Stanford CS224W: Knowledge Graph Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

ANNOUNCEMENTS

- Colab 2 due today

- When you submit, you should get o/o on your assignment this is because our test cases are hidden and will be graded after the assignment deadline
- However, we have a simple autograder to make sure you are zipping files correctly: you should not see any errors (e.g., ModuleNotFound Error)
- For submission details, refer Ed post ("Colab 2 released")

- Colab 3 out today

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Heterogeneous Graphs

- Heterogeneous graphs: a graph with multiple relation types

Input graph

Recap: Relational GCN

- Learn from a graph with multiple relation types
- Use different neural network weights for different relation types! Aggregation

Input graph

Neural networks

Today: Knowledge Graphs (KG)

Knowledge in graph form:

- Capture entities, types, and relationships
- Nodes are entities
- Nodes are labeled with their types
- Edges between two nodes capture relationships between entities
- KG is an example of a heterogeneous graph

Example: Bibliographic Networks

- Node types: paper, title, author, conference, year
- Relation types: pubWhere, pubYear, hasTitle, hasAuthor, cite

Example: Bio Knowledge Graphs

- Node types: drug, disease, adverse event, protein, pathways
- Relation types: has_func, causes, assoc, treats, is_a

Knowledge Graphs in Practice

Examples of knowledge graphs

- Google Knowledge Graph
- Amazon Product Graph
- Facebook Graph API
- IBM Watson
- Microsoft Satori
- Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer

Applications of Knowledge Graphs

- Serving information:
latest films by the director of titanic
ALL WORK VIDEOS IMAGES

Movies featuring James Cameron

Image credit: Bing

Applications of Knowledge Graphs

Question answering and conversation agents

Image credit: Medium

Knowledge Graph Datasets

- Publicly available KGs:
- FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.
- Common characteristics:
- Massive: Millions of nodes and edges
- Incomplete: Many true edges are missing

Given a massive KG, enumerating all the possible facts is intractable!

Can we predict plausible BUT missing links?

Example: Freebase

- Freebase
- ~80 million entities
- ~38K relation types

\square
93.8\% of persons from Freebase have no place of birth and 78.5\% have no nationality!

- ~3 billion facts/triples
₹ Freebase
- Datasets: FB15k/FB15k-237
- A complete subset of Freebase, used by researchers to learn KG models

Dataset	Entities	Relations	Total Edges
FB15k	14,951	1,345	592,213
FB15k-237	14,505	237	310,079

Stanford CS224W: Knowledge Graph Completion

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224W.stanford.edu

KG Completion Task

Given an enormous KG, can we complete the KG?

- For a given (head, relation), we predict missing tails.
- (Note this is slightly different from link prediction task)

Recap: "Shallow" Encoding

- Simplest encoding approach: encoder is just an embedding-lookup
embedding matrix
$\mathbf{Z}=$
embedding vector for a specific node

KG Representation

- Edges in KG are represented as triples (h, r, t)
- head (h) has relation (r) with tail (t)
- Key Idea:
- Model entities and relations in the embedding/vector space \mathbb{R}^{d}.
- Associate entities and relations with shallow embeddings
- Note we do not learn a GNN here!
- Given a true triple (h, r, t), the goal is that the embedding of (h, r) should be close to the embedding of t.
- How to embed (h, r) ?
- How to define closeness?

Today: Different Models

We are going to learn about different KG embedding models (shallow/transductive embs):

- Different models are...
- ...based on different geometric intuitions
- ...capture different types of relations (have different expressivity)

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N		
TransE	$-\\|\mathbf{h}+\mathbf{r}-\mathbf{t}\\|$	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{R}^{k}$	\times	\checkmark	\checkmark	\checkmark	\times		
TransR	$-\\| \boldsymbol{M}_{r} \mathbf{h}+\mathbf{r}$	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{R}^{k}$,	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
($\boldsymbol{M}_{r} \mathbf{t} \\|$	$\boldsymbol{M}_{r} \in \mathbb{R}^{d \times k}$	\checkmark	\checkmark						
DistMult	$<\mathbf{h}, \mathbf{r}, \mathbf{t}>$	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{R}^{k}$	\checkmark	\times	\times	\times	\checkmark		
ComplEx	$\operatorname{Re}(<\mathbf{h}, \mathbf{r}, \overline{\mathbf{t}}>)$	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{C}^{k}$	\checkmark	\checkmark	\checkmark	\times	\checkmark		

Stanford CS224W: Knowledge Graph Completion: TransE

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224W.stanford.edu

TransE

- Translation Intuition:

For a triple $(h, r, t), \mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^{d}, \begin{gathered}\text { embedding vectors sill } \\ \text { appear in boldface }\end{gathered}$ $\mathbf{h}+\mathbf{r} \approx \mathbf{t}$ if the given fact is true else $\mathbf{h}+\mathbf{r} \neq \mathbf{t}$
Scoring function: $f_{r}(h, t)=-\|\mathbf{h}+\mathbf{r}-\mathbf{t}\|$

Nationality Obama

TransE: Contrastive/Triplet Loss

Algorithm 1 Learning TransE

input Training set $S=\{(h, \ell, t)\}$, entities and rel. sets E and L, margin γ, embeddings dim. k.

1: initialize	$\ell \leftarrow$ uniform $\left(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}\right)$ for each $\ell \in L$		
2:	$\ell \leftarrow \boldsymbol{\ell} /\\|\boldsymbol{\ell}\\|$ for each $\ell \in L$		
3:	$\mathbf{e} \leftarrow$ uniform $\left(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}\right)$ for each entity $e \in E$		

Entities and relations are initialized uniformly, and normalized
. loop
5: $\quad \mathbf{e} \leftarrow \mathbf{e} /\|\mathbf{e}\|$ for each entity $e \in E$
6: $\quad S_{\text {batch }} \leftarrow \operatorname{sample}(S, b) / /$ sample a minibatch of size b
7: $\quad T_{\text {batch }} \leftarrow \emptyset / /$ initialize the set of pairs of triplets
8: \quad for $(h, \ell, t) \in S_{b a t c h}$ do Negative sampling with triplet that does not appear in the KG
$\quad\left(h^{\prime}, \ell, t^{\prime}\right) \leftarrow \operatorname{sample}\left(S_{(h, \ell, t)}^{\prime}\right) / /$ sample a corrupted triplet d (nepresents distance

Contrastive loss: favors lower distance (or higher score) for valid triplets, high distance (or lower score) for corrupted ones

Connectivity Patterns in KG

- Relations in a heterogeneous KG have different properties:
- Example:
- Symmetry: If the edge (h, "Roommate", t) exists in KG, then the edge (t, "Roommate", h) should also exist.
- Inverse relation: If the edge (h, "Advisor", t) exists in KG, then the edge (t, "Advisee", h) should also exist.
- Can we categorize these relation patterns?
- Are KG embedding methods (e.g., TransE) expressive enough to model these patterns?

Four Relation Patterns

- Symmetric (Antisymmetric) Relations:

$$
r(h, t) \Rightarrow r(t, h)(r(h, t) \Rightarrow \neg r(t, h)) \quad \forall h, t
$$

- Example:
- Symmetric: Family, Roommate
- Antisymmetric: Hypernym
- Inverse Relations:

$$
r_{2}(h, t) \Rightarrow r_{1}(t, h)
$$

- Example : (Advisor, Advisee)
- Composition (Transitive) Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- 1-to-N relations:
$r\left(h, t_{1}\right), r\left(h, t_{2}\right), \ldots, r\left(h, t_{n}\right)$ are all True.
" Example: r is "StudentsOf"

Antisymmetric Relations in TransE

- Antisymmetric Relations:

$$
r(h, t) \Rightarrow \neg r(t, h) \quad \forall h, t
$$

- Example: Hypernym
- TransE can model antisymmetric relations
- $\mathbf{h}+\mathbf{r}=\mathbf{t}$, but $\mathbf{t}+\mathbf{r} \neq \mathbf{h}$

Inverse Relations in TransE

- Inverse Relations:

$$
r_{2}(h, t) \Rightarrow r_{1}(t, h)
$$

- Example : (Advisor, Advisee)

TransE can model inverse relations

- $\mathbf{h}+\mathbf{r}_{2}=\mathbf{t}$, we can set $\mathbf{r}_{1}=-r_{2}$

Composition in TransE

- Composition (Transitive) Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- TransE can model composition relations

$$
\mathbf{r}_{3}=\mathbf{r}_{1}+\mathbf{r}_{2}
$$

Limitation: Symmetric Relations

- Symmetric Relations:

$$
r(h, t) \Rightarrow r(t, h) \quad \forall h, t
$$

- Example: Family, Roommate
- TransE cannot model symmetric relations \times

$$
\text { only if } \mathbf{r}=0, \mathbf{h}=\mathbf{t}
$$

For all h, t that satisfy $r(h, t), r(t, h)$ is also True, which means $\|\mathbf{h}+\mathbf{r}-\mathbf{t}\|=0$ and $\|\mathbf{t}+\mathbf{r}-\mathbf{h}\|=0$. Then $\mathbf{r}=0$ and $\mathbf{h}=\mathbf{t}$, however h and t are two different entities and should be mapped to different locations.

Limitation: 1-to-N Relations

- 1-to-N Relations:
- Example: $\left(h, r, t_{1}\right)$ and (h, r, t_{2}) both exist in the knowledge graph, e.g., r is "StudentsOf"
- TransE cannot model 1-to-N relations x
- t_{1} and t_{2} will map to the same vector, although they are different entities
$-\mathbf{t}_{1}=\mathbf{h}+\mathbf{r}=\mathbf{t}_{2}$
- $\mathbf{t}_{1} \neq \mathrm{t}_{2} \quad$ contradictory!

Stanford CS224W: Knowledge Graph Completion: TransR

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224W.stanford.edu

TransR

- TransE models translation of any relation in the same embedding space.

Can we design a new space for each relation and do translation in relation-specific space?

- TransR: model entities as vectors in the entity space \mathbb{R}^{d} and model each relation as vector in relation space $\mathbf{r} \in \mathbb{R}^{k}$ with $\mathbf{M}_{r} \in \mathbb{R}^{k \times d}$ as the projection matrix.

TransR

- TransR: model entities as vectors in the entity space \mathbb{R}^{d} and model each relation as vector in relation space $\mathbf{r} \in \mathbb{R}^{k}$ with $\mathbf{M}_{r} \in \mathbb{R}^{k \times d}$ as the projection matrix.
- $\mathbf{h}_{\perp}=\mathbf{M}_{r} \mathbf{h}, \mathbf{t}_{\perp}=\mathbf{M}_{r} \mathbf{t}$

Use \mathbf{M}_{r} to project from entity space \mathbb{R}^{d} to relation space \mathbb{R}^{k} !

- Score function: $f_{r}(h, t)=-\left\|\mathbf{h}_{\perp}+\mathbf{r}-\mathbf{t}_{\perp}\right\|$

Symmetric Relations in TransR

- Symmetric Relations:

$$
r(h, t) \Rightarrow r(t, h) \quad \forall h, t
$$

- Example: Family, Roommate

Note different symmetric relations may
have different \mathbf{M}_{r}

- TransR can model symmetric relations

$$
\mathbf{r}=0, \mathbf{h}_{\perp}=\mathbf{M}_{r} \mathbf{h}=\mathbf{M}_{r} \mathbf{t}=\mathbf{t}_{\perp}
$$

Space of relation $r: \mathbb{R}^{k}$
We can map h and t to the same location on the space of relation r.
h and t are still different in the entity space.

$$
{ }^{\bullet} \mathbf{t}_{\perp}, \mathbf{h}_{\perp}
$$

Antisymmetric Relations in TransR

- Antisymmetric Relations:

$$
r(h, t) \Rightarrow \neg r(t, h) \quad \forall h, t
$$

- Example: Hypernym
- TransR can model antisymmetric relations

$$
\mathbf{r} \neq 0, \mathbf{M}_{r} \mathbf{h}+\mathbf{r}=\mathbf{M}_{r} \mathbf{t},
$$

Then $\mathbf{M}_{r} \mathbf{t}+\mathbf{r} \neq \mathbf{M}_{r} \mathbf{h}$

1-to-N Relations in TransR

- 1-to-N Relations:
- Example: If $\left(h, r, t_{1}\right)$ and (h, r, t_{2}) exist in the knowledge graph.
- TransR can model 1-to-N relations
- We can learn \mathbf{M}_{r} so that $\mathbf{t}_{\perp}=\mathbf{M}_{r} \mathbf{t}_{1}=\mathbf{M}_{r} \mathbf{t}_{2}$
- Note that t_{1} does not need to be equal to t_{2} !

Inverse Relations in TransR

- Inverse Relations:

$$
r_{2}(h, t) \Rightarrow r_{1}(t, h)
$$

- Example : (Advisor, Advisee)
- TransR can model inverse relations

$$
\mathbf{r}_{2}=-\mathbf{r}_{1}, \mathbf{M}_{r_{1}}=\mathbf{M}_{r_{2}}
$$

Then $\mathbf{M}_{r_{1}} \mathbf{t}+\mathbf{r}_{\mathbf{1}}=\mathbf{M}_{r_{1}} \mathbf{h}$ and $\mathbf{M}_{r_{2}} \mathbf{h}+\mathbf{r}_{2}=\mathbf{M}_{r_{2}} \mathbf{t} \checkmark$

Composition Relations in TransR

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

" Example: My mother's husband is my father.

- TransR can model composition relations

High-level intuition: TransR models a triple with linear functions, they are chainable.

Composition Relations in TransR

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

Background:
Kernel space of a matrix \mathbf{M} :

$$
\mathbf{h} \in \operatorname{Ker}(\mathbf{M}) \text {, then } \mathbf{M h}=\mathbf{0}
$$

Composition Relations in TransR

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

Assume $\mathbf{M}_{r_{1}} \mathbf{g}_{1}=\mathbf{r}_{1}$ and $\mathbf{M}_{r_{2}} \mathbf{g}_{2}=\mathbf{r}_{2}$

- For $r_{1}(x, y)$:
$r_{1}(x, y)$ exists $\rightarrow \mathbf{M}_{r_{1}} \mathbf{x}+\mathbf{r}_{\mathbf{1}}=\mathbf{M}_{r_{1}} \mathbf{y} \rightarrow \mathbf{y}-\mathbf{x} \in$ $\mathbf{g}_{1}+\operatorname{Ker}\left(\mathbf{M}_{r_{1}}\right) \rightarrow \mathbf{y} \in \mathbf{x}+\mathbf{g}_{\mathbf{1}}+\operatorname{Ker}\left(\mathbf{M}_{r_{1}}\right)$
- Same for $r_{2}(y, z)$:
$r_{2}(y, z)$ exists $\rightarrow \mathbf{M}_{r_{2}} \mathbf{y}+\mathbf{r}_{2}=\mathbf{M}_{r_{2}} \mathbf{z} \rightarrow \mathbf{z}-\mathbf{y} \in$ $\mathbf{g}_{2}+\operatorname{Ker}\left(\mathbf{M}_{r_{2}}\right) \rightarrow \mathbf{z} \in \mathbf{y}+\mathbf{g}_{\mathbf{2}}+\operatorname{Ker}\left(\mathbf{M}_{r_{2}}\right)$

Then,
We have $\mathbf{z} \in \mathbf{x}+\mathbf{g}_{\mathbf{1}}+\mathbf{g}_{\mathbf{2}}+\operatorname{Ker}\left(\mathbf{M}_{r_{1}}\right)+\operatorname{Ker}\left(\mathbf{M}_{r_{2}}\right)$

Composition Relations in TransR

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

We have $\mathbf{z} \in \mathbf{x}+\mathbf{g}_{\mathbf{1}}+\mathbf{g}_{\mathbf{2}}+\operatorname{Ker}\left(\mathbf{M}_{r_{1}}\right)+\operatorname{Ker}\left(\mathbf{M}_{r_{2}}\right)$

- Construct $\mathbf{M}_{r_{3}}$, s.t. $\operatorname{Ker}\left(\mathbf{M}_{r_{3}}\right)=\operatorname{Ker}\left(\mathbf{M}_{r_{1}}\right)+$ $\operatorname{Ker}\left(\mathbf{M}_{r_{2}}\right)$
- Since
- $\operatorname{dim}\left(\operatorname{Ker}\left(\mathbf{M}_{r_{3}}\right)\right) \geq \operatorname{dim}\left(\operatorname{Ker}\left(\mathbf{M}_{r_{1}}\right)\right)$
- $\mathbf{M}_{r_{3}}$ has the same shape as $\mathbf{M}_{r 1}$

We know $\mathbf{M}_{r_{3}}$ exists!

- Set $\mathbf{r}_{3}=\mathbf{M}_{r_{3}}\left(\mathbf{g}_{1}+\mathbf{g}_{2}\right)$
- We are done! We have $\mathbf{M}_{r_{3}} \mathbf{x}+\mathbf{r}_{\mathbf{3}}=\mathbf{M}_{r_{3}} \mathbf{z}$

Stanford CS224W: Knowledge Graph Completion: DistMult

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224W.stanford.edu

New Idea: Bilinear Modeling

- So far: The scoring function $f_{r}(h, t)$ is negative of L1 / L2 distance in TransE and TransR
- Another line of KG embeddings adopt bilinear modeling
- DistMult: Entities and relations using vectors in \mathbb{R}^{k}
- Score function: $f_{r}(h, t)=<\mathbf{h}, \mathbf{r}, \mathbf{t}>=\sum_{i} \mathbf{h}_{i} \cdot \mathbf{r}_{i} \cdot \mathbf{t}_{i}$
- $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^{k} \quad f_{r}(h, t)$

DistMult

- DistMult: Entities and relations using vectors in \mathbb{R}^{k}
- Score function: $f_{r}(h, t)=<\mathbf{h}, \mathbf{r}, \mathbf{t}>=\sum_{i} \mathbf{h}_{i} \cdot \mathbf{r}_{i} \cdot \mathbf{t}_{i}$
- $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^{k}$
- Intuition of the score function: Can be viewed as a cosine similarity between $\mathbf{h} \cdot \mathbf{r}$ and \mathbf{t}
- where $h \cdot r$ is defined as $\sum_{i} \boldsymbol{h}_{\boldsymbol{i}} \cdot \boldsymbol{r}_{\boldsymbol{i}}$
- Example:

$$
f_{r}\left(h, t_{1}\right)<0, \quad f_{r}\left(h, t_{2}\right)>0
$$

1-to-N Relations in DistMult

- 1-to-N Relations:
- Example: If $\left(h, r, t_{1}\right)$ and (h, r, t_{2}) exist in the knowledge graph
- Distmult can model 1-to-N relations

$$
\left.<\mathbf{h}, \mathbf{r}, \mathbf{t}_{1}>=<\mathbf{h}, \mathbf{r}, \mathbf{t}_{2}\right\rangle
$$

Symmetric Relations in DistMult

- Symmetric Relations:

$$
r(h, t) \Rightarrow r(t, h) \quad \forall h, t
$$

- Example: Family, Roommate
- DistMult can naturally model symmetric relations

$$
\begin{aligned}
f_{r}(h, t)= & <\mathbf{h}, \mathbf{r}, \mathbf{t}>=\sum_{i} \mathbf{h}_{i} \cdot \mathbf{r}_{i} \cdot \mathbf{t}_{i}= \\
& <\mathbf{t}, \mathbf{r}, \mathbf{h}>=f_{r}(t, h)
\end{aligned}
$$

Limitation: Antisymmetric Relations

- Antisymmetric Relations:

$$
r(h, t) \Rightarrow \neg r(t, h) \quad \forall h, t
$$

- Example: Hypernym
- DistMult cannot model antisymmetric relations
$f_{r}(h, t)=<\mathbf{h}, \mathbf{r}, \mathbf{t}>=<\mathbf{t}, \mathbf{r}, \mathbf{h}>=f_{r}(t, h) \times$
" $r(h, t)$ and $r(t, h)$ always have same score!

Limitation: Inverse Relations

- Inverse Relations:

$$
r_{2}(h, t) \Rightarrow r_{1}(t, h)
$$

- Example : (Advisor, Advisee)
- DistMult cannot model inverse relations x
- If it does model inverse relations:
$f_{r_{2}}(h, t)=<\mathbf{h}, \mathbf{r}_{2}, \mathbf{t}>=<\mathbf{t}, \mathbf{r}_{1}, \mathbf{h}>=f_{r_{1}}(t, h)$
- This means $\mathbf{r}_{2}=\mathbf{r}_{1}$
- But semantically this does not make sense: The embedding of "Advisor" should not be the same with "Advisee".

Limitation: Composition Relations

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- DistMult cannot model composition relations x
- Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multihops of relations, e.g., $\left(r_{1}, r_{2}\right)$, cannot be expressed using a single hyperplane.

Limitation: Composition Relations

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- DistMult cannot model composition relations x
- Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r_{1}, r_{2}), cannot be expressed using a single hyperplane.

Detailed derivation

Pick one y s.t. $f_{r_{1}}(x, y)>0$, e.g., y_{2} Then $y_{2} \cdot r_{2}$ defines a new hyperplane

Limitation: Composition Relations

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- DistMult cannot model composition relations x
- Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r_{1}, r_{2}), cannot be expressed using a single hyperplane.

Detailed derivation

Pick another y s.t. $f_{r_{1}}(x, y)>0$, e.g., y_{3}
Then $\mathbf{y}_{3} \cdot \mathrm{r}_{2}$ defines another hyperplane

Limitation: Composition Relations

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- DistMult cannot model composition relations x
- Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., $\left(r_{1}, r_{2}\right)$, cannot be expressed using a single hyperplane.

Detailed derivation

Limitation: Composition Relations

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- DistMult cannot model composition relations x
- Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., $\left(r_{1}, r_{2}\right)$, cannot be expressed using a single hyperplane.

Detailed derivation

Combine both hyperplanes together, then for all z in the shadow area, there exists $y \in\left\{y_{2}, y_{3}\right\}$, s.t., $f_{r_{2}}(y, z)>0$

Limitation: Composition Relations

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- DistMult cannot model composition relations x
- Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r_{1}, r_{2}), cannot be expressed using a single hyperplane.

Detailed derivation

According to the composition relations, we also want $f_{r_{3}}(x, z)>0, \forall z \in\{$ shadow area\} . However, this area inherently cannot be expressed by a single hyperplane defined by $x \cdot r_{3}$, no matter what r_{3} is.

Stanford CS224W: Knowledge Graph Completion: ComplEx

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224W.stanford.edu

ComplEx

- Based on Distmult, ComplEx embeds entities and relations in Complex vector space
- ComplEx: model entities and relations using vectors in \mathbb{C}^{k}

ComplEx

- Based on Distmult, ComplEx embeds entities and relations in Complex vector space
- ComplEx: model entities and relations using vectors in \mathbb{C}^{k}
- Score function $f_{r}(h, t)=\operatorname{Re}\left(\sum_{i} \mathbf{h}_{i} \cdot \mathbf{r}_{i} \cdot \overline{\mathbf{t}}_{i}\right)$

Antisymmetric Relations in ComplEx

- Antisymmetric Relations:

$$
r(h, t) \Rightarrow \neg r(t, h) \quad \forall h, t
$$

- Example: Hypernym
- CompIEx can model antisymmetric relations
- The model is expressive enough to learn
- $\operatorname{High} f_{r}(h, t)=\operatorname{Re}\left(\sum_{i} \mathbf{h}_{i} \cdot \mathbf{r}_{i} \cdot \overline{\mathbf{t}}_{i}\right)$
- Low $f_{r}(t, r)=\operatorname{Re}\left(\sum_{i} \boldsymbol{t}_{i} \cdot \mathbf{r}_{i} \cdot \overline{\boldsymbol{h}}_{i}\right)$

Due to the asymmetric modeling using complex conjugate.

Symmetric Relations in ComplEx

- Symmetric Relations:

$$
r(h, t) \Rightarrow r(t, h) \quad \forall h, t
$$

- Example: Family, Roommate
- ComplEx can model symmetric relations
- When $\operatorname{Im}(\mathbf{r})=0$, we have

$$
\begin{aligned}
& f_{r}(h, t)=\operatorname{Re}\left(\sum_{i} \mathbf{h}_{i} \cdot \mathbf{r}_{i} \cdot \overline{\mathbf{t}}_{i}\right)=\sum_{i} \operatorname{Re}\left(\mathbf{r}_{i} \cdot \mathbf{h}_{i} \cdot \overline{\mathbf{t}}_{i}\right) \\
& =\sum_{i} \mathbf{r}_{i} \cdot \operatorname{Re}\left(\mathbf{h}_{i} \cdot \overline{\mathbf{t}}_{i}\right)=\sum_{i} \mathbf{r}_{i} \cdot \operatorname{Re}\left(\overline{\mathbf{h}}_{i} \cdot \mathbf{t}_{i}\right)=\sum_{i} \operatorname{Re}\left(\mathbf{r}_{i} \cdot \overline{\mathbf{h}}_{i} .\right. \\
& \left.\mathbf{t}_{i}\right)=f_{r}(t, h)
\end{aligned}
$$

Inverse Relations in ComplEx

- Inverse Relations:

$$
r_{2}(h, t) \Rightarrow r_{1}(t, h)
$$

- Example : (Advisor, Advisee)
- ComplEx can model inverse relations
- $\mathbf{r}_{1}=\overline{\mathbf{r}}_{2}$
- Complex conjugate of

$$
\begin{aligned}
& \left.\mathbf{r}_{2}=\underset{\mathbf{r}}{\operatorname{argmax}} \operatorname{Re}(<\mathbf{h}, \mathbf{r}, \overline{\mathbf{t}}\rangle\right) \text { is exactly } \\
& \mathbf{r}_{1}=\underset{\mathbf{r}}{\operatorname{argmax}} \operatorname{Re}(<\mathbf{t}, \mathbf{r}, \overline{\mathbf{h}}>) .
\end{aligned}
$$

Composition and 1-to-N

- Composition Relations:

$$
r_{1}(x, y) \wedge r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z
$$

- Example: My mother's husband is my father.
- 1-to-N Relations:
- Example: If $\left(h, r, t_{1}\right)$ and (h, r, t_{2}) exist in the knowledge graph
- ComplEx share the same property with DistMult
- Cannot model composition relations
- Can model 1-to-N relations

Expressiveness of All Models

- Properties and expressive power of different KG completion methods:

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N		
TransE	$-\\|\mathbf{h}+\mathbf{r}-\mathbf{t}\\|$	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{R}^{k}$	\times	\checkmark	\checkmark	\checkmark	\mathbf{x}		
TransR	$-\\| \boldsymbol{M}_{r} \mathbf{h}+\mathbf{r}$	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{R}^{k}$,	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
($\boldsymbol{M}_{r} \mathbf{t} \\|$	$\boldsymbol{M}_{r} \in \mathbb{R}^{d \times k}$	\checkmark	\checkmark						
DistMult	$<\mathbf{h}, \mathbf{r}, \mathbf{t}>$	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{R}^{k}$	\checkmark	\times	\times	\times	\checkmark		
CompIEx	$\operatorname{Re}(<\mathbf{h}, \mathbf{r}, \overline{\mathbf{t}}>)$	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{C}^{k}$	\checkmark	\checkmark	\checkmark	\times	\checkmark		

KG Embeddings in Practice

1. Different KGs may have drastically different relation patterns!
2. There is not a general embedding that works for all KGs, use the table to select models
3. Try TransE for a quick run if the target KG does not have much symmetric relations
4. Then use more expressive models, e.g., ComplEx, RotatE (TransE in Complex space)

Summary of Knowledge Graph

- Link prediction / Graph completion is one of the prominent tasks on knowledge graphs
- Introduce TransE / TransR / DistMult / ComplEx models with different embedding space and expressiveness
- Next: Reasoning in Knowledge Graphs

