Stanford CS224W: Deep Generative Models for Graphs

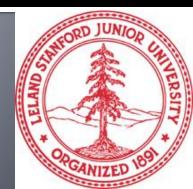
CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

ANNOUNCEMENTS

Office hours redesign

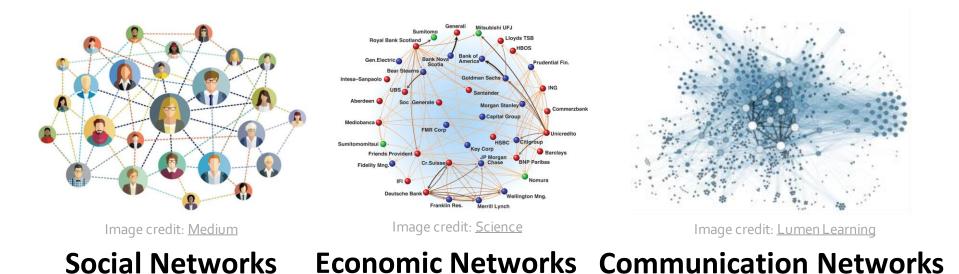
- Thank you for your feedback on high-resolution and our Google Form!
- First 30 minutes: group questions will be prioritized
- Afterwards 1:1 questions will be prioritized
 - Please join Zoom directly. QueueStatus be used to sort 1:1 question order
 - Goal: to be able to address both conceptual and studentspecific questions

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



Motivation for Graph Generation

So far, we have been learning from graphs
We assume the graphs are given



But how are these graphs generated?

The Problem: Graph Generation

We want to generate realistic graphs, using graph generative models

Synthetic graph

Real graph

Applications:

- Drug discovery, material design
- Social network modeling

Why Do We Study Graph Generation

- Insights We can understand the formulation of graphs
- Predictions We can predict how will the graph further evolve
- Simulations We can use the same process to general novel graph instances
- Anomaly detection We can decide if a graph is normal / abnormal

History of Graph Generation

Step 1: Properties of real-world graphs

 A successful graph generative model should fit these properties

Step 2: Traditional graph generative models

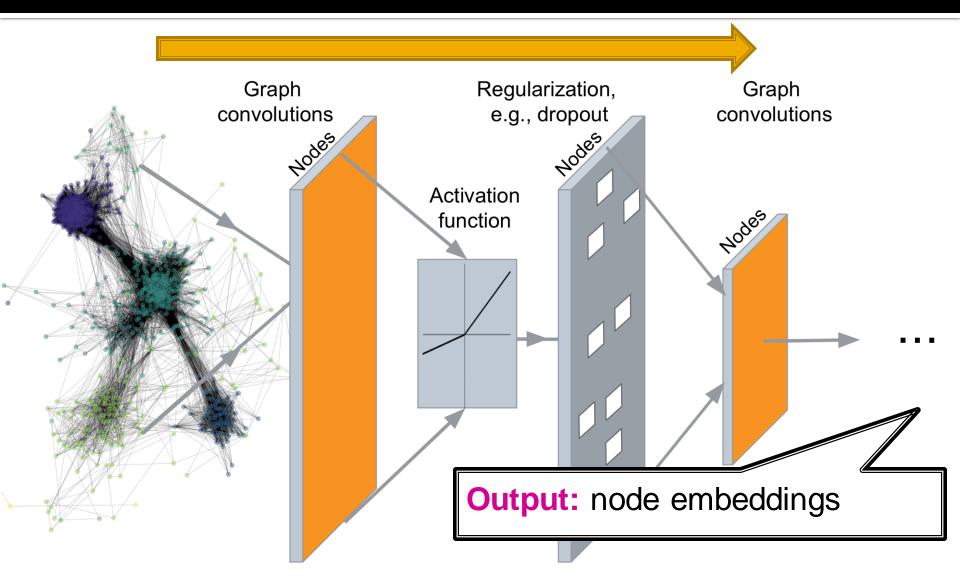
 Each come with different assumptions on the graph formulation process

Step 3: Deep graph generative models

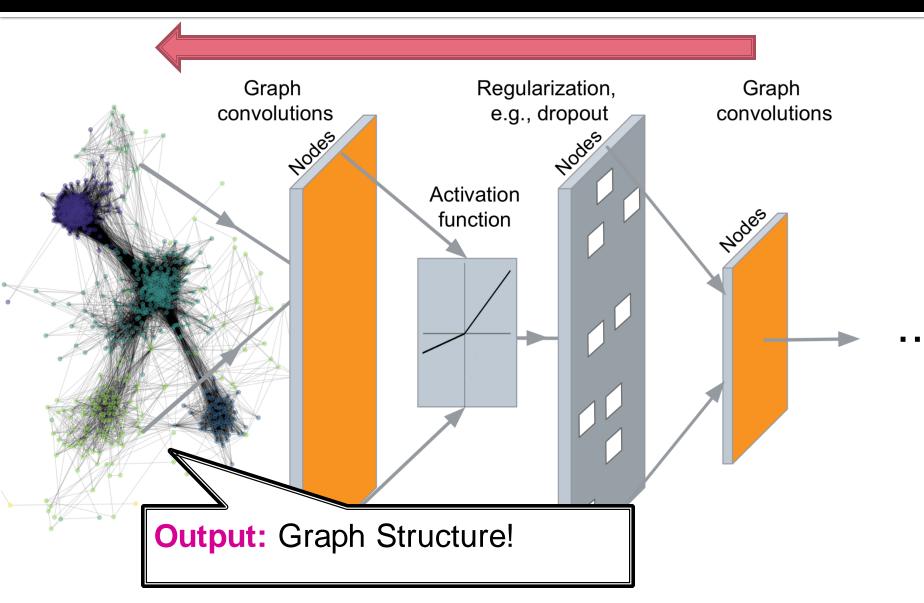
Learn the graph formation process from the data

This lecture!

So far: Deep Graph Encoders

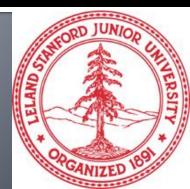


Today: Deep Graph Decoders



Stanford CS224W: Machine Learning for Graph Generation

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



Graph Generation Tasks

Task 1: Realistic graph generation

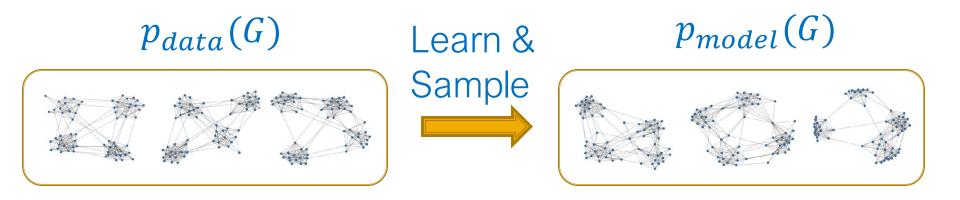
Generate graphs that are similar to a given set of graphs [Focus of this lecture]

Task 2: Goal-directed graph generation

- Generate graphs that optimize given objectives/constraints
 - E.g., Drug molecule generation/optimization

Graph Generative Models

- Given: Graphs sampled from p_{data}(G)
 Goal:
 - Learn the distribution $p_{model}(G)$
 - Sample from $p_{model}(G)$



Generative Models Basics

Setup:

- Assume we want to learn a generative model from a set of data points (i.e., graphs) {x_i}
 - $p_{data}(\mathbf{x})$ is the data distribution, which is never known to us, but we have sampled $\mathbf{x}_i \sim p_{data}(\mathbf{x})$
 - $p_{model}(\mathbf{x}; \theta)$ is the model, parametrized by θ , that we use to approximate $p_{data}(\mathbf{x})$

Goal:

- (1) Make p_{model}(x; θ) close to p_{data}(x) (Density estimation)
- (2) Make sure we can sample from $p_{model}(x; \theta)$ (Sampling)
 - We need to generate examples (graphs) from $p_{model}(\mathbf{x}; \theta)$

Generative Models Basics

(1) Make p_{model}(x; θ) close to p_{data}(x) Key Principle: Maximum Likelihood

Fundamental approach to modeling distributions

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$$

- Find parameters θ^* , such that for observed data points $x_i \sim p_{data}$ the $\sum_i \log p_{model}(x_i; \theta^*)$ has the highest value, among all possible choices of θ
 - That is, find the model that is most likely to have generated the observed data x

Generative Models Basics

(2) Sample from $p_{model}(x; \theta)$

- Goal: Sample from a complex distribution
- The most common approach:
 - (1) Sample from a simple noise distribution $z_i \sim N(0,1)$
 - (2) Transform the noise z_i via $f(\cdot)$ $x_i = f(z_i; \theta)$

Then x_i follows a complex distribution

- Q: How to design $f(\cdot)$?
- A: Use Deep Neural Networks, and train it using the data we have!

Deep Generative Models

Auto-regressive models:

- *p_{model}(x; θ)* is used for both density
 estimation and sampling (remember our two goals)
 - Other models like Variational Auto Encoders (VAEs), Generative Adversarial Nets (GANs) have 2 or more models, each playing one of the roles
 - Idea: Chain rule. Joint distribution is a product of conditional distributions:

$$p_{model}(\boldsymbol{x};\theta) = \prod_{t=1}^{n} p_{model}(\boldsymbol{x}_t | \boldsymbol{x}_1, \dots, \boldsymbol{x}_{t-1}; \theta)$$

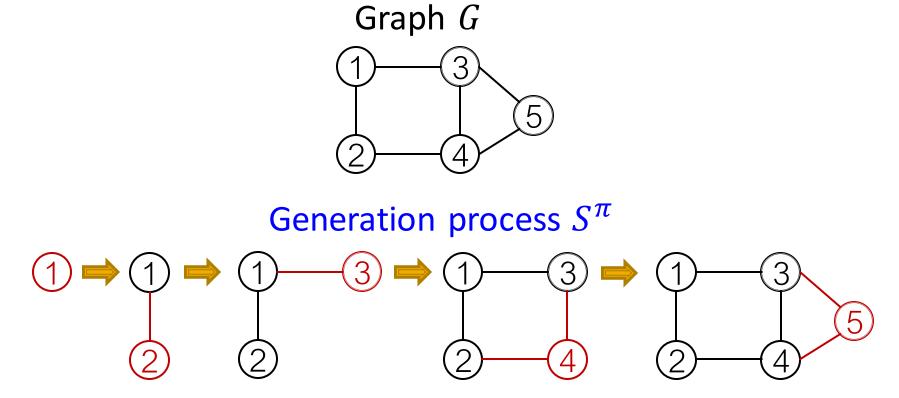
- E.g., x is a vector, x_t is the t-th dimension;
 x is a sentence, x_t is the t-th word.
- In our case: x_t will be the t-th action (add node, add edge)

Stanford CS224W: GraphRNN: Generating Realistic Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

GraphRNN Idea

Generating graphs via sequentially adding nodes and edges

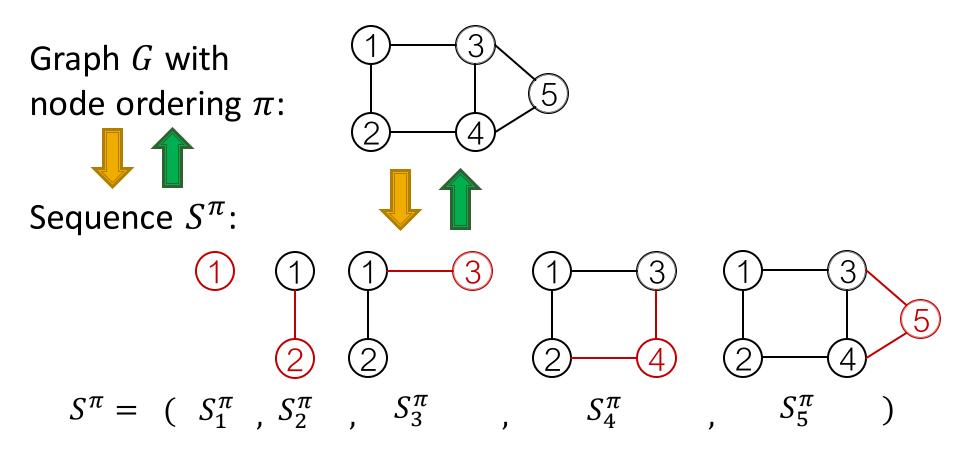


<u>GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models</u>. J. You, R. Ying, X. Ren, W. L. Hamilton, J. Leskovec. *International Conference on Machine Learning (ICML)*, 2018.

2/23/2023

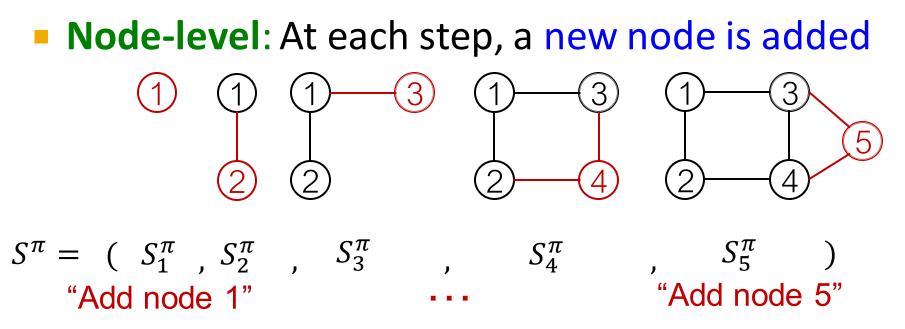
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph G with node ordering π can be uniquely mapped into a sequence of node and edge additions S^{π}



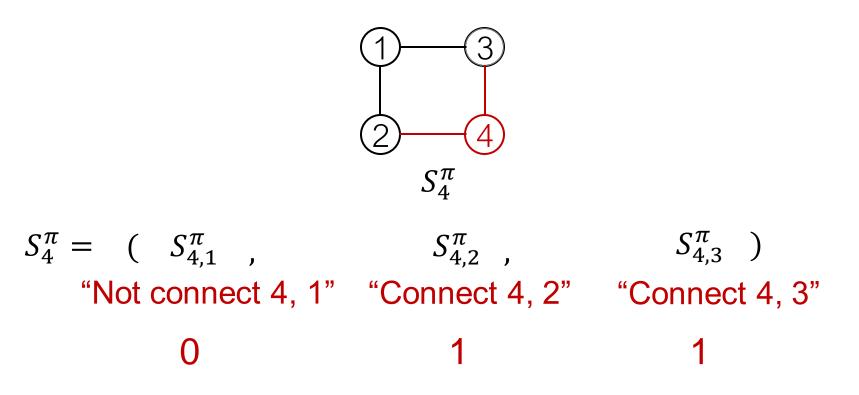
The sequence S^{π} has **two levels** (*S* is a sequence of sequences):

- Node-level: add nodes, one at a time
- Edge-level: add edges between existing nodes

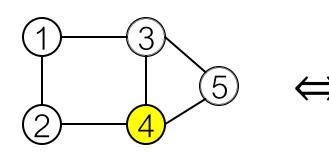


The sequence S^{π} has **two levels**:

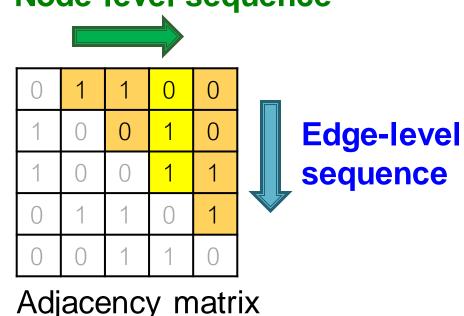
- Each Node-level step is an edge-level sequence
- Edge-level: At each step, add a new edge



- Summary: A graph + a node ordering = A sequence of sequences
- Node ordering is randomly selected (we will come back to this)



Graph G



We have transformed graph generation problem into a sequence generation problem

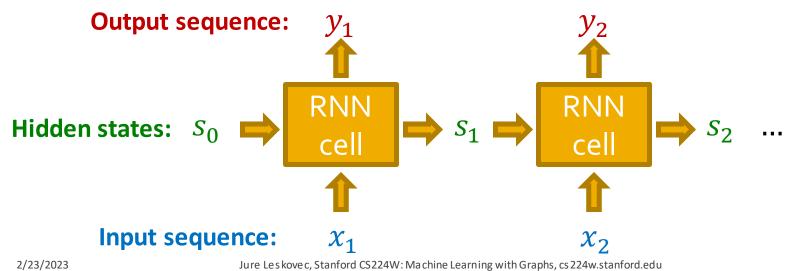
Need to model two processes:

- 1) Generate a state for a new node (Node-level sequence)
- 2) Generate edges for the new node based on its state (Edge-level sequence)

Approach: Use Recurrent Neural Networks (RNNs) to model these processes!

Background: Recurrent NNs

- RNNs are designed for sequential data
 - RNN sequentially takes input sequence to update its hidden states
 - The hidden states summarize all the information input to RNN
 - The update is conducted via RNN cells

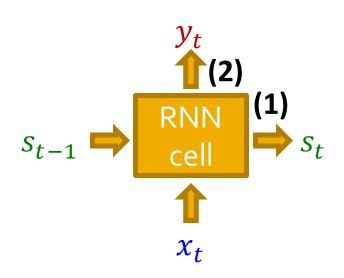


Background: Recurrent NNs

- *s_t*: State of RNN after step *t*
- *x_t*: Input to RNN at step t

In our case s_t , x_t and y_t will be scalars (edge probabilities)

- y_t: Output of RNN at step t
- **RNN cell:** *W*, *U*, *V*: Trainable parameters



The RNN cell:

(1) Update hidden state:

$$s_t = \sigma(W \cdot \mathbf{x}_t + U \cdot s_{t-1})$$

(2) Output prediction:

$$y_t = V \cdot s_t$$

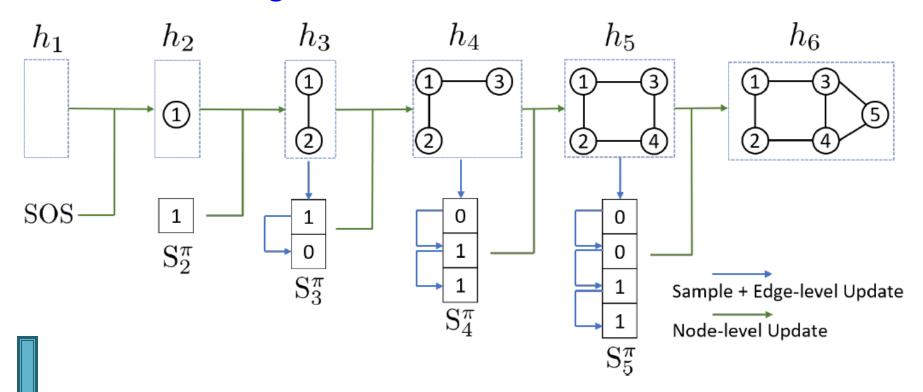
More expressive cells: GRU, LSTM, etc.

GraphRNN: Two levels of RNN

- GraphRNN has a node-level RNN and an edge-level RNN
- Relationship between the two RNNs:
 - Node-level RNN generates the initial state for edge-level RNN
 - Edge-level RNN sequentially predict if the new node will connect to each of the previous node

GraphRNN: Two levels of RNN

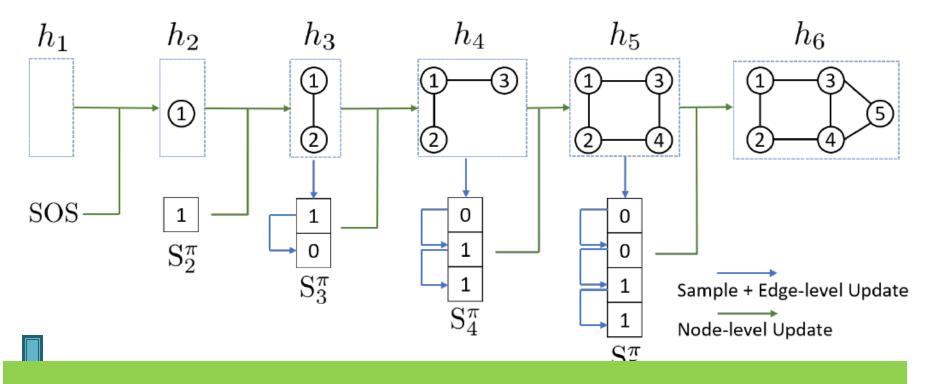
Node-level RNN generates the initial state for edge-level RNN



Edge-level RNN sequentially predict if the new node will connect to each of the previous node

GraphRNN: Two levels of RNN

Node-level RNN generates the initial state for edge-level RNN

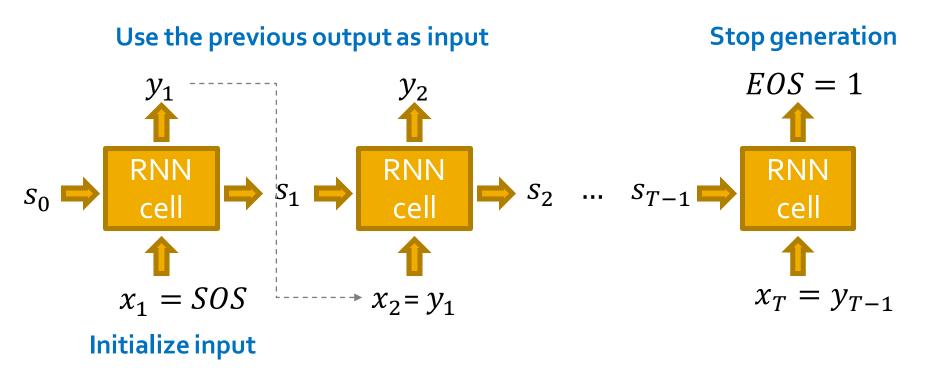


Next: How to generate a sequence with RNN?

RNN for Sequence Generation

- **Q:** How to use RNN to generate sequences?
- A: Let $x_{t+1} = y_t$ (Use the previous output as input)
- **Q:** How to initialize the input sequence?
- A: Use start of sequence token (SOS) as the initial input
 - SOS is usually a vector with all zero/ones
- Q: When to stop generation?
- A: Use end of sequence token (EOS) as an extra RNN output
 - If output EOS=0, RNN will continue generation
 - If output EOS=1, RNN will stop generation

RNN for Sequence Generation



This is good, but this model is deterministic

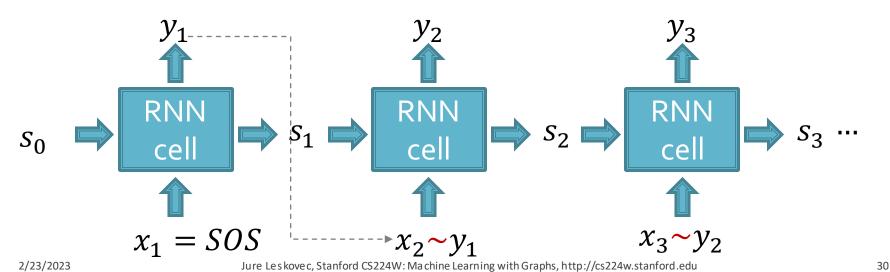
2/23/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Towards Edge-Level RNN

Consider the Edge-level RNN for now.

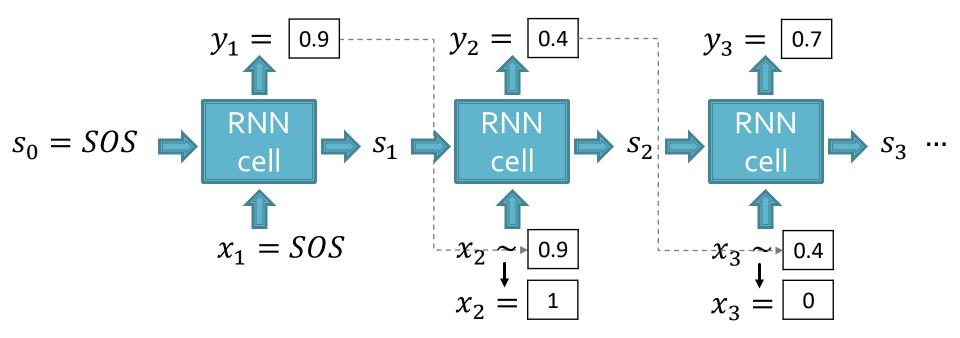
- **Our goal**: Model $\prod_{k=1}^{n} p_{model}(x_t | x_1, \dots, x_{t-1}; \theta)$
- Let $y_t = p_{model}(x_t | x_1, ..., x_{t-1}; \theta)$
- Then we need to sample x_{t+1} from $y_t: x_{t+1} \sim y_t$
 - Each step of RNN outputs a probability of a single edge
 - We then sample from the distribution, and feed sample to next step:



Towards Edge-Level RNN

Suppose we already have trained the edge-level RNN

- y_t is a scalar, following a Bernoulli distribution
 - p means value 1 has prob. p, value 0 has prob. 1 p

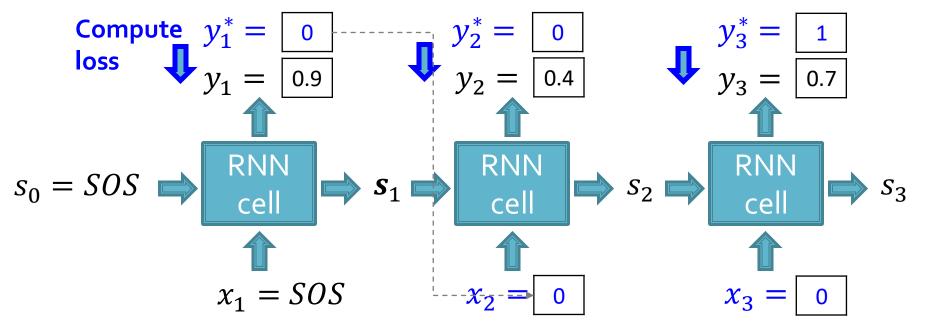


How do we use training data x_1, x_2, \dots, x_n ?

Edge-Level RNN at Training Time

Training the model:

- We observe a sequence y* of edges [0,0,1,...]
- Principle: Teacher Forcing -- Replace input and output by the real sequence



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Edge-Level RNN at Training Time

- Loss L : Binary cross entropy
 Minimize:
 - $L = -[y_1^* \log(y_1) + (1 y_1^*) \log(1 y_1)]$

Compute
$$y_1^* = 0$$

loss $y_1 = 0.9$

- If $y_1^* = 1$, we minimize $-\log(y_1)$, making y_1 higher
- If $y_1^* = 0$, we minimize $-\log(1 y_1)$, making y_1 lower
- This way, y_1 is **fitting** the data samples y_1^*
- Reminder: y₁ is computed by RNN, this loss will adjust RNN parameters accordingly, using back propagation!

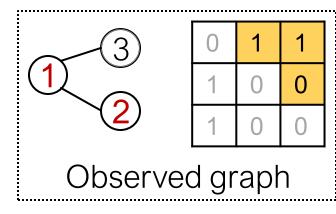
Putting Things Together

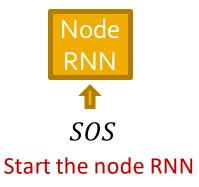
Our Plan:

- (1) Add a new node: We run Node RNN for a step, and use it output to initialize Edge RNN
- (2) Add new edges for the new node: We run Edge RNN to predict if the new node will connect to each of the previous node
- (3) Add another new node: We use the last hidden state of Edge RNN to run Node RNN for another step
- (4) Stop graph generation: If Edge RNN outputs EOS at step
 - 1, we know no edges are connected to the new node. We stop the graph generation.

Put Things Together: Training

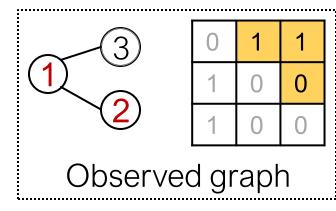
Assuming **Node 1** is in the graph Now adding **Node 2**

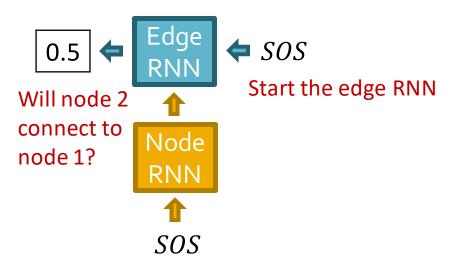




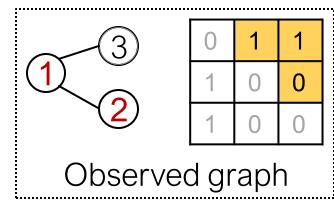
Put Things Together: Training

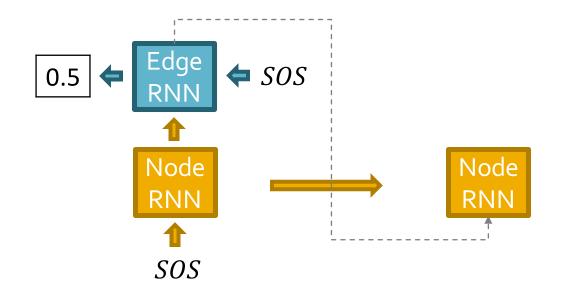
Edge RNN predicts how Node 2 connects to Node 1

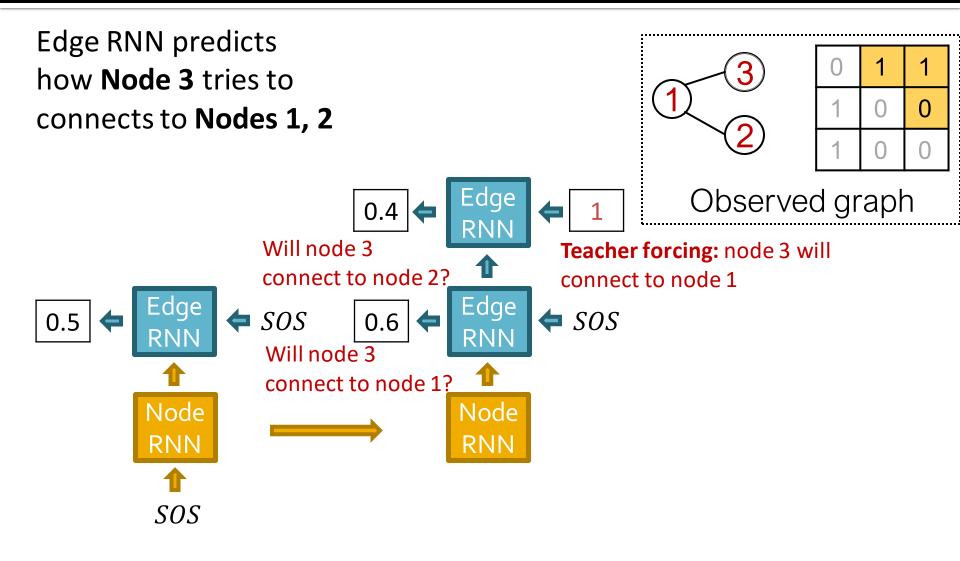


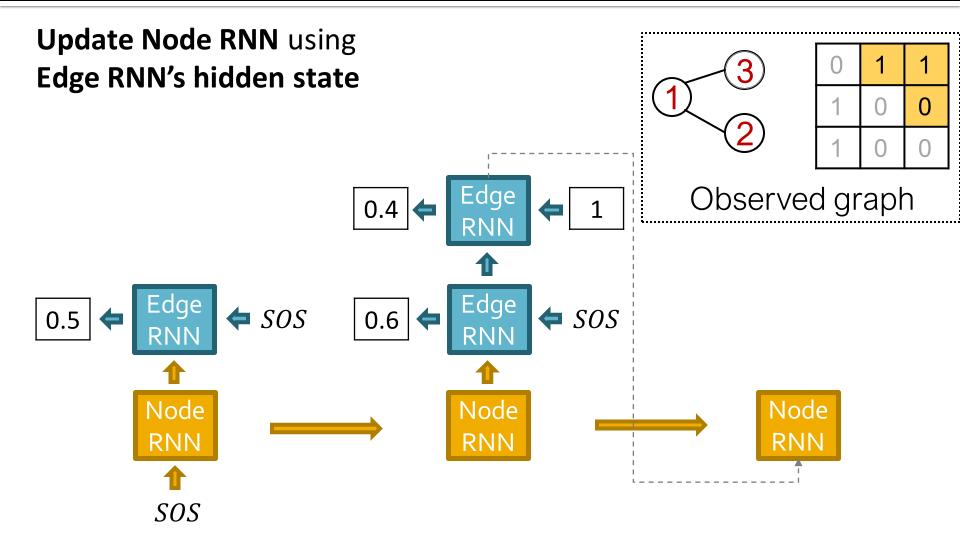


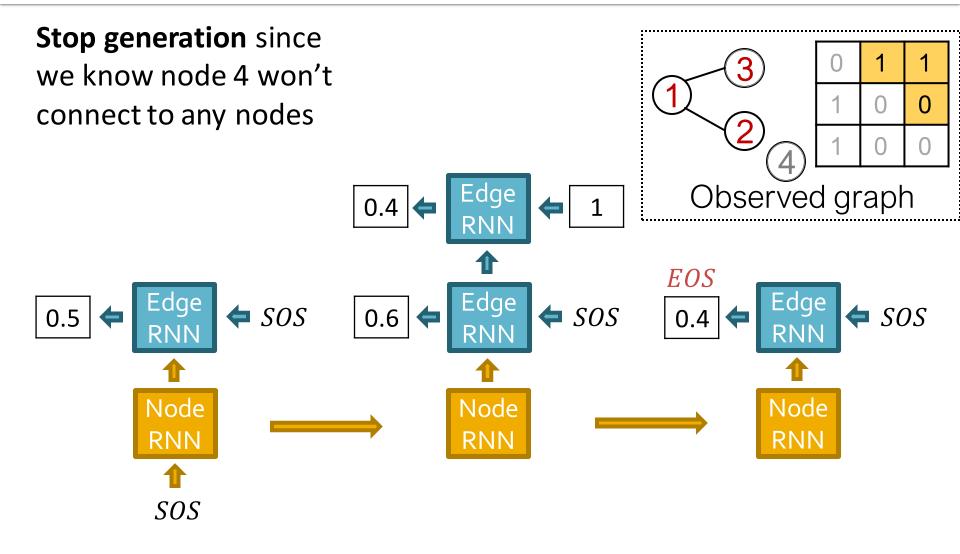
Update Node RNN using Edge RNN's hidden state

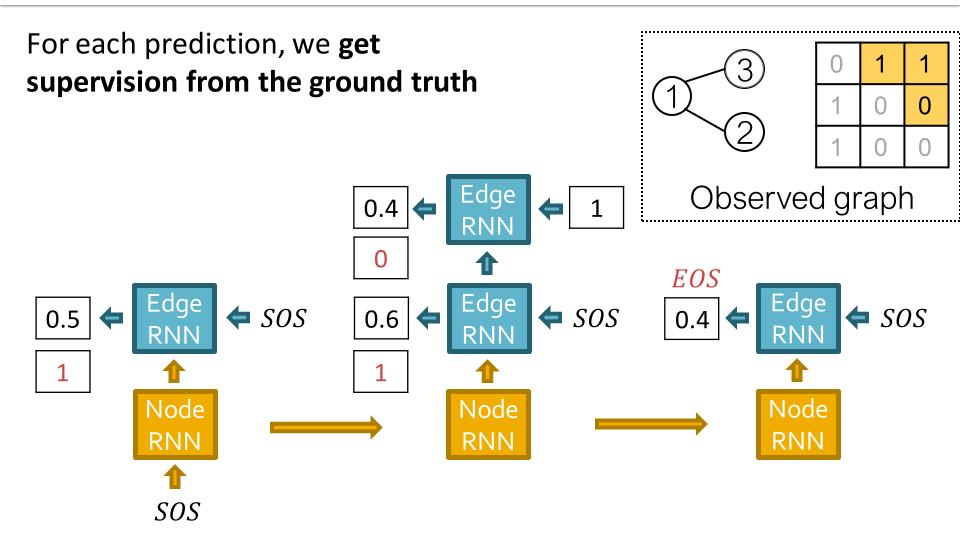


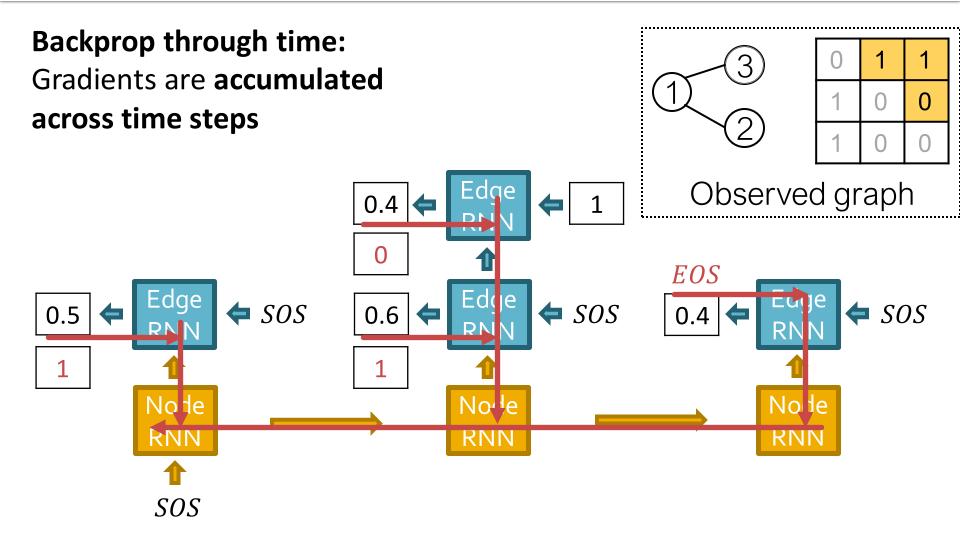




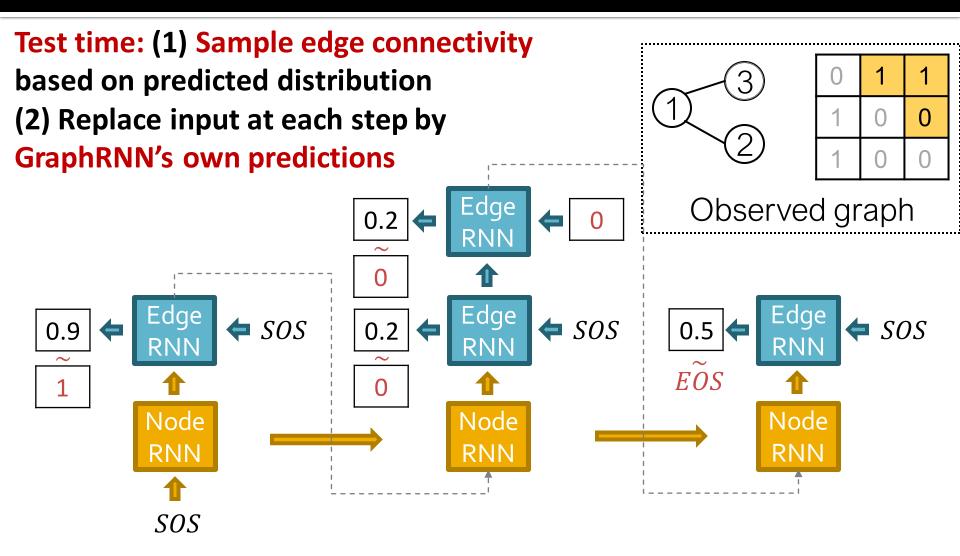








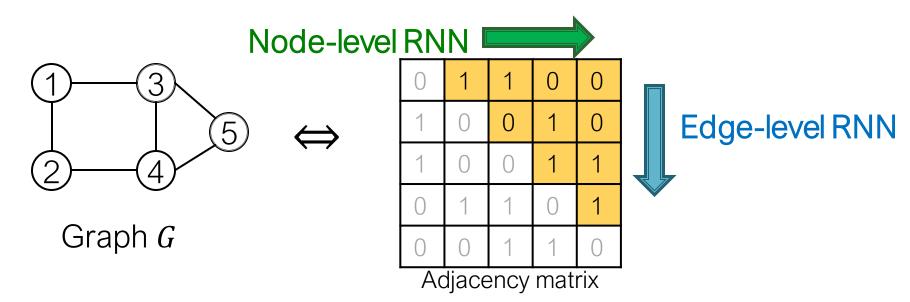
Put Things Together: Test



GraphRNN: Two levels of RNN

Quick Summary of GraphRNN:

- Generate a graph by generating a two-level sequence
- Use RNN to generate the sequences
- Next: Making GraphRNN tractable, proper evaluation

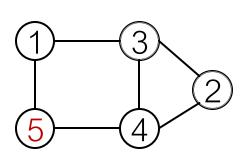


Stanford CS224W: Scaling Up and Evaluating Graph Generation

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Issue: Tractability

- Any node can connect to any prior node
- Too many steps for edge generation
 - Need to generate full adjacency matrix
 - Complex too-long edge dependencies



"Recipe" to generate the left graph:

- Add node 1
- Add node 2
- Add node 3
- Connect 3 with 2 and 1
- Add node 4

Random node ordering:

Node 5 may connect to any/all previous nodes

How do we limit this complexity?

Solution: Tractability via BFS

Breadth-First Search node ordering

1 3 5 2 4 BFS ordering

"Recipe" to generate the left graph:

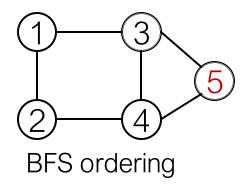
- Add node 1
 - Add node 2
 - Connect 2 with 1
- Add node 3
- Connect 3 with 1
- Add node 4
- Connect 4 with 3 and 2

BFS node ordering:

- Since Node 4 doesn't connect to Node 1
- We know all Node 1's neighbors have already been traversed
- Therefore, Node 5 and the following nodes will never connect to node 1
- We only need memory of 2 "steps" rather than n − 1 steps

Solution: Tractability via BFS

Breadth-First Search node ordering



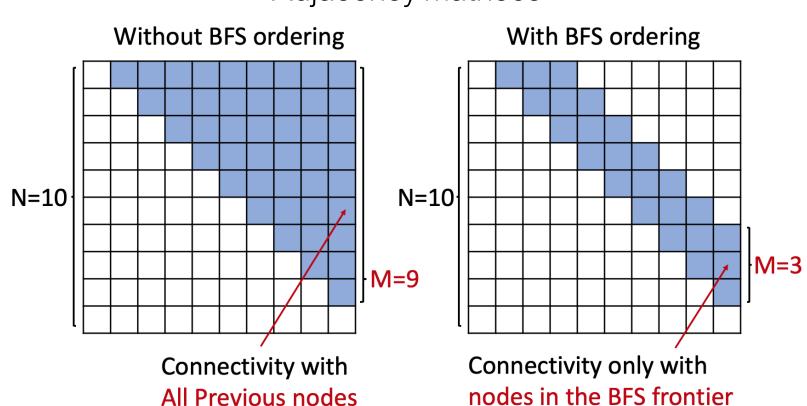
BFS node ordering: Node 5 will never connect to node 1 (only need memory of 2 "steps" rather than n - 1 steps)

Benefits:

- Reduce possible node orderings
 - From O(n!) to number of distinct BFS orderings
- Reduce steps for edge generation
 - Reducing number of previous nodes to look at

Solution: Tractability via BFS

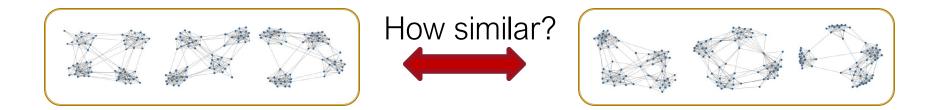
BFS reduces the number of steps for edge generation



Adjacency matrices

Evaluating Generated Graphs

Task: Compare two sets of graphs



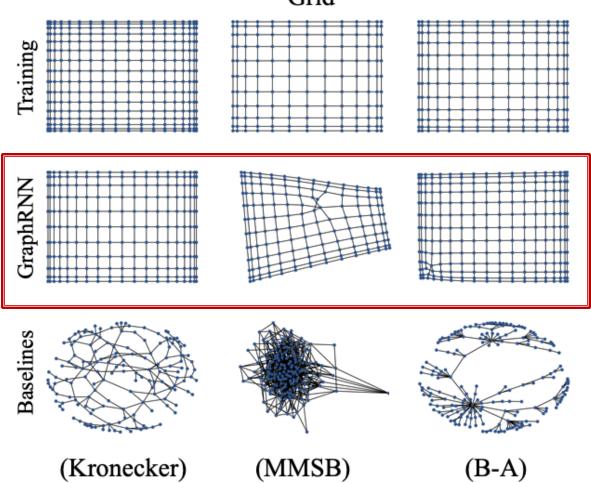
Goal: Define similarity metrics for graphs

Solution

(1) Visual similarity

(2) Graph statistics similarity

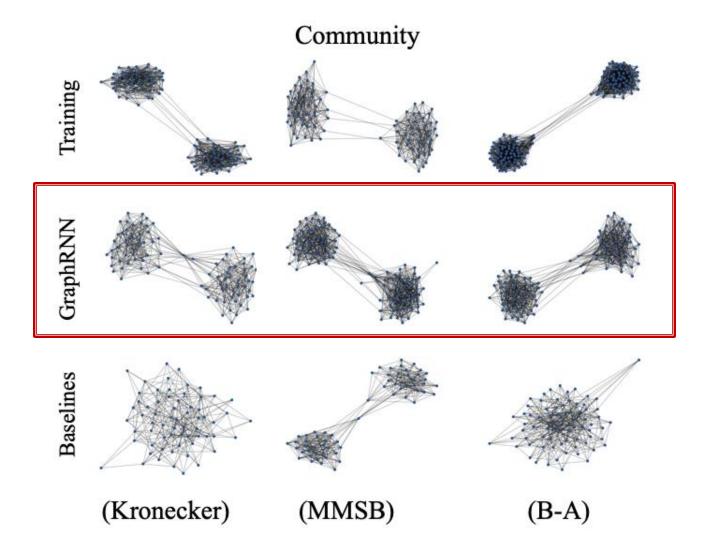
(1) Visual Similarity



Grid

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

(1) Visual Similarity

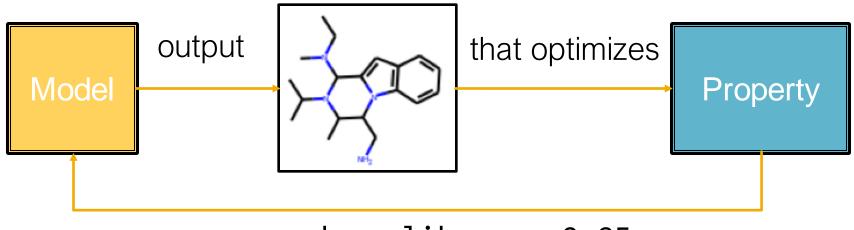


Stanford CS224W: Application of Deep Graph Generative Models to Molecule Generation

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

[You et al., NeurIPS 2018] Application: Drug Discovery

Question: Can we learn a model that can generate **valid** and **realistic** molecules with **optimized** property scores?



e.g., drug_likeness=0.95

<u>Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation</u>. J. You, B. Liu, R. Ying, V. Pande, J. Leskovec. *Neural Information Processing Systems (NeurIPS)*, 2018.

2/23/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Goal-Directed Graph Generation

Generating graphs that:

- Optimize a given objective (High scores)
 - e.g., drug-likeness
- Obey underlying rules (Valid)
 - e.g., chemical validity rules
- Are learned from examples (Realistic)
 - Imitating a molecule graph dataset
 - We have just covered this part

The Hard Part:

Generating graphs that:

Optimize a given objective (High scores)

Including a "Black-box" to Graph Generation:

Objectives like drug-likeness are governed by physical law which is assumed to be unknown to us.

Covered this part when introducing GraphRNN

Idea: Reinforcement Learning

- A ML agent observes the environment, takes an action to interact with the environment, and receives positive or negative reward
- The agent then learns from this loop
- Key idea: Agent can directly learn from environment, which is a blackbox to the agent

Graph Convolutional Policy Network (GCPN) combines graph representation + RL Key component of GCPN:

- Graph Neural Network captures graph structural information
- Reinforcement learning guides the generation towards the desired objectives
- Supervised training imitates examples in given datasets

GCPN vs. GraphRNN

Commonality of GCPN & GraphRNN:

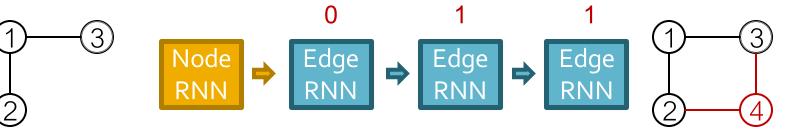
- Generate graphs sequentially
- Imitate a given graph dataset

Main Differences:

- GCPN uses GNN to predict the generation action
 - Pros: GNN is more expressive than RNN
 - Cons: GNN takes longer time to compute than RNN
- GCPN further uses RL to direct graph generation to our goals
 - RL enables goal-directed graph generation

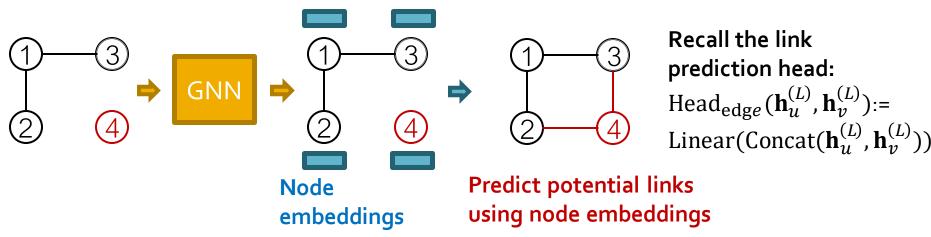
GCPN vs. GraphRNN

- Sequential graph generation
- GraphRNN: predict action based on RNN hidden states



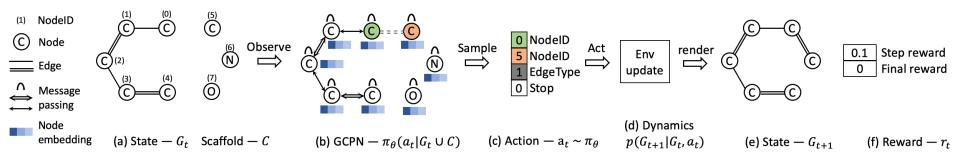
RNN hidden state captures the generated graph so far

GCPN: predict action based on GNN node embeddings



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu

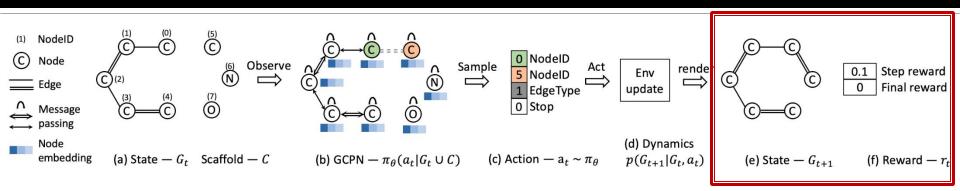
Overview of GCPN



(a) Insert nodes

- (b,c) Use GNN to predict which nodes to connect
- (d) Take an action (check chemical validity)
- (e, f) Compute reward

How Do We Set the Reward?

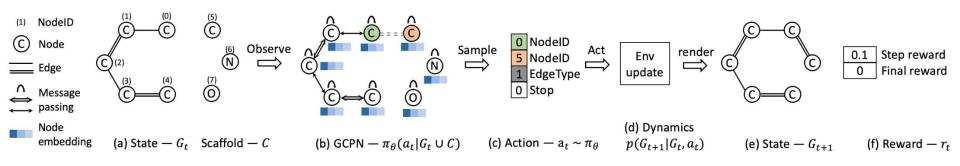


Step reward: Learn to take valid action

- At each step, assign small positive reward for valid action
- Final reward: Optimize desired properties
 - At the end, assign positive reward for high desired property

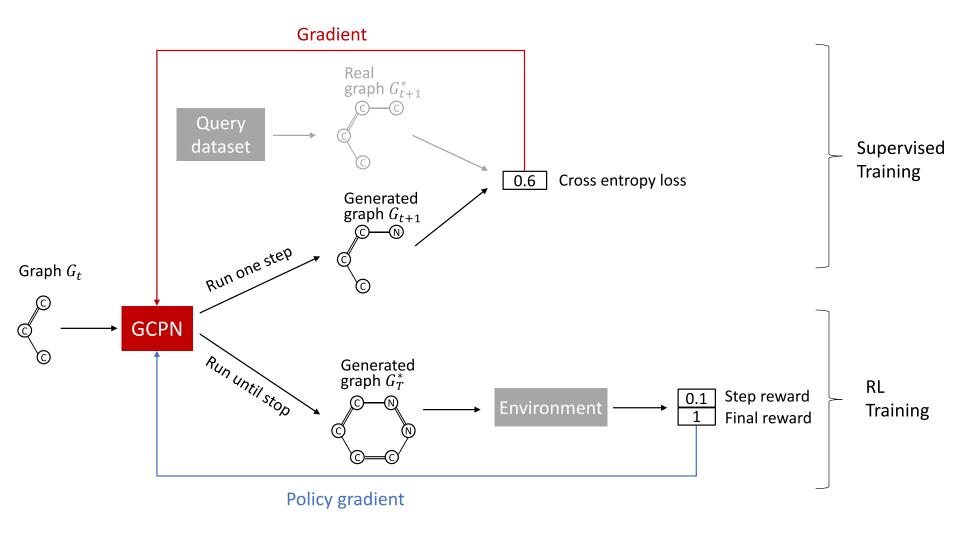
Reward = Final reward + Step reward

How Do We Train?



- Two parts:
- (1) Supervised training: Train policy by imitating the action given by real observed graphs. Use gradient.
 - We have covered this idea in GraphRNN
- (2) RL training: Train policy to optimize rewards.
 Use standard policy gradient algorithm.
 - Refer to any RL course, e.g., CS234

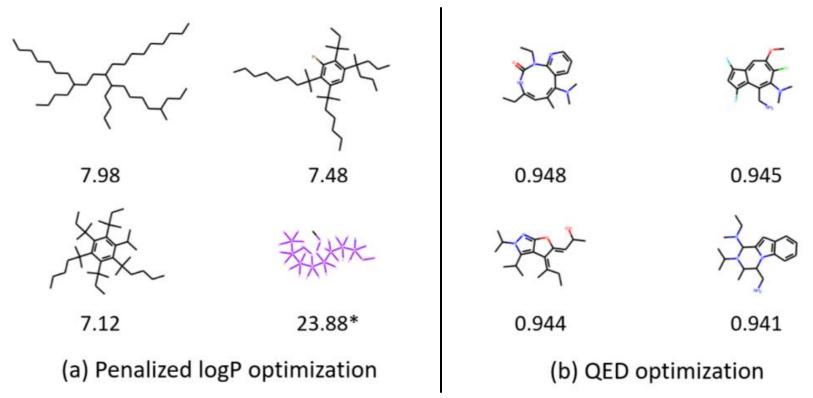
Training GCPN



Qualitative Results

Visualization of GCPN graphs:

 Property optimization Generate molecules with high specified property score

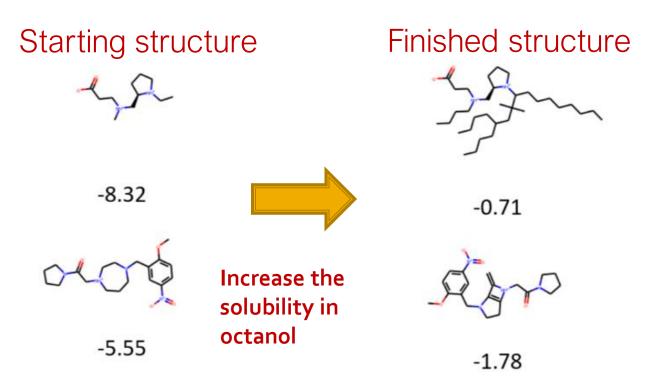


Jure Les kovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Qualitative Results

Visualization of GCPN graphs:

 Constrained optimization: Edit a given molecule for a few steps to achieve higher property score



(c) Constrained optimization of penalized logP

Summary of Graph Generation

- Complex graphs can be successfully generated via sequential generation using deep learning
- Each step a decision is made based on hidden state, which can be
 - Implicit: vector representation, decode with RNN
 - Explicit: intermediate generated graphs, decode with GCN
- Possible tasks:
 - Imitating a set of given graphs
 - Optimizing graphs towards given goals