Stanford CS224W:
Deep Generative Models for
Graphs




ANNOUNCEMENTS

* Office hours redesign
Thank you for your feedback on high-resolution and our Google
Form!
First 30 minutes: group questions will be prioritized
Afterwards 1:1 questions will be prioritized

* Please join Zoom directly. QueueStatus be used to sort 1:1
qguestion order
Goal: to be able to address both conceptual and student-
specific questions

CS224W: Machine
Jure Leskovec, Stanford Unive

http://cs224w.stanford.edu



http://web.stanford.edu/class/cs224w/oh.html

Motivation for Graph Generation

So far, we have been learning from graphs

We assume the graphs are given
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Social Networks Economic Networks Communication Networks

But how are these graphs generated?
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The Problem: Graph Generation

We want to generate realistic graphs, using
graph generative models

which is

Generate *=~ similarto
Synthetic graph Real graph

Applications:
Drug discovery, material design
Social network modeling
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Why Do We Study Graph Generation

2/23

/2023

Insights — We can understand the formulation
of graphs

Predictions — We can predict how will the
graph further evolve

Simulations — We can use the same process
to general novel graph instances

Anomaly detection - We can decide if a graph
is normal / abnormal



History of Graph Generation

Step 1: Properties of real-world graphs

A successful graph generative model should fit
these properties

Step 2: Traditional graph generative models

Each come with different assumptions on the graph
formulation process

Step 3: Deep graph generative models

Learn the graph formation process from the data
This lecture!
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So far: Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
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Output: node embeddings
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Today: Deep Graph Decoders

 ——————

Graph Regularization, Graph
convolutions e.g., dropout convolutions
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Output: Graph Structure!
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Stanford CS224W:
Machine Learning for
Graph Generation




Graph Generation Tasks

Task 1: Realistic graph generation
Generate graphs that are similar to a given
set of graphs [Focus of this lecture]

Task 2: Goal-directed graph generation
Generate graphs that optimize given
objectives/constraints

E.g., Drug molecule generation/optimization
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Graph Generative Models

Given: Graphs sampled from p,¢4 (G)
Goal:

Learn the distribution p,,,, 401 (G)
Sample from p,,,,401(G)

Pdata (G) Learn & Pmodel (G)
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Generative Models Basics

Setup:
Assume we want to learn a generative model
from a set of data points (i.e., graphs) {x;}

Daatqa(X) is the data distribution, which is never known
to us, but we have sampled x; ~ Pgqta(X)

Pmodel (X; 0) is the model, parametrized by 8, that we
use to approximate P 44 (X)
Goal:

(1) Make p.y,0401(x; 0) close to py,:4(X) (Density
estimation)

(2) Make sure we can sample from p.,,0401(X; 0)
(Sampling)

We need to generate examples (graphs) from p,, 401 (X; 0)
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Generative Models Basics

(1) Make ppoder(X; 0) close to P gqiq(X)
Key Principle: Maximum Likelihood

Fundamental approach to modeling distributions

0" = argénax @ oo 108 Pmodel (T | 0)

Find parameters 8%, such that for observed data
points X;~Vi4tq the X.;108 Pimoder (Xi; 87) has the
highest value, among all possible choices of 6

That is, find the model that is most likely to have
generated the observed data x
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Generative Models Basics

(2) Sample from p.,,,401(x; )
Goal: Sample from a complex distribution
The most common approach:

(1) Sample from a simple noise distribution
z;~N(0,1)
(2) Transform the noise z; via f(+)
x; = f(z;;0)
Then x; follows a complex distribution
Q: How to design f(-)?
A: Use Deep Neural Networks, and train it
usmg the data we haveI
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Deep Generative Models

Auto-regressive models:
Pmodel(X; 8) is used for both density
estimation and sampling (remember our two goals)

Other models like Variational Auto Encoders (VAEs), Generative Adversarial
Nets (GANs) have 2 or more models, each playingone of the roles

Idea: Chain rule. Joint distribution is a product of
conditional distributions:

n
Pmodel (x; 0) — Pmodel (xtlxl' ey X1 0)
t=1

E.g., x is a vector, x; is the t-th dimension;

X is a sentence, x; is the t-th word.

In our case: x; will be the t-th action (add node, add edge)
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Stanford CS224W:
GraphRNN:
Generating Realistic Graphs




[You et al., ICML 2018]

GraphRNN Idea

Generating graphs via sequentially adding

nodes and edges
Graph

D= ag—@@

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. J. You, R. Ying, X.
Ren, W. L. Hamilton, J. Leskovec. International Conference on Machine Learning (ICML), 2018.
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Model Graphs as Sequences

Graph G with
node ordering 1:

]

Sequence S™:

@

ST= ( ST , ST

)

2/23/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 18



Model Graphs as Sequences

The sequence S™ has two levels
(S is a sequence of sequences):

Node-level: add nodes, one at a time
Edge-level: add edges between existing nodes

Node level: At each step, a new node is added

aefa

= (S ,87 S3 54 S5 )

)

“Add node 1” . “Add node 5’
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Model Graphs as Sequences

The sequence S™ has two levels:
Each Node-level step is an edge-level sequence
Edge-level: At each step, add a new edge

SZLT: ( SZLT,1 SZLT,Z ) SZLT,S )

)

“Not connect 4, 17 “Connect 4, 2” “Connect 4, 3’

0 1 1
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Model Graphs as Sequences

Summary: A graph + a node ordering =
A sequence of sequences
Node ordering is randomly selected (we will

come back to this)
Node-level sequence

sequence

0
e 01110 Edge-level

1

1

Adjacency matrix
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Model Graphs as Sequences

We have transformed graph generation
problem into a sequence generation problem

Need to model two processes:

1) Generate a state for a new node
(Node-level sequence)

2) Generate edges for the new node based on its
state (Edge-level sequence)

Approach: Use Recurrent Neural Networks
(RNNs) to model these processes!
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Background: Recurrent NNs

RNNs are designed for sequential data
RNN sequentially takes input sequence to update
its hidden states

The hidden states summarize all the information
input to RNN

The update is conducted via

Output sequence:

Hidden states: S :}D:} Sq :}D:} S5

Input sequence: x1 x2
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Background: Recurrent NNs

s;: State of RNN afterstep t In our case s;, x; and
+ Will be scalars
x,: Input to RNN at step t (e dge probabilities]

y¢: Output of RNN atstep ¢t
RNN cell: W, U, V: Trainable parameters

Vi The RNN cell:
1) ) (1) Update hidden state:
St — O-(W 'Xt —+ U‘St_l)
Se-1 = = s (2) Output prediction:
ﬁ Ve =V -5
Xt

More expresswe ceIIs GRU LSTI\/I etc.
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GraphRNN: Two levels of RNN

2/23

/2023

GraphRNN has a node-level RNN and an
edge-level RNN

Relationship between the two RNNs:

Node-level RNN generates the initial state
for edge-level RNN

Edge-level RNN sequentially predict if the
new node will connect to each of the
previous node



GraphRNN: Two levels of RNN

Node-level RNN generates the initial ‘
state for edge-level RNN

hy o h3 hy

hs he
(O—3 O—B)
e D

SOS— 1 1| 0 0
S‘i’zf * 0 11| — 10 —
ST ! 1 :
3 i Sample + Edge-level Update
ST 1 —
4 Node-level Update

Edge-level RNN sequentially predict if the new node will
connect to each of the previous node
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GraphRNN: Two levels of RNN

Node-level RNN generates the initial ‘
state for edge-level RNN
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RNN for Sequence Generation

Q: How to use RNN to generate sequences?
A: Let x;.1 = y; (Use the previous output as input)

Q: How to initialize the input sequence?
A: Use start of sequence token (SOS) as the initial input

SOS is usually a vector with all zero/ones

Q: When to stop generation?
A: Use end of sequence token (EOS) as an extra RNN
output

If output EOS=0, RNN will continue generation

If output EOS=1, RNN will stop generation
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RNN for Sequence Generation

Use the previous output as input Stop generation
EOS =1
Xl —SOS S > X2=y1 xT _yT—l

Initialize input

This is good, but this model is deterministic
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Towards Edge-Level RNN

Consider the Edge-level RNN for now.
Our goal: Model [} =1 Pmodet (X¢ X1, o) X¢—1; 6)

Let YVi = Dmoder (XelX1, o) Xp—1; 0)
Then we need to sample x4, 1 from y;: X;11~V;

Each step of RNN outputs a probability of a single edge

We then sample from the distribution, and feed sample to next
step:

) 4 B Y2

S 1
So @B@ Sl @B@ S @B@;} 5y o
Tt L t

x; =S50S » X ~Vy X3~V
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Towards Edge-Level RNN

Suppose we already have trained the edge-level RNN
V¢ is a scalar, following a Bernoulli distribution
p | means value 1 has prob. p, value O has prob. 1 —p

Vi= [0 Y2 = [04] . Y3 =07

How do we use training data xq, x5, ..., X,,?
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Edge-Level RNN at Training Time

Training the model:
We observe a sequence y* of edges [0,0,1,...]
Principle: Teacher Forcing -- Replace input
and output by the real sequence

Compute y =] 0 [ Y, =10 Y = | 1
loss  JJ y; = |09 ﬂ' y, = |04 J ys = |07
't 2
oo -~ -~
Ll . | Ll
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Edge-Level RNN at Training Time

Loss L : Binary cross entropy
Minimize:
L = —[y;log(y1) + (1 — y1)log(1 —yy)]

Compute y;

loss ﬂ,

41

0

0.9

If y; = 1, we minimize —log(y,), making y, higher

If y; = 0, we minimize —log(1 — y,), making y, lower
This way, y, is fitting the data samples y;

Reminder: y,; is computed by RNN, this loss will adjust
RNN parameters accordingly, using back propagation!
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Putting Things Together

Our Plan:

(1) Add a new node: We run Node RNN for a step, and use
it output to initialize Edge RNN

(2) Add new edges for the new node: We run Edge RNN to
predict if the new node will connect to each of the
previous node

(3) Add another new node: We use the last hidden state of
Edge RNN to run Node RNN for another step

(4) Stop graph generation: If Edge RNN outputs EOS at step
1, we know no edges are connected to the new node.
We stop the graph generation.
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Put Things Together:

Assuming Node 1 is in the graph
Now adding Node 2

o

1)
SOS
Start the node RNN
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Put Things Together: Training

Edge RNN predicts how
Node 2 connects to Node 1

0.5|€ €@ S0S
Start the edge RNN

Will node 2 1@

connect to

node 17 D
1)
SOS
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Put Things Together: Training

Update Node RNN using
Edge RNN’s hidden state

0.5 | €&
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Put Things Together: Training

Edge RNN predicts
how Node 3 tries to
connectsto Nodes 1, 2

0.4 |G al 1l
Will node 3 Teacher forcing: node 3 will
connect to node 27 T connect to node 1
0.5 | € @ S0S 0.6 éDé SOS
Will node 3
1t connect to node 17 L)
D . >

1t
S0S
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Put Things Together: Training

Update Node RNN using
Edge RNN’s hidden state

0.5 éDé SOS
E

1t
S0S
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Put Things Together: Training

Stop generation since
we know node 4 won’t
connect to any nodes

0.5 éDé SOS
E

1t
S0S
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Put Things Together: Training

For each prediction, we get
supervision from the ground truth

0.4 ¢-|:|¢- 1
0 T
0.5 éDéSOS 0.6 éDé S0S
1 13 1 L)
id — ko

1t
S0S
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Put Things Together: Training

Backprop through time:
Gradients are accumulated
across time steps

SOS
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Put Things Together:

Test time: (1) Sample edge connectivity
based on predicted distribution

(2) Replace input at each step by
GraphRNN’s own predictions o

0.2 {:D{: 0

e [0]

09| €&

-di-g
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GraphRNN: Two levels of RNN

Quick Summary of GraphRNN:

Generate a graph by generating a two-level sequence
Use RNN to generate the sequences

Next: Making GraphRNN tractable, proper evaluation

ﬂEdge-level RNN

2/23/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 44

Node-level RNN
11110

0 |1
=
1

| =~ 1O O

Adjacency matrix



Stanford CS224W:
Scaling Up and Evaluating
Graph Generation




Issue: Tractability

Any node can connect to any prior node
Too many steps for edge generation

Need to generate full adjacency matrix

Complex too-long edge dependencies

“Recipe” to generate the left graph:
- Add node 1

- Add node 2

- Add node 3

- Connect 3with 2 and 1

- Add node 4

Random node ordering: -
Node 5 may connect to any/all prewous nodes
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Solution: Tractability via BFS

Breadth-First Search node ordering

“Recipe” to generate the left graph:
- Add node 1
Add node 2
Connect 2 with 1
Add node 3
Connect 3 with 1
) - Add node 4
BFS ordering - Connect 4 with 3 and 2

BFS node ordering:
Since Node 4 doesn’t connectto Node 1
We know all Node 1’s neighbors have already been traversed

Therefore, Node 5 and the following nodes will never connect
tonode 1

We only need memory of 2 “steps” rather than n — 1 steps

2/23/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu 47



Solution: Tractability via BFS

Breadth-First Search node ordering

BFS node ordering: Node 5 will
never connect to node 1
(only need memory of 2 “steps”
rather than n — 1 steps)

BFS ordering

Benefits:
Reduce possible node orderings

From O (n!) to number of distinct BFS orderings

Reduce steps for edge generation
Reducing number of previous nodes to look at
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Solution: Tractability via BFS

BFS reduces the number of steps for edge
generation

Adjacency matrices
Without BFS ordering With BFS ordering

N=10 N=10

-M=9 //
/L] /
/4 /

7
Connectivity with Connectivity only with

All Previous nodes nodes in the BFS frontier
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Evaluating Generated Graphs

Task: Compare two sets of graphs
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Goal: Define similarity metrics for graphs

Solution
(1) Visual similarity
(2) Graph statistics similarity
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(1) Visual Similarity
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(1) Visual Similarity

Community

ining

Tra

GraphRNN

Baselines

(Kronecker) (MMSB) (B-A)
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Stanford CS224W:
Application of Deep Graph
Generative Models to
Molecule Generation




[You et al., NeurlPS 2018]

Application: Drug Discovery

Question: Can we learn a model that can
generate valid and molecules with
property scores?

output that optimizes

)
Dad®
s

e.g.,drug likeness=0.95

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. J. You, B.
Liu, R. Ying, V. Pande, J. Leskovec. Neural Information Processing Systems (NeurIPS), 2018.
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https://cs.stanford.edu/people/jure/pubs/gcpn-neurips18.pdf

Goal-Directed Graph Generation

Generating graphs that:

Obey underlying rules (Valid)

e.g., chemical validity rules
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The Hard Part:

Generating graphs that:

Covered this part when introducing GraphRNN
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ldea: Reinforcement Learning

A ML agent observes the environment, takes
an action to interact with the environment,
and receives positive or negative reward

The agent then learns from this loop

Key idea: Agent can directly learn from
environment, which is a blackbox to the agent

ML Agent
Observation,
Action Reward
@ e D
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Solution: GCPN

Graph Convolutional Policy Network (GCPN)
combines graph representation + RL
Key component of GCPN:
Graph Neural Network captures graph
structural information
guides the generation
towards the desired objectives
imitates examples in given
datasets

2/23/2023 Jure Leskovec, Stanford CS224W: Ma chine Learning with Graphs, http://cs224w.stanford.edu



GCPN vs. GraphRNN

Commonality of GCPN & GraphRNN:

Generate graphs sequentially

Imitate a given graph dataset
Main Differences:
GCPN uses GNN to predict the generation action

Pros: GNN is more expressive than RNN
Cons: GNN takes longer time to compute than RNN

GCPN further uses RL to direct graph generation to
our goals

RL enables goal-directed graph generation
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GCPN vs. GraphRNN

Sequential graph generation

GraphRNN: predict action based on RNN hidden states
0 1 1

RNN hidden state captures the generated graph so far

GCPN: predict action based on GNN node embeddings

Recall the link
prediction head:

Headegge (h&L), hS,L))==
Linear(Concat(h{®, h{M))

Predict potential links
embeddings using node embeddings
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Overview of GCPN

(1) NodelD &) ° 5) n @
Node |0 |NodelD
@ ( | é\:b Observe n | . . n Sample . NodelD Act Env render o/ \0 0.1 | Step reward
—_— Edge = . d = uodate | = 0 | Final reward
) ( ) f\ n . EdgeType p
n Message Stop (©)—=0)
(d) Dynamics
mb dding  (a) State — G; Scaffold — C (b) GCPN — my(a;|G; U €) (c) Action — a; ~ 1y P(Ges1|Ger ar) (e) State — Gyyq (f) Reward — r;

(a) Insert nodes
(b,c) Use GNN to predict which nodes to connect
(d) Take an action (check chemical validity)

(e, f) Compute reward
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How Do We Set the Reward?

(1) NodelD 5, ° 6)

© Node Observe n o . f\ Sample Eg:::g Act Env rende ; Step reward
—— Edge ( ) ( ) G " . n EdgeType = update = Final reward
é Messag CQ) StOP
< passin s

Node (d) Dynamics

embedding  (a) State — G, Scaffold — C (b) GCPN — mg(a¢|G U €) (c) Action — a; ~ 1y P(Gry1|Ge, ar) (e) State — Gyy4 (f) Reward — 7y

Step reward: Learn to take valid action

At each step, assign small positive reward for valid
action

Final reward: Optimize desired properties

At the end, assign positive reward for high desired
property
Reward = Final reward + Step reward
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How Do We Train?

(1 NodelD 8] ©O—@©)
@ Node / . . NodeID / \
Observe n/ (\ Sample 5| NodelD Act Env render G %0 0.1 | Step reward
— 2
— Edge Qe - ( ) G - . n EdgeType = update = 0 |Final reward
(3) {\ N
N
Message o_ @ m Stop 0_@
<« Passing . | |
- Node (d) Dynamics
embedding  (a) State — G, Scaffold — C (b) GCPN — mg(a¢|G, L C) (c) Action — a; ~ g P(Gey1|Ge, ar) (e) State — G441 (f) Reward — 1,

Two parts:
(1) Supervised training: Train policy by imitating
the action given by real observed graphs. Use
gradient.

We have covered this idea in GraphRNN
(2) RL training: Train policy to optimize rewards.
Use standard policy gradient algorithm.

Refer to any RL course, e.g., CS234
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Training GCPN
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Step reward
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Qualitative Results

Visualization of GCPN graphs:

Property optimization Generate molecules

with high specified property score
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(a) Penalized logP optimization
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(b) QED optimization
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Qualitative Results

Visualization of GCPN graphs:
Constrained optimization: Edit a given molecule for
a few steps to achieve higher property score

Starting structure Finished structure

{7? ” ﬁ;f\“\«
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(c) Constrained optimization of penalized logP
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Summary of Graph Generation

Complex graphs can be successfully generated
via sequential generation using deep learning
Each step a decision is made based on hidden
state, which can be

Implicit: vector representation, decode with RNN

Explicit: intermediate generated graphs, decode
with GCN

Possible tasks:

Imitating a set of given graphs
Optimizing graphs towards given goals
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