

𝑣2

𝑣1 𝑣2

𝑣3

𝑣2 𝑣3

𝑣1

𝑣2 𝑣3

𝑣1

The computational graph stays the same



 Inductive node coloring can help node classification
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Different 
computational graphs
→ Successfully 
differentiate nodes



 Inductive node coloring can help graph classification
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ID-GNNs’ 
computational 
graphs

node with augmented identity

Example input 
graphs

Two types of nodes:
node without augmented identity

≠

A B

A B

We color root nodes with identity

Graph classification

For each node: For each node:

Different 
computational graphs
→ Successful 
differentiate graphs



 Inductive node coloring can help link prediction
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An edge-level task involves 
classifying a pair of nodes:
1. We color one of the node (v0)
2. We then embed the other node in the 
node pair (v1 or v2)
3. We use the node embedding for v1 or 
v2 conditioned on 𝑣0 being colored or not 
to make edge-level prediction

Different 
computational graphs
→ Successfully 
differentiate edges



 Inductive node coloring can help link prediction
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An edge-level task involves 
classifying a pair of nodes:
1. We color one of the node (v0)
2. We then embed the other node in the 
node pair (v1 or v2)
3. We use the node embedding for v1 or 
v2 conditioned on 𝑣0 being colored or not 
to make edge-level prediction

Different 
computational graphs
→ Successful overcome 
GNN failure case

How to build a GNN using node coloring?



 Utilize inductive node coloring in embedding 
computation

▪ Idea: Heterogenous message passing

▪ Normally, a GNN applies the same message/aggregation 
computation to all the nodes
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𝑣1

Neural Net A

…

GNN: At a given layer, we apply 

the same message/aggregation to 

each node

(2) Aggregation

(1) Message

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


 Idea: Heterogenous message passing

▪ Heterogenous: different types of message passing 
is applied to different nodes

▪ An ID-GNN applies different message/aggregation 
to nodes with different colorings

2/28/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 41

…

𝑣1

Neural Net A Neural Net B(2) Aggregation

(1) Message

(2) Aggregation

(1) Message

ID-GNN: At a given layer, different 

message/aggregation to nodes 

with different colorings



 Output: Node embedding for .
 Step 1: Extract the ego-network

▪ 𝒢𝑣
(𝐾)

: 𝐾-hop neighborhood graph around 𝑣

▪ Set the initial node feature

▪ For 𝑢 ∈ 𝒢𝑣
(𝐾)

, 𝒉𝑢
(0)

← 𝒙𝑢 (input node feature)
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 Step 2: Heterogeneous message passing

▪ For 𝑘 = 1,… , 𝐾 do

▪ For 𝑢 ∈ 𝒢𝑣
(𝐾)

do

𝒉𝒖
(𝒌)

← 𝐴𝐺𝐺(𝑘) MSG
𝟏 𝑠=𝑣

(𝑘)
𝒉𝑠
(𝑘−1)

, 𝑠 ∈ 𝑁(𝑢) ,𝒉𝑢
(𝑘−1)
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Depending on whether 𝑠 = 𝑣 (𝑠 is the center 

node 𝑣) or not, we use different neural 

network functions to transform 𝒉𝑠
(𝑘−1)

.



 Why does heterogenous message passing work: 

▪ Suppose two nodes 𝑣1, 𝑣2 have the same computational 
graph structure, but have different node colorings

▪ Since we will apply different neural network for embedding 
computation, their embeddings will be different
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𝑣1

Neural Net A

𝑣2

Neural Net A Neural Net B



 Why does ID-GNN work better than GNN?
 Intuition: ID-GNN can count cycles originating from 

a given node, but GNN cannot
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𝑣1: length-3 cycles = 2 𝑣2: length-3 cycles = 0
From the node coloring, we can tell that: 



 Based on the intuition, we propose a simplified version 
ID-GNN-Fast
▪ Include identity information as an augmented node feature 

(no need to do heterogenous message passing)

▪ Use cycle counts in each layer as an augmented node 
feature. Also can be used together with any GNN

2/28/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 46

length-3 cycles = 2 length-3 cycles = 0

1

0

2

2

𝑣1

1

0

2

0

𝑣2

Cycle count 

at each level



 Summary of ID-GNN: A general and powerful 
extension to GNN framework

▪ We can apply ID-GNN on any message passing 
GNNs (GCN, GraphSAGE, GIN, …)

▪ ID-GNN provides consistent performance gain in 
node/edge/graph level tasks

▪ ID-GNN is more expressive than their GNN 
counterparts. ID-GNN is the first message passing 
GNN that is more expressive than 1-WL test

▪ We can easily implement ID-GNN using popular 
GNN tools (PyG, DGL, …)
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 Recent years have seen impressive 
performance of deep learning models in a 
variety of applications.

▪ Example: In computer vision, deep convolutional 
networks have achieved human-level performance 
on ImageNet (image category classification)

 Are these models ready to be deployed in 
real world?
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 Deep convolutional neural networks are 
vulnerable to adversarial attacks:

▪ Imperceptible noise changes the prediction.
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Adopted from 

Goodfellow et al. 

ICLR 2015
Carefully-

calculated noise

Adversarial 

example

 Adversarial examples are also reported in natural 
language processing [Jia & Liang et al. EMNLP 2017] and audio 
processing [Carlini et al. 2018] domains.



 The existence of adversarial examples 
prevents the reliable deployment of deep 
learning models to the real world.

▪ Adversaries may try to actively hack the deep 
learning models.

▪ The model performance can become much worse 
than we expect.

 Deep learning models are often not robust. 

▪ In fact, it is an active area of research to make 
these models robust against adversarial examples
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 How about GNNs? Are they robust to 
adversarial examples?

 Premise: Common applications of GNNs 
involve public platforms and monetary 
interests.

▪ Recommender systems

▪ Social networks

▪ Search engines

 Adversaries have the incentive to manipulate 
input graphs and hack GNNs’ predictions.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Zügner et al. Adversarial Attacks on Neural Networks for Graph Data, KDD 2018

https://arxiv.org/pdf/1805.07984.pdf


 To study the robustness of GNNs, we 
specifically consider the following setting:

▪ Task: Semi-supervised node classification

▪ Model: GCN [Kipf & Welling ICLR 2017]
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 We first describe several real-world 
adversarial attack possibilities.

 We then review the GCN model that we are 
going to attack (knowing the opponent).

 We mathematically formalize the attack 
problem as an optimization problem.

 We empirically see how vulnerable GCN’s 
prediction is to the adversarial attack.
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 What are the attack possibilities in real world?

▪ Target node 𝑡 ∈ 𝑉: node whose label prediction 
we want to change

▪ Attacker nodes 𝑆 ⊂ 𝑉: nodes the attacker can 
modify
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Attacker node

Target node

Attacker node



 Direct Attack: Attacker node is the target
node: 𝑺 = 𝒕

 Modify target node feature

▪ Ex) Change website content

 Add connections to target

▪ Ex) Buy likes/followers

 Remove connections from target

▪ Ex) Unfollow users
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 Indirect Attack: The target node is not in the 
attacker nodes: 𝒕 ∉ 𝑺

 Modify attacker node features

▪ Ex) Hijack friends of targets

 Add connections to attackers

▪ Ex) Create a link, link farm

 Remove connections from attackers

▪ Ex) Delete undesirable link
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 Objective for the attacker:
Maximize (change of target node label prediction)
Subject to (graph manipulation is small)
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0
1
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1
0
1

0
0
0

1
1
0

?

Graph

GCN1

0

Class 1 Class 2 Class 3

Target node

Perform small graph 

manipulation
Learn GCN 

model

Change in predicted 

class label

If graph manipulation is too large, it will easily be detected.

Successful attacks should change the target prediction 

with “unnoticeably-small” graph manipulation.



 Original graph:

▪ 𝑨: adjacency matrix, 𝑿: feature matrix

 Manipulated graph (after adding noise): 

▪ 𝑨′: adjacency matrix, 𝑿′: feature matrix

 Assumption: 𝑨′ , 𝑿′ ≈ (𝑨, 𝑿)

▪ Graph manipulation is unnoticeably small.

▪ Preserving basic graph statistics (e.g,. degree 
distribution) and feature statistics.

▪ Graph manipulation is either direct (changing the 
feature/connection of target nodes) or indirect.
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 Overview of the attack framework

▪ Original adjacency matrix 𝑨, node features 𝑿, 
node labels 𝒀.

▪ 𝜽∗ : Model parameter learned over 𝑨, 𝑿, 𝒀.

▪ 𝑐𝑣
∗: class label of node 𝑣 predicted by GCN with 𝜽∗

▪ An attacker has access to 𝑨,𝑿, 𝒀, and the learning 
algorithm.

▪ The attacker modifies (𝑨, 𝑿) into 𝑨′ , 𝑿′ .

▪ 𝜽∗′: Model parameter learned over 𝑨′ , 𝑿′ ,𝒀.

▪ 𝑐𝑣
∗′: class label of node 𝑣 predicted by GCN with 𝜽∗′

▪ The goal of the attacker is to make 𝑐𝑣
∗′ ≠ 𝑐𝑣

∗.
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 Target node: 𝑣 ∈ 𝑉
 GCN learned over the original graph

𝜽∗ = argmin𝜽ℒ𝑡𝑟𝑎𝑖𝑛 𝜽;𝑨, 𝑿

 GCN’s original prediction on the target node:
𝑐𝑣
∗ = 𝐚𝐫𝐠𝐦𝐚𝐱𝑐𝑓𝜽∗ 𝑨,𝑿 𝑣,𝑐
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Predict the class 𝑐𝑣
∗ of vertex 𝒗 that has 

the highest predicted probability



 GCN learned over the manipulated graph
𝜽∗′ = argmin𝜽ℒ𝑡𝑟𝑎𝑖𝑛 𝜽;𝑨′, 𝑿′

 GCN’s prediction on the target node 𝒗:
𝑐𝑣
∗′ = argmax𝑐𝑓𝜽∗′ 𝑨′, 𝑿′ 𝑣,𝑐

 We want the prediction to change after the 
graph is manipulated:

𝑐𝑣
∗′ ≠ 𝑐𝑣

∗
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 Change of prediction on target node 𝑣:
𝚫 𝑣; 𝑨′, 𝑿′ =

log 𝑓𝜽∗′ 𝑨′,𝑿′ 𝑣,𝑐𝑣
∗′ − log 𝑓𝜽∗′ 𝑨′,𝑿′ 𝑣,𝑐𝑣

∗
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Predicted (log) 

probability of the 
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Predicted (log) 
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∗
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 Final optimization objective:
argmax𝑨′,𝑿′𝚫(𝑣; 𝑨′, 𝑿′)
subject to 𝑨′, 𝑿′ ≈ (𝑨, 𝑿)

 Challenges in optimizing the objective
▪ Adjacency matrix 𝑨′ is a discrete object

▪ For every modified graph 𝑨′ and 𝑿′, GCN needs to be re-
trained: 𝜽∗′ = argmin𝜽ℒ𝑡𝑟𝑎𝑖𝑛 𝜽;𝑨′, 𝑿′

 Solution [Zügner et al. KDD2018]:

▪ Iteratively follow a locally optimal strategy:
▪ Sequentially ’manipulate’ the most promising element: an entry 

from the adjacency matrix or a feature entry

▪ Pick the one which obtains the highest difference in the log-
probabilites, indicated by the score function.
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 Setting: Semi-supervised node classification 
with GCN 

 Graph: Paper citation network (2,800 nodes, 
8,000 edges).

 Attack type: Edge modification (addition or 
deletion of edges)

 Attack budget on node v: 𝑑𝑣 + 2 modifications 
(𝑑𝑣: degree of node 𝑣). 
▪ Intuition: It is harder to attack a node with a larger 

degree.
 Model is trained and attacked 5 times using 

different random seeds.
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

(correct)

Class 7

Classification margin

> 0: Correct classification

< 0: Incorrect classification

Predicted probabilities of a target node 𝑣 over 5 re-

trainings (each bar represents a single trial) 

(without graph manipulation, i.e., clean graph)

GCN is able to correctly 

classify the target node 

with high confidence.

7-class classification



GCN’s prediction after modifying 5 edges attached to 
the target node (direct adversarial attack).
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
(correct)

Class 7

Predicted probabilities over 5 re-trainings

(with adversarial attacks)

The model confidently makes 

the wrong prediction



 Adversarial direct attack
is the strongest attack, 
significantly worsening 
GCN’s performance 
(compared to no attack).

 Random attack is much 
weaker than adversarial
attack.

 Indirect attack is more 
challenging than direct 
attack. 
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 We study the adversarial robustness of GCN 
applied to semi-supervised node classification.

 We consider different attack possibilities on 
graph-structured data.

 We mathematically formulate the adversarial 
attack as an optimization problem.

 We empirically demonstrate that GCN’s prediction 
performance can be significantly harmed by 
adversarial attacks.

 GCN is not robust to adversarial attacks but it is 
somewhat robust to indirect attacks and random 
noise.
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