Stanford CS224W: Reasoning over Knowledge Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

ANNOUNCEMENTS

- We received comments regarding office hour logistics, and decided to make the following adjustments
- We will add an evening OH on Monday 7pm
- We will impose a 10-minute time limit for each student
- We will create breakout rooms for students to discuss specific questions

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: KG Completion Task

Given an enormous KG, can we complete the KG?

- For a given (head, relation), we predict missing tails.
- (Note this is slightly different from link prediction task)

Example task: Predict the tail "Science Fiction" for ("J.K. Rowling", "genre")

Today: Reasoning over KGs

- Goal:
- How to perform multi-hop reasoning over KGs?
- Reasoning over Knowledge Graphs
- Answering multi-hop queries
- Path Queries
- Conjunctive Queries
- Query2Box

Example KG: Biomedicine

Predictive Queries on KG

Can we do multi-hop reasoning, i.e., answer complex queries on an incomplete, massive KG?

Query Types
One-hop Queries

Path Queries

Examples: Natural Language Question, Query
What adverse event is caused by Fulvestrant?
(e:Fulvestrant, (r:Causes))
What protein is associated with the adverse event caused by
Fulvestrant?
(e:Fulvestrant, (r:Causes, r:Assoc))
What is the drug that treats breast cancer and caused headache? ((e:BreastCancer, (r:TreatedBy)), (e:Migraine, (r:CausedBy))

In this lecture, we only focus on answering queries on a KG!
The notation will be detailed next.

One-hop Queries

Path Queries

Conjunctive Queries

Predictive One-hop Queries

- We can formulate knowledge graph completion problems as answering one-hop queries.
- KG completion: Is link (h, r, t) in the KG?

- One-hop query: Is t an answer to query (h, r) ?
- For example: What side effects are caused by drug Fulvestrant?

Path Queries

- Generalize one-hop queries to path queries by adding more relations on the path.
- An n-hop path query q can be represented by

$$
q=\left(v_{a},\left(r_{1}, \ldots, r_{n}\right)\right)
$$

- v_{a} is an "anchor" entity,
- Let answers to q in graph G be denoted by $\llbracket q \rrbracket_{G}$.

Query Plan of q :

Path Queries

Question: "What proteins are associated with adverse events caused by Fulvestrant?"
 - v_{a} is e:Fulvestrant
 - $\left(r_{1}, r_{2}\right)$ is (r:Causes, r :Assoc)
 - Query: (e:Fulvestrant, (r:Causes, r:Assoc))

Path Queries

Question: "What proteins are associated with adverse events caused by Fulvestrant?" - Query: (e:Fulvestrant, (r:Causes, r:Assoc)) Given a KG, how to answer a path query?

Traversing Knowledge Graphs

- We answer path queries by traversing the KG: "What proteins are associated with adverse events caused by Fulvestrant?"
Query: (e:Fulvestrant, (r:Causes, r:Assoc))

Fulvestrant \bigcirc

Start from the anchor node
(Fulvestrant).

Traversing Knowledge Graphs

- We answer path queries by traversing the KG: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes, r:Assoc))

Start from the anchor node "Fulvestrant" and traverse the KG by the relation "Causes", we reach entities \{"Brain Bleeding", "Short of Breath", "Kidney Infection", "Headache"\}.

Traversing Knowledge Graphs

- We answer path queries by traversing the KG: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes, r:Assoc))

Start from the nodes \{"Brain Bleeding", "Short of Breath", "Kidney Infection", "Headache"\} and traverse the KG by the relation "Assoc", we reach entities \{"CASP8", "BIRC2", "PIM1"\}. These are the answers.

However, KGs are incomplete

- Answering queries seems easy: Just traverse the graph.
- But KGs are incomplete and unknown:
- Many relations between entities are missing or are incomplete
- For example, we lack all the biomedical knowledge
- Enumerating all the facts takes non-trivial time and cost, we cannot hope that KGs will ever be fully complete
- Due to KG incompleteness, one is not able to identify all the answer entities

Example: Incomplete KG

- We answer path queries by traversing the KG: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes, r:Assoc))

Can KG Completion Help?

Can we first do KG completion and then traverse the completed (probabilistic) KG?

- No! The "completed" KG is a dense graph!
- Most (h, r, t) triples (edge on KG) will have some non-zero probability.
- Time complexity of traversing a dense KG is exponential as a function of the path length $L: O\left(d_{\text {max }}^{L}\right)$

Task: Predictive Queries

- We need a way to answer path-based queries over an incomplete knowledge graph.
- We want our approach to implicitly impute and account for the incomplete KG.
- Task: Predictive queries
- Want to be able to answer arbitrary queries while implicitly imputing for the missing information
- Generalization of the link prediction task

Outline of the Lecture

1) Given entity embeddings, how do we answer an arbitrary query?

- Path queries: Using a generalization of TransE
- Conjunctive queries: Using Query2Box
- And-Or Queries: Using Query2Box and query rewriting
(We will assume entity embeddings and relation embeddings are given)

2) How do we train the embeddings?

- The process of determining entity and relation embeddings which allow us to embed a query.

Stanford CS224W: Answering Predictive Queries on Knowledge Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

General Idea

Map queries into embedding space. Learn to reason in that space

- Embed query into a single point in the Euclidean space: answer nodes are close to the query.
- Query2Box: Embed query into a hyper-rectangle (box) in the Euclidean space: answer nodes are enclosed in the box.

[^0]
Idea: Traversing KG in Vector Space

- Key idea: Embed queries!
- Generalize TransE to multi-hop reasoning.
- Recap: TransE: Translate \mathbf{h} to \mathbf{t} using \mathbf{r} with score function $f_{r}(h, t)=-\| \mathbf{h}+\mathbf{r}-\mathbf{t}| |$.
- Another way to interpret this is that:
- Query embedding: $\mathbf{q}=\mathbf{h}+\mathbf{r}$
- Goal: query embedding \mathbf{q} is close to the answer embedding \mathbf{t}

$$
f_{q}(t)=-\|\mathbf{q}-\mathbf{t}\|
$$

New York

Distance (q, t) is small

Traversing KG in Vector Space

- Key idea: Embed queries!
- Generalize TransE to multi-hop reasoning.

Given a path query $q=\left(v_{a},\left(r_{1}, \ldots, r_{n}\right)\right)$,

$$
\begin{aligned}
& \mathbf{v}_{\boldsymbol{a}} \stackrel{\mathbf{r}_{1}, \mathbf{r}_{2}}{\sim} \ldots{ }^{\left(\mathbf{r}_{n}\right.} \mathbf{q} \\
& \mathbf{q}=\mathbf{v}_{a}+\mathbf{r}_{1}+\cdots+\mathbf{r}_{n}
\end{aligned}
$$

- The embedding process only involves vector addition, independent of \# entities in the KG!

Traversing KG in Vector Space (1)

Embed path queries in vector space.

- Question: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes , r:Assoc)) Follow the query plan:

Query Plan

Traversing KG in Vector Space (2)

Embed path queries in vector space.

- Question: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes , r:Assoc)) Follow the query plan:

Query Plan

Embedding Process

Traversing KG in Vector Space (3)

Embed path queries in vector space.

- Question: "What proteins are associated with adverse events caused by Fulvestrant?"
- Query: (e:Fulvestrant, (r:Causes , r:Assoc)) Follow the query plan:

Query Plan

Traversing KG in Vector Space (4)

Insights:

- We can train TransE to optimize knowledge graph completion objective (Lecture 11)
- Since TransE can naturally handle compositional relations, it can handle path queries by translating in the latent space for multiple hops using addition of relation embeddings.
- For TransR / DistMult / ComplEx, since they cannot handle compositional relations, they cannot be easily extended to handle path queries.

Conjunctive Queries

Can we answer more complex queries with logic conjunction operation?
 - Conjunctive Queries: "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?" ((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

Query plan:

Conjunctive Queries

- "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

How do we answer the question by KG traversal?

Traversing KG for Conjunctive Queries

- "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))
Traverse KG from anchor nodes: ESR2 and Short of Breath:

Traverse from the first anchor "ESR2" by relation "Assoc", we reach a set of entities \{"Lung Cancer", "Breast Cancer"\}

Traversing KG for Conjunctive Queries

- "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?" ((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

Traverse KG from anchor nodes: ESR2 and Short of Breath:

Traverse from the set of entities \{"Lung Cancer", "Breast Cancer"\} by relation TreatedBy, we reach a set of entities \{"Paclitaxel", "Arimidex", "Fulvestrant"\}

Traversing KG for Conjunctive Queries

- "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))
Traverse KG from anchor nodes: ESR2 and Short of Breath:

Traversing KG for Conjunctive Queries

- "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))
Traverse KG from anchor nodes: ESR2 and Short of Breath:

We take intersection between the two sets and get the answers \{"Fulvestrant", "Paclitaxel"\}

Traversing KG for Conjunctive Queries

- "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))
Traverse KG from anchor nodes: ESR2 and Short of Breath:

If this link is missing, then we cannot find Fulvestrant to be an answer

Traversing KG for Conjunctive Queries

- How can we use embeddings to implicitly impute the missing (ESR2, Assoc, Breast Cancer)?
- Intuition: ESR2 interacts with both BRCA1 and ESR1. Both proteins are associated with breast cancer.

Traversing KG in Vector Space

- "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?" ((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))
Query plan:
ESR2

Each intermediate node represents a set of entities, how do we represent it? How do we define the intersection operation in the latent space?

Stanford CS224W: Query2Box: Reasoning over KGs Using Box Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Conjunctive Queries

How can we answer more complex queries with logical conjunction operation?

Query plan:

(1) Each intermediate node represents a set of entities; how do we represent it?
(2) How do we define the intersection operation in the latent space?

Box Embeddings

- Embed queries with hyper-rectangles (boxes)

$$
\mathbf{q}=(\operatorname{Center}(q), O f f \operatorname{set}(q))
$$

- Short of Breath
- Kidney Infection
- Headache

For example, we can embed the adverse events of Fulvestrant with a box that enclose all the answer entities.

Embedding Space

Key Insight: Intersection

- Intersection of boxes is well-defined!
- When we traverse the KG to find the answers, each step produces a set of reachable entities.
- How can we better model these sets?
- Boxes are a powerful abstraction, as we can project the center and control the offset to model the set of entities enclosed in the box
- Short of Breath
- Kidney Infection
- Headache

Embed with Box Embedding

Things to figure out:

- Entity embeddings (\# params: $d|V|$):
- Entities are seen as zero-volume boxes
- Relation embeddings (\# params $2 d|R|$)

Notation
d: out degree
|V|: \# entities
|R|: \# relations

- Each relation takes a box and produces a new box
- Intersection operator \boldsymbol{f} :
- New operator, inputs are boxes and output is a box
- Intuitively models intersection of boxes

Embed with Box Embedding

- Embed queries in vector space: "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))
Traverse KG from anchor nodes: ESR2 and Short of Breath:
Query plan
Embedding Space

ESR2•

Projection Operator

Projection Operator \mathcal{P} Intuition:

- Take the current box as input and use the relation embedding to project and expand the box!
- $\mathcal{P}:$ Box \times Relation \rightarrow Box

$$
\begin{aligned}
\operatorname{Cen}\left(q^{\prime}\right) & =\operatorname{Cen}(q)+\operatorname{Cen}(r) \\
\operatorname{Off}\left(q^{\prime}\right) & =\operatorname{Off}(q)+\operatorname{Off}(r)
\end{aligned}
$$

" \times " (cross) means the projection operator is a relation from any box and relation to a new box

Embed with Box Embedding

- Embed queries in vector space: "What are drugs that cause Short of Breath and treat diseases associated with protein ESR2?"
- Traverse KG from anchor nodes: ESR2 and Short of Breath:
- Use projection operator again following the query plan.

Query Plan
Embedding Space

Embed with Box Embedding

"What is the drug that causes Short of Breath and treats disease associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

- Use projection operator again following the query plan.

Query Plan

Embedding Space

Embed with Box Embedding

"What is the drug that causes Short of Breath and treats disease associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

- Use projection operator again following the query plan.

Query Plan

Embedding Space

Embed with Box Embedding

"What is the drug that causes Short of Breath and treats disease associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

- How do we take intersection of boxes?

Query Plan

Embedding Space

Intersection Operator

Geometric Intersection Operator J

- Take multiple boxes as input and produce the intersection box
- Intuition:
" The center of the new box should be "close" to the centers of the input boxes
- The offset (box size) should shrink (since the size of the intersected set is smaller than the size of all the input set)
- J : Box $\times \cdots \times$ Box \rightarrow Box

Intersection Operator

Geometric Intersection Operator J

- J : Box $\times \cdots \times$ Box \rightarrow Box

$$
\begin{aligned}
& \operatorname{Cen}\left(q_{\text {inter }}\right)=\sum_{i} \boldsymbol{w}_{i} \odot \operatorname{Cen}\left(q_{i}\right) \\
& \quad \boldsymbol{w}_{i}=\frac{\exp \left(f_{\text {cen }}\left(\operatorname{Cen}\left(q_{i}\right)\right)\right)}{\sum_{j} \exp \left(f_{\text {cen }}\left(\operatorname{Cen}\left(q_{j}\right)\right)\right)}
\end{aligned} \begin{gathered}
\operatorname{Cen}\left(q_{i}\right) \in \mathbb{R}^{d} \\
\boldsymbol{w}_{i} \in \mathbb{R}^{d}
\end{gathered}
$$

Intuition: The center should be in the red region! Implementation: The center is a weighted sum of the input box centers
$\boldsymbol{w}_{i} \in \mathbb{R}^{d}$ is calculated by a neural network $f_{\text {cen }}$ (with trainable weights)
w_{i} represents a "self-attention" score for the center of each input $\operatorname{Cen}\left(q_{i}\right)$.

Intersection Operator

Geometric Intersection Operator J

- J : Box $\times \cdots \times$ Box \rightarrow Box Off $\left(q_{\text {inter }}\right)$

Intuition: The offset should be smaller than the offset of the input box
$f_{o f f}$ is a neural network (with trainable parameters) that extracts the representation of the input boxes to increase expressiveness

Implementation: We first take minimum of the offset of the input box, and then we make the model more expressive by introducing a new function $f_{\text {off }}$ to extract the representation of the input boxes with a sigmoid function to guarantee shrinking.

Embed with Box Embedding

"What is the drug that causes Short of Breath and treats disease associated with protein ESR2?"
((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

- Use box intersection operator

Query Plan
Embedding Space

The shadow box represents the final box
 embedding of the query

Entity-to-Box Distance

- How do we define the score function $f_{q}(v)$ (negative distance)?
($f_{\boldsymbol{q}}(\boldsymbol{v})$ captures inverse distance of a node \boldsymbol{v} as answer to \boldsymbol{q})
- Given a query box \mathbf{q} and entity embedding (box) \mathbf{v},

$$
d_{\text {box }}(\mathbf{q}, \mathbf{v})=d_{\text {out }}(\mathbf{q}, \mathbf{v})+\alpha \cdot d_{\text {in }}(\mathbf{q}, \mathbf{v})
$$

where $0<\alpha<1$.

- Intuition: if the point is enclosed in the box, the distance should be downweighted.

$$
\boldsymbol{f}_{\boldsymbol{q}}(\boldsymbol{v})=-\boldsymbol{d}_{\text {box }}(\mathbf{q}, \mathbf{v}) \quad \text { ant } d_{\text {out }}(\mathbf{q}, \mathbf{v})
$$

Extending to Union Operation

- Can we embed complex queries with union? E.g.: "What drug can treat breast cancer or lung cancer?"
- Conjunctive queries + disjunction is called Existential Positive First-order (EPFO) queries. We'll refer to them as AND-OR queries.
- Can we also design a disjunction operator and embed AND-OR queries in low-dimensional vector space?

Embedding AND-OR Queries

- Can we embed AND-OR queries in a lowdimensional vector space?
- No! Intuition: Allowing union over arbitrary queries requires high-dimensional embeddings!
- Example:
- Given 3 queries q_{1}, q_{2}, q_{3}, with answer sets:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}$
- If we allow union operation, can we embed them in a two-dimensional plane?

Embedding AND-OR Queries

- Example:
- Given 3 queries q_{1}, q_{2}, q_{3}, with answer sets:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}$
- If we allow union operation, can we embed them in two-dimensional plane?

We want red dots (answers) to be in the box while the blue dots (negative answers) to be outside the box

Embedding AND-OR Queries

- Example:
- Given 3 queries q_{1}, q_{2}, q_{3}, with answer sets:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}$
- If we allow union operation, can we embed them in two-dimensional plane?

Embedding AND-OR Queries

- Example:
- Given 3 queries q_{1}, q_{2}, q_{3}, with answer sets:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}$
- If we allow union operation, can we embed them in two-dimensional plane?

Embedding AND-OR Queries

- Example:
- Given 3 queries q_{1}, q_{2}, q_{3}, with answer sets:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}$
- If we allow union operation, can we embed them in two-dimensional plane?

We want red dots (answers) to be in the box while the blue dots (negative answers) to be outside the box

Embedding AND-OR Queries

- Example:
- Given 3 queries q_{1}, q_{2}, q_{3}, with answer sets:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}$
- If we allow union operation, can we embed them in two-dimensional plane?

Embedding AND-OR Queries

- Example:
- Given 3 queries q_{1}, q_{2}, q_{3}, with answer sets:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}$
- If we allow union operation, can we embed them in two-dimensional plane?

Embedding AND-OR Queries

- Example:
- Given 3 queries q_{1}, q_{2}, q_{3}, with answer sets:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}$
- If we allow union operation, can we embed them in two-dimensional plane?

Embedding AND-OR Queries (2)

- Example 2:
- Given 4 queries $q_{1}, q_{2}, q_{3}, q_{4}$ with answers:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}, \llbracket q_{4} \rrbracket=\left\{v_{4}\right\}$,
- If we allow union operation, can we embed them in two-dimensional plane?

Embedding AND-OR Queries (2)

- Example 2:
- Given 4 queries $q_{1}, q_{2}, q_{3}, q_{4}$ with answers:
- $\llbracket q_{1} \rrbracket=\left\{v_{1}\right\}, \llbracket q_{2} \rrbracket=\left\{v_{2}\right\}, \llbracket q_{3} \rrbracket=\left\{v_{3}\right\}, \llbracket q_{4} \rrbracket=\left\{v_{4}\right\}$,
- If we allow union operation, can we embed them in two-dimensional plane?

We cannot design a box embedding for $\boldsymbol{q}_{2} \vee$ q_{4}, that only v_{2} and v_{4} are in the box but v_{1} and v_{3} are outside the box.

Embedding AND-OR Queries (2)

Can we embed AND-OR queries in lowdimensional vector space?

- Conclusion: Given any M conjunctive queries q_{1}, \ldots, q_{M} with non-overlapping answers, we need dimensionality of $\Theta(M)$ to handle all OR queries.
- For real-world KG, such as FB15k, we find $M \geq$ 13,365 , where $|V|=14,951$.
- Remember, this is for arbitrary OR queries.

Embedding AND-OR Queries (3)

Since we cannot embed AND-OR queries in lowdimensional space, can we still handle them?

- Key idea: take all unions out and only do union at the last step!

Original Query Plan

Disjunctive Normal Form

- Any AND-OR query can be transformed into equivalent DNF, i.e., disjunction of conjunctive queries.
- Given any AND-OR query q,

$$
q=q_{1} \vee q_{2} \vee \cdots \vee q_{m}
$$

where q_{i} is a conjunctive query.

- Now we can first embed each q_{i} and then "aggregate" at the last step!

Distance Between q and an Entity

- Distance between entity embedding and a DNF $q=q_{1} \vee q_{2} \vee \cdots \vee q_{m}$ is defined as: $d_{\text {box }}(\mathbf{q}, \mathbf{v})=\min \left(d_{\text {box }}\left(\mathbf{q}_{1}, \mathbf{v}\right), \ldots, d_{\text {box }}\left(\mathbf{q}_{m}, \mathbf{v}\right)\right)$
- Intuition:
- As long as v is the answer to one conjunctive query q_{i}, then v should be the answer to q
- As long as \mathbf{v} is close to one conjunctive query \mathbf{q}_{i}, then \mathbf{v} should be close to \mathbf{q} in the embedding space

Distance Between q and an Entity

- Distance between entity embedding and a DNF $q=q_{1} \vee q_{2} \vee \cdots \vee q_{m}$ is defined as: $d_{\text {box }}(\mathbf{q}, \mathbf{v})=\min \left(d_{\text {box }}\left(\mathbf{q}_{1}, \mathbf{v}\right), \ldots, d_{\text {box }}\left(\mathbf{q}_{m}, \mathbf{v}\right)\right)$
- The process of embedding any AND-OR query q

1. Transform q to equivalent DNF $q_{1} \vee \cdots \vee q_{m}$
2. Embed q_{1} to q_{m}
3. Calculate the (box) distance $d_{\text {box }}\left(\mathbf{q}_{i}, \mathbf{v}\right)$
4. Take the minimum of all distance
5. The final score $f_{q}(v)=-d_{\text {box }}(\mathbf{q}, \mathbf{v})$

Stanford CS224W: How to Train Query2box

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224W.stanford.edu

Training Overview

- Overview and Intuition (similar to KG completion):
- Given a query embedding \mathbf{q}, maximize the score $f_{q}(v)$ for answers $v \in \llbracket q \rrbracket$ and minimize the score $f_{q}\left(v^{\prime}\right)$ for negative answers $v^{\prime} \notin \llbracket q \rrbracket$
- Trainable parameters:
- Entity embeddings with $d|V|$ \# params
- Relation embeddings with $2 d|R|$ \# params
- Intersection operator
- How to achieve a query, its answers, its negative answers from the KG to train the parameters?
- How to split the KG for query answering?

Training Overview

(user specified)
Predictive query

Reason in the embedding space

Knowledge graph
Embedding space

Generate a set of training queries ($\mathbf{q}, \mathbf{v}, \mathbf{v}^{\prime}$).
Train entity embeddings and operators to minimize the loss (i.e., to answer the training queries correctly).

Each training query provides a "constrain" on the embeddings of entities.
Training loop:

1) Get query (q, v, v^{\prime})
2) Using current operators, embedq.
3) Compute the loss to update entity embs. and operators

Training: Details

Training:

1. Sample a query q from the training graph $G_{\text {train }}$, answer $v \in \llbracket q \rrbracket_{G_{\text {train }}}$, and non-answer $v^{\prime} \notin \llbracket q \rrbracket_{G_{\text {train }}}$
2. Embed the query \mathbf{q}.

- Use current operators, to compute query embedding.

3. Calculate the score $f_{q}(v)$ and $f_{q}\left(v^{\prime}\right)$.
4. Optimize embeddings and operators to minimize the loss ℓ (maximize $f_{q}(v)$ while minimize $f_{q}\left(v^{\prime}\right)$):
$\ell=-\log \sigma\left(f_{q}(v)\right)-\log \left(1-\sigma\left(f_{q}\left(v^{\prime}\right)\right)\right)$

Query Generation from Templates

Generate queries from multiple query templates:

Query Generation from Templates

- How can we generate a complex query?
- We start with a query template
- Query template is an abstraction of the query
- We generate a query by instantiating every variable with a concrete entity and relation from the KG
- E.g., instantiate Anchor1 with ESR2 (a node on KG)
- E.g., instantiate Rel1 with Assoc (an edge on KG)
- How to instantiate query template given a KG?

Query
((e:ESR2, (r:Assoc, r:Treated By)), (e:Short of Breath, (r:CausedBy))

Query Template
((Anchor1, (Rel1, Rel2)), (Anchor2, (Rel3))

Query Generation from Templates

- How to instantiate a query template given a KG?

Overview:

Start from instantiating the answer node of the query template and then iteratively instantiate the other edges and nodes until we ground all the anchor nodes

Query Generation from Templates

- How to instantiate a query template given a KG?

Start from instantiating the root node of the query template.

Knowledge Graph
Lung

CausedBy

Randomly pick one entity from KG as the root node, e.g., we pick Fulvestrant.

Query Generation from Templates

- How to instantiate a query template given a KG?

Now we look at intersection. What we have is that the

Knowledge Graph
Lung

CausedBy intersection of the sets of entities is Fulvestrant, then naturally the two sets should also contain Fulvestrant.

Query Generation from Templates

- How to instantiate a query template given a KG?

We instantiate the Projection edge in the template by randomly sample one relation

Knowledge Graph
Lung
 associated with the current entity Fulvestrant.
For example, we may select relation Treated By,
and check what entities are connected to
Fulvestrant with Treated By: \{Breast Cancer\}.

Query Generation from Templates

- How to instantiate a query template given a KG?

Query Template
((Anchor1, (Rel1, Rel2)), (Anchor2, (Rel3))

Assoc
We first look at one branch and ground the Projection edge with the relation associated with Breast
Cancer, e.g., Assoc. Then we
check what entities are connected to
Breast Cancer with Assoc:
\{ESR2\}.

Query Generation from Templates

- How to instantiate a query template given a KG?

Query Template
((Anchor1, (Rel1, Rel2)), (Anchor2, (Rel3))
ESR2 Breast Cancer

\uparrow Fulvestrant CausedBy
Then we look at the second branch and ground the Projection edge with the relation associated with
Fulvestrant, e.g., CausedBy. Then
we check what entities are connected to Fulvestrant with CausedBy: \{Short of Breath\}.

Query Generation from Templates

- How to instantiate a query template given a KG?

Query Template
((Anchor1, (Rel1, Rel2)), (Anchor2, (Rel3)) ESR2 Breast Cancer

We select entity from \{Short of Breath\}, set it as the anchor node.

Knowledge Graph
Lung

CausedBy

Query Generation from Templates

- How to instantiate a query template given a KG?

Now, we instantiated a query q !
q : ((e:ESR2, (r:Assoc, r:TreatedBy)), (e:Short of Breath, (r:CausedBy))

- The query q must have answers on the KG and one of the answers is the instantiated answer node: Fulvestrant.
- We may obtain the full set of answers $\llbracket q \rrbracket_{G}$ by KG traversal.
- We can sample negative answers $v^{\prime} \notin \llbracket q \rrbracket_{G}$

Stanford CS224W: Example of Query2box

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224W.stanford.edu

Visualization

- What do box embeddings actually learn?

Example: "List male instrumentalists who play string instruments"

- We use t-SNE to reduce the embedding space to a 2-dimensional space, in order to visualize the query results

Embedding Space

"List male instrumentalists who play string instruments"
String Instrument

Embedding Space

"List male instrumentalists who play string instruments"
String
Instrument

Embedding Space

Embedding Space

Embedding Space

"List male instrumentalists who play string instruments"

Embedding Space

"List male instrumentalists who play string instruments"

Embedding Space

Summary

- We introduce answering predictive queries on large knowledge graphs.
- The key idea is to embed queries by navigating the embedding space!
- We embed the query by composing learned operators
- Embedding of the query is close to its answers in the embedding space

[^0]: [Embedding Logical Queries on Knowledge Graphs. Hamilton, et al., NeurlPS 2018]
 [Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. Ren, et al., ICLR 2020]

