
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

ANNOUNCEMENTS
• Homework 1 will be released after class
• Next Thursday (10/07): Colab 1 due, Colab 2 out

o Do Colab 0! It has almost everything you need to
complete Colab 1.

• Office hours: we’ve added Zoom links to our OH
calendar.
o See http://web.stanford.edu/class/cs224w/oh.html for

OH calendar, Zoom links, and QueueStatus link.

ANNOUNCEMENTS
• Office hours redesign

• Thank you for your feedback on high-resolution and our Google
Form!

• First 30 minutes: group questions will be prioritized
• Afterwards 1:1 questions will be prioritized

• Please join Zoom directly. QueueStatus be used to sort 1:1
question order

• Goal: to be able to address both conceptual and student-
specific questions

http://web.stanford.edu/class/cs224w/oh.html

 So far, we have been learning from graphs

▪ We assume the graphs are given

 But how are these graphs generated?

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 3

Economic Networks Communication NetworksSocial Networks
Image credit: Medium Image credit: Science Image credit: Lumen Learning

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://science.sciencemag.org/content/325/5939/422
https://courses.lumenlearning.com/wmopen-introbusiness/chapter/communication-channels-flows-networks/

 We want to generate realistic graphs, using
graph generative models

 Applications:

▪ Drug discovery, material design

▪ Social network modeling
2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 4

Real graphSynthetic graph

Graph
Generative

Model

Generate
which is
similar to

 Insights – We can understand the formulation
of graphs

 Predictions – We can predict how will the
graph further evolve

 Simulations – We can use the same process
to general novel graph instances

 Anomaly detection - We can decide if a graph
is normal / abnormal

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 5

 Step 1: Properties of real-world graphs

▪ A successful graph generative model should fit
these properties

 Step 2: Traditional graph generative models

▪ Each come with different assumptions on the graph
formulation process

 Step 3: Deep graph generative models

▪ Learn the graph formation process from the data

▪ This lecture!

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 6

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

…

Output: node embeddings

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

…

Output: Graph Structure!

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Task 1: Realistic graph generation
 Generate graphs that are similar to a given

set of graphs [Focus of this lecture]

Task 2: Goal-directed graph generation
 Generate graphs that optimize given

objectives/constraints

▪ E.g., Drug molecule generation/optimization

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

 Given: Graphs sampled from 𝑝𝑑𝑎𝑡𝑎(𝐺)
 Goal:

▪ Learn the distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺)

▪ Sample from 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺)

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 11

𝑝𝑑𝑎𝑡𝑎(𝐺) 𝑝𝑚𝑜𝑑𝑒𝑙(𝐺)Learn &

Sample

Setup:
 Assume we want to learn a generative model

from a set of data points (i.e., graphs) {𝒙𝑖}
▪ 𝑝𝑑𝑎𝑡𝑎(𝒙) is the data distribution, which is never known

to us, but we have sampled 𝒙𝑖 ~ 𝑝𝑑𝑎𝑡𝑎(𝒙)

▪ 𝑝𝑚𝑜𝑑𝑒𝑙(𝒙;𝜃) is the model, parametrized by 𝜃, that we
use to approximate 𝑝𝑑𝑎𝑡𝑎(𝒙)

 Goal:
▪ (1) Make 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙;𝜃 close to 𝑝𝑑𝑎𝑡𝑎 𝒙 (Density

estimation)

▪ (2) Make sure we can sample from 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙;𝜃
(Sampling)
▪ We need to generate examples (graphs) from 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙; 𝜃

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

(1) Make 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙;𝜽 close to 𝒑𝒅𝒂𝒕𝒂 𝒙
 Key Principle: Maximum Likelihood
 Fundamental approach to modeling distributions

▪ Find parameters 𝜃∗, such that for observed data
points 𝒙𝑖~𝑝𝑑𝑎𝑡𝑎 the σ𝑖 log 𝑝𝑚𝑜𝑑𝑒𝑙 𝒙𝑖; 𝜃

∗ has the
highest value, among all possible choices of 𝜃

▪ That is, find the model that is most likely to have
generated the observed data 𝑥

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

(2) Sample from 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙;𝜽
 Goal: Sample from a complex distribution
 The most common approach:

▪ (1) Sample from a simple noise distribution
𝒛𝑖~𝑁(0,1)

▪ (2) Transform the noise 𝑧𝑖 via 𝑓(⋅)
𝒙𝑖 = 𝑓(𝒛𝑖 ; 𝜃)

Then 𝒙𝑖 follows a complex distribution

 Q: How to design 𝒇(⋅)?
 A: Use Deep Neural Networks, and train it

using the data we have!
2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Auto-regressive models:
 𝒑𝒎𝒐𝒅𝒆𝒍 𝒙;𝜽 is used for both density

estimation and sampling (remember our two goals)
▪ Other models like Variational Auto Encoders (VAEs), Generative Adversarial

Nets (GANs) have 2 or more models, each playing one of the roles

▪ Idea: Chain rule. Joint distribution is a product of
conditional distributions:

▪ E.g., 𝒙 is a vector, 𝑥𝑡 is the 𝑡-th dimension;
𝒙 is a sentence, 𝑥𝑡 is the 𝑡-th word.

▪ In our case: 𝑥𝑡 will be the 𝑡-th action (add node, add edge)
2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Generating graphs via sequentially adding
nodes and edges

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

[You et al., ICML 2018]

1 1

2

1

2

3 1

2 4

3 1

2 4

3

5

1

2 4

3

5

Graph 𝐺

Generation process 𝑆𝜋

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. J. You, R. Ying, X.
Ren, W. L. Hamilton, J. Leskovec. International Conference on Machine Learning (ICML), 2018.

https://cs.stanford.edu/people/jure/pubs/graphrnn-icml18.pdf

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

1

2 4

3

5

Graph 𝐺 with node ordering π can be uniquely mapped
into a sequence of node and edge additions Sπ

1 1

2

1

2

3 1

2 4

3 1

2 4

3

5

Graph 𝐺 with
node ordering 𝜋:

Sequence 𝑆𝜋:

𝑆1
𝜋 𝑆2

𝜋 𝑆3
𝜋 𝑆4

𝜋 𝑆5
𝜋()𝑆𝜋 = , , , ,

The sequence 𝑆𝜋 has two levels
(𝑆 is a sequence of sequences):

▪ Node-level: add nodes, one at a time

▪ Edge-level: add edges between existing nodes

 Node-level: At each step, a new node is added

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 19

1 1

2

1

2

3 1

2 4

3 1

2 4

3

5

𝑆1
𝜋 𝑆2

𝜋 𝑆3
𝜋 𝑆4

𝜋 𝑆5
𝜋()𝑆𝜋 = , , , ,

“Add node 1” “Add node 5”…

The sequence 𝑆𝜋 has two levels:
 Each Node-level step is an edge-level sequence
 Edge-level: At each step, add a new edge

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

1

2 4

3

𝑆4,1
𝜋 𝑆4,2

𝜋 𝑆4,3
𝜋

𝑆4
𝜋

()𝑆4
𝜋 = , ,

“Not connect 4, 1” “Connect 4, 2” “Connect 4, 3”

0 1 1

 Summary: A graph + a node ordering =
A sequence of sequences

 Node ordering is randomly selected (we will
come back to this)

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

0 1 1 0 0

1 0 0 1 0

1 0 0 1 1

0 1 1 0 1

0 0 1 1 0

1

2 4

3

5

Graph 𝐺

Node-level sequence

Edge-level

sequence

Adjacency matrix

⇔

 We have transformed graph generation
problem into a sequence generation problem

 Need to model two processes:

▪ 1) Generate a state for a new node
(Node-level sequence)

▪ 2) Generate edges for the new node based on its
state (Edge-level sequence)

 Approach: Use Recurrent Neural Networks
(RNNs) to model these processes!

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

▪ RNNs are designed for sequential data

▪ RNN sequentially takes input sequence to update
its hidden states

▪ The hidden states summarize all the information
input to RNN

▪ The update is conducted via RNN cells

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 23

RNN
cell

𝑥1

𝑠0

𝑦1

𝑠1
RNN
cell

𝑥2

𝑦2

…𝑠2

Input sequence:

Output sequence:

Hidden states:

 𝑠𝑡: State of RNN after step 𝑡
 𝑥𝑡: Input to RNN at step 𝑡
 𝑦𝑡: Output of RNN at step 𝑡
 RNN cell: 𝑊,𝑈, 𝑉: Trainable parameters

 More expressive cells: GRU, LSTM, etc.
2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 24

RNN
cell

𝑥𝑡

𝑠𝑡−1

𝑦𝑡

𝑠𝑡

The RNN cell:
(1) Update hidden state:
𝑠𝑡 = 𝜎(𝑊 ⋅ 𝑥𝑡 + 𝑈 ⋅ 𝑠𝑡−1)

(2) Output prediction:
𝑦𝑡 = 𝑉 ⋅ 𝑠𝑡

(1)
(2)

In our case 𝑠𝑡 , 𝑥𝑡 and
𝑦𝑡 will be scalars
(edge probabilities)

 GraphRNN has a node-level RNN and an
edge-level RNN

 Relationship between the two RNNs:

▪ Node-level RNN generates the initial state
for edge-level RNN

▪ Edge-level RNN sequentially predict if the
new node will connect to each of the
previous node

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 25

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

Node-level RNN generates the initial
state for edge-level RNN

Edge-level RNN sequentially predict if the new node will
connect to each of the previous node

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27

Node-level RNN generates the initial

state for edge-level RNN

Edge-level RNN generates edges for the new node,

then update Node-level RNN state using generated results
Next: How to generate a sequence with RNN?

 Q: How to use RNN to generate sequences?
 A: Let 𝑥𝑡+1 = 𝑦𝑡 (Use the previous output as input)

 Q: How to initialize the input sequence?
 A: Use start of sequence token (SOS) as the initial input

▪ SOS is usually a vector with all zero/ones

 Q: When to stop generation?
 A: Use end of sequence token (EOS) as an extra RNN

output

▪ If output EOS=0, RNN will continue generation

▪ If output EOS=1, RNN will stop generation

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

 This is good, but this model is deterministic

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

RNN
cell

𝑥1 = 𝑆𝑂𝑆

𝑠0

𝑦1

𝑠1
RNN
cell

𝑥2= 𝑦1

𝑦2

𝑠𝑇−1
RNN
cell

𝑥𝑇 = 𝑦𝑇−1

𝐸𝑂𝑆 = 1

…𝑠2

Initialize input

Stop generationUse the previous output as input

Consider the Edge-level RNN for now.
 Our goal: Model ς𝑘=1

𝑛 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑡|𝑥1 ,… , 𝑥𝑡−1; 𝜃)
 Let 𝑦𝑡 = 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥𝑡|𝑥1, … , 𝑥𝑡−1; 𝜃)
 Then we need to sample 𝑥𝑡+1 from 𝑦𝑡: 𝑥𝑡+1~𝑦𝑡

▪ Each step of RNN outputs a probability of a single edge

▪ We then sample from the distribution, and feed sample to next
step:

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

RNN
cell

𝑥1 = 𝑆𝑂𝑆

𝑦1

𝑠1
RNN
cell

𝑦2

𝑠2
RNN
cell

𝑥3~𝑦2

𝑦3

𝑠3 …𝑠0

𝑥2~𝑦1

Suppose we already have trained the edge-level RNN
▪ 𝑦𝑡 is a scalar, following a Bernoulli distribution

▪ means value 1 has prob. 𝑝, value 0 has prob. 1 − 𝑝

 How do we use training data 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏?
2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

RNN
cell

𝑥1 = 𝑆𝑂𝑆

𝑠1
RNN
cell

𝑥2 ~

𝑠2
RNN
cell

𝑠3 …

0.9𝑦1 =

𝑠0 = 𝑆𝑂𝑆

0.9

0.4𝑦2 = 0.7𝑦3 =

𝑥2 =

𝑥3 ~ 0.4

𝑥3 =

𝑝

1 0

Training the model:
 We observe a sequence 𝑦∗ of edges [0,0,1,…]
 Principle: Teacher Forcing -- Replace input

and output by the real sequence

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

RNN
cell

𝑥1 = 𝑆𝑂𝑆

𝒔1
RNN
cell

𝑠2
RNN
cell

𝑠3

𝑦1
∗ =

𝑥2 = 𝑥3 =

Compute
loss

𝑦2
∗ = 𝑦3

∗ =

𝑠0 = 𝑆𝑂𝑆

0.9𝑦1 = 0.4𝑦2 = 0.7𝑦3 =

0 0

0 0 1

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

 Loss 𝐿 : Binary cross entropy
 Minimize:

𝐿 = −[𝑦1
∗log(𝑦1) + (1 − 𝑦1

∗)log(1 − 𝑦1)]

 If 𝑦1
∗ = 1, we minimize −log(𝑦1), making 𝑦1 higher

 If 𝑦1
∗ = 0, we minimize −log(1 − 𝑦1), making 𝑦1 lower

 This way, 𝑦1 is fitting the data samples 𝑦1
∗

 Reminder: 𝑦1 is computed by RNN, this loss will adjust
RNN parameters accordingly, using back propagation!

𝑦1
∗ =Compute

loss
0.9𝑦1 =

0

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

Our Plan:
(1) Add a new node: We run Node RNN for a step, and use

it output to initialize Edge RNN
(2) Add new edges for the new node: We run Edge RNN to

predict if the new node will connect to each of the
previous node

(3) Add another new node: We use the last hidden state of
Edge RNN to run Node RNN for another step

(4) Stop graph generation: If Edge RNN outputs EOS at step
1, we know no edges are connected to the new node.
We stop the graph generation.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

Node
RNN

𝑆𝑂𝑆

0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

Assuming Node 1 is in the graph
Now adding Node 2

Start the node RNN

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Edge RNN predicts how
Node 2 connects to Node 1 0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

Start the edge RNNWill node 2
connect to
node 1?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Node
RNN

Update Node RNN using
Edge RNN’s hidden state 0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Node
RNN

Edge
RNN

𝑆𝑂𝑆0.6

Edge
RNN

0.4 1

Edge RNN predicts
how Node 3 tries to
connects to Nodes 1, 2

0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

Will node 3
connect to node 1?

Teacher forcing: node 3 will
connect to node 1

Will node 3
connect to node 2?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Node
RNN

Edge
RNN

Node
RNN

𝑆𝑂𝑆0.6

Edge
RNN

0.4 1

0 1 1

1 0 0

1 0 0

1
2

3

Observed graph

Update Node RNN using
Edge RNN’s hidden state

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.6

Edge
RNN

0.4

0.4

𝐸𝑂𝑆

1

Stop generation since
we know node 4 won’t
connect to any nodes

0 1 1

1 0 0

1 0 0

1
2

3

Observed graph
4

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

0 1 1

1 0 0

1 0 0

1
2

3

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.6

Edge
RNN

1

0.4

1

0

0.4

𝐸𝑂𝑆

Observed graph1

For each prediction, we get
supervision from the ground truth

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.5

0 1 1

1 0 0

1 0 0

1
2

3

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.6

Edge
RNN

1

0.4

1

0

0.4

𝐸𝑂𝑆

Observed graph1

Backprop through time:
Gradients are accumulated
across time steps

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

Node
RNN

𝑆𝑂𝑆

Edge
RNN

𝑆𝑂𝑆0.9

0 1 1

1 0 0

1 0 0

1
2

3

Node
RNN

Edge
RNN

Node
RNN

Edge
RNN

𝑆𝑂𝑆 𝑆𝑂𝑆0.2

Edge
RNN

0.2 Observed graph0

Test time: (1) Sample edge connectivity
based on predicted distribution
(2) Replace input at each step by
GraphRNN’s own predictions

1
~

0
~

0.5

𝐸𝑂𝑆
~

0
~

Quick Summary of GraphRNN:

▪ Generate a graph by generating a two-level sequence

▪ Use RNN to generate the sequences

 Next: Making GraphRNN tractable, proper evaluation

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

0 1 1 0 0

1 0 0 1 0

1 0 0 1 1

0 1 1 0 1

0 0 1 1 0

1

2 4

3

5

Graph 𝐺

Node-level RNN

Edge-level RNN

Adjacency matrix

⇔

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

 Any node can connect to any prior node

 Too many steps for edge generation

▪ Need to generate full adjacency matrix

▪ Complex too-long edge dependencies

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 46

1

5 4

3

2

Random node ordering:

Node 5 may connect to any/all previous nodes

How do we limit this complexity?

“Recipe” to generate the left graph:

- Add node 1

- Add node 2

- Add node 3

- Connect 3 with 2 and 1
- Add node 4

- …

 Breadth-First Search node ordering

 BFS node ordering:
▪ Since Node 4 doesn’t connect to Node 1

▪ We know all Node 1’s neighbors have already been traversed

▪ Therefore, Node 5 and the following nodes will never connect
to node 1

▪ We only need memory of 2 “steps” rather than n − 1 steps

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

1

2 4

3

5

BFS ordering

“Recipe” to generate the left graph:

- Add node 1

- Add node 2

- Connect 2 with 1

- Add node 3

- Connect 3 with 1

- Add node 4

- Connect 4 with 3 and 2

 Breadth-First Search node ordering

 Benefits:

▪ Reduce possible node orderings

▪ From 𝑂(𝑛!) to number of distinct BFS orderings

▪ Reduce steps for edge generation

▪ Reducing number of previous nodes to look at

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

1

2 4

3

5

BFS ordering

BFS node ordering: Node 5 will

never connect to node 1

(only need memory of 2 “steps”

rather than 𝑛 − 1 steps)

 BFS reduces the number of steps for edge
generation

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

Adjacency matrices

 Task: Compare two sets of graphs

 Goal: Define similarity metrics for graphs

 Solution

▪ (1) Visual similarity

▪ (2) Graph statistics similarity

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

How similar?

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 52

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Question: Can we learn a model that can
generate valid and realistic molecules with
optimized property scores?

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Model Property

output that optimizes

e.g., drug_likeness=0.95

[You et al., NeurIPS 2018]

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B.
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.

https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf

Generating graphs that:
 Optimize a given objective (High scores)

▪ e.g., drug-likeness

 Obey underlying rules (Valid)

▪ e.g., chemical validity rules

 Are learned from examples (Realistic)

▪ Imitating a molecule graph dataset

▪ We have just covered this part

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

Generating graphs that:
 Optimize a given objective (High scores)

▪ e.g., drug-likeness

 Obey underlying rules (Valid)

▪ e.g., chemical validity rules

 Are learned from examples (Realistic)

▪ Imitating a molecule graph dataset

▪ Covered this part when introducing GraphRNN

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

Including a “Black-box” to Graph
Generation:
Objectives like drug-likeness are governed by
physical law which is assumed to be unknown
to us.

 A ML agent observes the environment, takes
an action to interact with the environment,
and receives positive or negative reward

 The agent then learns from this loop
 Key idea: Agent can directly learn from

environment, which is a blackbox to the agent

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

ML Agent

Action

Environment

Observation,
Reward

Graph Convolutional Policy Network (GCPN)
combines graph representation + RL
Key component of GCPN:
 Graph Neural Network captures graph

structural information
 Reinforcement learning guides the generation

towards the desired objectives
 Supervised training imitates examples in given

datasets

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

 Commonality of GCPN & GraphRNN:

▪ Generate graphs sequentially

▪ Imitate a given graph dataset

 Main Differences:

▪ GCPN uses GNN to predict the generation action

▪ Pros: GNN is more expressive than RNN

▪ Cons: GNN takes longer time to compute than RNN

▪ GCPN further uses RL to direct graph generation to
our goals

▪ RL enables goal-directed graph generation

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 66

 Sequential graph generation
 GraphRNN: predict action based on RNN hidden states

 GCPN: predict action based on GNN node embeddings

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu 67

Node
RNN

Edge
RNN

Edge
RNN

Edge
RNN

0 1 1
1

2 4

31

2

3

RNN hidden state captures the generated graph so far

GNN

1

2 4

3 1

2 4

3

Predict potential links
using node embeddings

Node
embeddings

1

2 4

3
Recall the link
prediction head:

Headedg𝑒(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
):=

Linear(Concat(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿))

 (a) Insert nodes

 (b,c) Use GNN to predict which nodes to connect

 (d) Take an action (check chemical validity)

 (e, f) Compute reward

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 682/23/2023

 Step reward: Learn to take valid action

▪ At each step, assign small positive reward for valid

action

 Final reward: Optimize desired properties

▪ At the end, assign positive reward for high desired

property

Reward = Final reward + Step reward
2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

 Two parts:
 (1) Supervised training: Train policy by imitating

the action given by real observed graphs. Use
gradient.
▪ We have covered this idea in GraphRNN

 (2) RL training: Train policy to optimize rewards.
Use standard policy gradient algorithm.
▪ Refer to any RL course, e.g., CS234

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

Visualization of GCPN graphs:

 Property optimization Generate molecules
with high specified property score

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 722/23/2023

Visualization of GCPN graphs:
 Constrained optimization: Edit a given molecule for

a few steps to achieve higher property score

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 73

Starting structure Finished structure

2/23/2023

Increase the
solubility in
octanol

 Complex graphs can be successfully generated
via sequential generation using deep learning

 Each step a decision is made based on hidden
state, which can be

▪ Implicit: vector representation, decode with RNN

▪ Explicit: intermediate generated graphs, decode
with GCN

 Possible tasks:

▪ Imitating a set of given graphs

▪ Optimizing graphs towards given goals

2/23/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 74

