Stanford CS224W: Knowledge Graph Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

ANNOUNCEMENTS

Colab 2 due today

- When you submit, you should get o/o on your assignment this is because our test cases are hidden and will be graded after the assignment deadline
- However, we have a simple autograder to make sure you are zipping files correctly: you should *not* see any errors (e.g., ModuleNotFound Error)
- For submission details, refer Ed post ("Colab 2 released")
- Colab 3 out today

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Heterogeneous Graphs

Heterogeneous graphs: a graph with multiple relation types

Input graph

Recap: Relational GCN

 Learn from a graph with multiple relation types
 Use different neural network weights for different relation types! Aggregation

Today: Knowledge Graphs (KG)

Knowledge in graph form:

- Capture entities, types, and relationships
- Nodes are entities
- Nodes are labeled with
- their types
- Edges between two nodes capture relationships
- between entities
- KG is an example of a heterogeneous graph

Example: Bibliographic Networks

- Node types: paper, title, author, conference, year
- Relation types: pubWhere, pubYear, hasTitle, hasAuthor, cite

Example: Bio Knowledge Graphs

- Node types: drug, disease, adverse event, protein, pathways
- Relation types: has_func, causes, assoc, treats,

response to estradiol

Knowledge Graphs in Practice

Examples of knowledge graphs

- Google Knowledge Graph
- Amazon Product Graph
- Facebook Graph API
- IBM Watson
- Microsoft Satori
- Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer

Applications of Knowledge Graphs

Serving information:

Image credit: Bing

Applications of Knowledge Graphs

Question answering and conversation agents

Image credit: Medium

Knowledge Graph Datasets

Publicly available KGs:

FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

Common characteristics:

- Massive: Millions of nodes and edges
- Incomplete: Many true edges are missing

Example: Freebase

Freebase

- ~80 million entities
- ~38K relation types
- ~3 billion facts/triples

93.8% of persons from Freebase have no place of birth and 78.5% have no nationality!

Datasets: FB15k/FB15k-237

A complete subset of Freebase, used by researchers to learn KG models

Dataset	Entities	Relations	Total Edges
FB15k	14,951	1,345	592,213
FB15k-237	14,505	237	310,079

Paulheim, Heiko. "Knowledge graph refinement: A survey of approaches and evaluation methods." Semantic web 8.3 (2017): 489-508.
 Min, Bonan, et al. "Distant supervision for relation extraction with an incomplete knowledge base." Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2013.

Stanford CS224W: Knowledge Graph Completion

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

KG Completion Task

Given an enormous KG, can we complete the KG?

- For a given (head, relation), we predict missing tails.
 - (Note this is slightly different from link prediction task)

14

Recap: "Shallow" Encoding

 Simplest encoding approach: encoder is just an embedding-lookup

KG Representation

- Edges in KG are represented as triples (h, r, t)
 - head (h) has relation (r) with tail (t)
- Key Idea:
 - Model entities and relations in the embedding/vector space \mathbb{R}^d .
 - Associate entities and relations with shallow embeddings
 - Note we do not learn a GNN here!
 - Given a true triple (h, r, t), the goal is that the embedding of (h, r) should be close to the embedding of t.
 - How to embed (h, r)?
 - How to define closeness?

Today: Different Models

We are going to learn about different KG embedding models (shallow/transductive embs): Different models are...

- ...based on different geometric intuitions
- ...capture different types of relations (have different expressivity)

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N
TransE	$-\ \mathbf{h} + \mathbf{r} - \mathbf{t}\ $	h , t , $\mathbf{r} \in \mathbb{R}^k$	×	\checkmark	\checkmark	\checkmark	×
TransR	$-\ \boldsymbol{M}_r\mathbf{h}+\mathbf{r}\\-\boldsymbol{M}_r\mathbf{t}\ $	$\mathbf{h}, \mathbf{t}, \mathbf{r} \in \mathbb{R}^k, \\ \boldsymbol{M}_r \in \mathbb{R}^{d \times k}$	\checkmark	\checkmark	~	\checkmark	\checkmark
DistMult	< h, r, t >	h , t , $\mathbf{r} \in \mathbb{R}^k$	\checkmark	×	×	×	\checkmark
ComplEx	Re(< h , r , t >)	h , t , $\mathbf{r} \in \mathbb{C}^k$	\checkmark	\checkmark	\checkmark	×	\checkmark

Stanford CS224W: Knowledge Graph Completion: TransE

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

TransE

Translation Intuition:

 $p \mid p \mid h + r \neq t$

For a triple (h, r, t), $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$, $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$ if the given fact is true

embedding vectors will appear in boldface

Scoring function:
$$f_r(h, t) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}||$$

TransE: Contrastive/Triplet Loss

Algorithm 1 Learning TransE

input Training set $S = \{(h, \ell, t)\}$, entities and rel. sets E and L, margin γ , embeddings dim. k. 1: initialize $\ell \leftarrow uniform(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each $\ell \in L$ Entities and relations are $\ell \leftarrow \ell / \|\ell\|$ for each $\ell \in L$ 2: initialized uniformly, and $\mathbf{e} \leftarrow \operatorname{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}})$ for each entity $e \in E$ 3: normalized 4: **loop** $\mathbf{e} \leftarrow \mathbf{e} / \| \mathbf{e} \|$ for each entity $e \in E$ 5: $S_{batch} \leftarrow \text{sample}(S, b) // \text{ sample a minibatch of size } b$ 6: Negative sampling with triplet $T_{batch} \leftarrow \emptyset$ // initialize the set of pairs of triplets 7: that does not appear in the KG for $(h, \ell, t) \in S_{batch}$ do 8: $(h', \overline{\ell, t'}) \leftarrow \text{sample}(S'_{(h, \ell, t)}) // \text{ sample a corrupted triplet}$ 9: *d* represents distance $T_{batch} \leftarrow T_{batch} \cup \left\{ \left((h, \ell, t), (h', \ell, t') \right) \right\}$ (negative of score) 10: end for 11: $\sum \quad \nabla \big[\gamma + d(\boldsymbol{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\boldsymbol{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \big]$ Update embeddings w.r.t. 12: negative positive $((h,\ell,t),(h',\ell,t')) \in T_{batch}$ sample sample 13: end loop

Contrastive loss: favors lower distance (or higher score) for valid triplets, high distance (or lower score) for corrupted ones

Connectivity Patterns in KG

- Relations in a heterogeneous KG have different properties:
 - Example:
 - Symmetry: If the edge (h, "Roommate", t) exists in KG, then the edge (t, "Roommate", h) should also exist.
 - Inverse relation: If the edge (h, "Advisor", t) exists in KG, then the edge (t, "Advisee", h) should also exist.
- Can we categorize these relation patterns?
- Are KG embedding methods (e.g., TransE) expressive enough to model these patterns?

Four Relation Patterns

Symmetric (Antisymmetric) Relations:

 $r(h,t) \Rightarrow r(t,h) (r(h,t) \Rightarrow \neg r(t,h)) \forall h,t$

Example:

- Symmetric: Family, Roommate
- Antisymmetric: Hypernym

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

Example : (Advisor, Advisee)

Composition (Transitive) Relations:

$$r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$$

- **Example**: My mother's husband is my father.
- 1-to-N relations:

$r(h, t_1), r(h, t_2), \dots, r(h, t_n)$ are all True.

Example: r is "StudentsOf"

2/9/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Antisymmetric Relations in TransE

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \quad \forall h,t$$

• Example: Hypernym

TransE can model antisymmetric relations

•
$$\mathbf{h} + \mathbf{r} = \mathbf{t}$$
, but $\mathbf{t} + \mathbf{r} \neq \mathbf{h}$

Inverse Relations in TransE

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

Example : (Advisor, Advisee)

TransE can model inverse relations

•
$$\mathbf{h} + \mathbf{r_2} = \mathbf{t}$$
, we can set $\mathbf{r_1} = -\mathbf{r_2}$

h
$$r_1$$
 t r_2

Composition in TransE

 Composition (Transitive) Relations: r₁(x, y) ∧ r₂(y, z) ⇒ r₃(x, z) ∀x, y, z

 Example: My mother's husband is my father.
 TransE can model composition relations ✓

$$\mathbf{r}_3 = \mathbf{r}_1 + \mathbf{r}_2$$

Limitation: Symmetric Relations

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \quad \forall h,t$$

• **Example**: Family, Roommate

TransE cannot model symmetric relations × only if r = 0, h = t

For all *h*, *t* that satisfy r(h, t), r(t, h) is also True, which means $||\mathbf{h} + \mathbf{r} - \mathbf{t}|| = 0$ and $||\mathbf{t} + \mathbf{r} - \mathbf{h}|| = 0$. Then $\mathbf{r} = 0$ and $\mathbf{h} = \mathbf{t}$, however *h* and *t* are two different entities and should be mapped to different locations.

Limitation: 1-to-N Relations

1-to-N Relations:

- Example: (h, r, t₁) and (h, r, t₂) both exist in the knowledge graph, e.g., r is "StudentsOf"
- TransE cannot model 1-to-N relations ×
 - t₁ and t₂ will map to the same vector, although they are different entities

•
$$\mathbf{t}_1 = \mathbf{h} + \mathbf{r} = \mathbf{t}_2$$

• $\mathbf{t}_1 \neq \mathbf{t}_2$ contradictory!

Stanford CS224W: Knowledge Graph Completion: TransR

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

- TransE models translation of any relation in the same embedding space.
- Can we design a new space for each relation and do translation in relation-specific space?
- TransR: model entities as vectors in the entity space \mathbb{R}^d and model each relation as vector in relation space $\mathbf{r} \in \mathbb{R}^k$ with $\mathbf{M}_r \in \mathbb{R}^{k \times d}$ as the projection matrix.

TransR

• TransR: model entities as vectors in the entity space \mathbb{R}^d and model each relation as vector in relation space $\mathbf{r} \in \mathbb{R}^k$ with $\mathbf{M}_r \in \mathbb{R}^{k \times d}$ as the projection matrix.

•
$$\mathbf{h}_{\perp} = \mathbf{M}_r \mathbf{h}, \ \mathbf{t}_{\perp} = \mathbf{M}_r \mathbf{t}$$

Use M_r to project from entity space \mathbb{R}^d to relation space \mathbb{R}^k !

Score function: $f_r(h, t) = -||\mathbf{h}_{\perp} + \mathbf{r} - \mathbf{t}_{\perp}||$

ymmetric Relations in TransR

h

Antisymmetric Relations in TransR

1-to-N Relations in TransR

1-to-N Relations:

- Example: If (h, r, t₁) and (h, r, t₂) exist in the knowledge graph.
- TransR can model 1-to-N relations
 - We can learn \mathbf{M}_r so that $\mathbf{t}_{\perp} = \mathbf{M}_r \mathbf{t}_1 = \mathbf{M}_r \mathbf{t}_2$
 - Note that t₁ does not need to be equal to t₂!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Inverse Relations in TransR

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

Example : (Advisor, Advisee)

TransR can model inverse relations

$$\mathbf{r}_2 = -\mathbf{r}_1, \mathbf{M}_{r_1} = \mathbf{M}_{r_2}$$

Then $\mathbf{M}_{r_1}\mathbf{t} + \mathbf{r}_1 = \mathbf{M}_{r_1}\mathbf{h}$ and $\mathbf{M}_{r_2}\mathbf{h} + \mathbf{r}_2 = \mathbf{M}_{r_2}\mathbf{t}\checkmark$

 Composition Relations: r₁(x, y) ∧ r₂(y, z) ⇒ r₃(x, z) ∀x, y, z

 Example: My mother's husband is my father.
 TransR can model composition relations

High-level intuition: TransR models a triple with linear functions, they are chainable.

Composition Relations:

 $r_1(x, y) \wedge r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$ Background:

Kernel space of a matrix M:

 $h \in Ker(M)$, then Mh = 0

Composition Relations:

 $r_1(x, y) \wedge r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$ Assume $\mathbf{M}_{r_1} \mathbf{g}_1 = \mathbf{r}_1$ and $\mathbf{M}_{r_2} \mathbf{g}_2 = \mathbf{r}_2$ • For $r_1(x, y)$: $r_1(x, y)$ exists $\rightarrow \mathbf{M}_{r_1}\mathbf{x} + \mathbf{r_1} = \mathbf{M}_{r_1}\mathbf{y} \rightarrow \mathbf{y} - \mathbf{x} \in$ $\mathbf{g}_1 + \operatorname{Ker}(\mathbf{M}_{r_1}) \rightarrow \mathbf{y} \in \mathbf{x} + \mathbf{g}_1 + \operatorname{Ker}(\mathbf{M}_{r_1})$ • Same for $r_2(y,z)$: $r_2(y, z)$ exists $\rightarrow \mathbf{M}_{r_2}\mathbf{y} + \mathbf{r}_2 = \mathbf{M}_{r_2}\mathbf{z} \rightarrow \mathbf{z} - \mathbf{y} \in$ $\mathbf{g}_2 + \operatorname{Ker}(\mathbf{M}_{r_2}) \rightarrow \mathbf{z} \in \mathbf{y} + \mathbf{g}_2 + \operatorname{Ker}(\mathbf{M}_{r_2})$ Then,

We have $\mathbf{z} \in \mathbf{x} + \mathbf{g}_1 + \mathbf{g}_2 + \operatorname{Ker}(\mathbf{M}_{r_1}) + \operatorname{Ker}(\mathbf{M}_{r_2})$

Composition Relations:

 $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x,y,z$ We have $\mathbf{z} \in \mathbf{x} + \mathbf{g}_1 + \mathbf{g}_2 + \operatorname{Ker}(\mathbf{M}_{r_1}) + \operatorname{Ker}(\mathbf{M}_{r_2})$

- Construct \mathbf{M}_{r_3} , s.t. $\operatorname{Ker}(\mathbf{M}_{r_3}) = \operatorname{Ker}(\mathbf{M}_{r_1}) + \operatorname{Ker}(\mathbf{M}_{r_2})$
- Sincè
 - dim $\left(\operatorname{Ker}(\mathbf{M}_{r_3})\right) \ge \operatorname{dim}\left(\operatorname{Ker}(\mathbf{M}_{r_1})\right)$

• \mathbf{M}_{r_3} has the same shape as \mathbf{M}_{r_1} We know \mathbf{M}_{r_3} exists!

- Set $\mathbf{r}_3 = \dot{\mathbf{M}}_{r_3}^3 (\mathbf{g}_1 + \mathbf{g}_2)$
- We are done We have $\mathbf{M}_{r_3}\mathbf{x} + \mathbf{r_3} = \mathbf{M}_{r_3}\mathbf{z}$

Stanford CS224W: Knowledge Graph Completion: DistMult

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

New Idea: Bilinear Modeling

- So far: The scoring function f_r(h, t) is negative of
 L1 / L2 distance in TransE and TransR
- Another line of KG embeddings adopt bilinear modeling
- **DistMult**: Entities and relations using vectors in \mathbb{R}^k
- Score function: $f_r(h, t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i$

DistMult

- **DistMult**: Entities and relations using vectors in \mathbb{R}^k
- Score function: $f_r(h, t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i$

• **h**, **r**, **t** $\in \mathbb{R}^k$

- Intuition of the score function: Can be viewed as a cosine similarity between $h \cdot r$ and t
 - where $\mathbf{h} \cdot \mathbf{r}$ is defined as $\sum_i h_i \cdot r_i$
- Example:

1-to-N Relations in DistMult

1-to-N Relations:

- Example: If (h, r, t₁) and (h, r, t₂) exist in the knowledge graph
- Distmult can model 1-to-N relations

Symmetric Relations in DistMult

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \quad \forall h,t$$

• **Example**: Family, Roommate

DistMult can naturally model symmetric relations

$$f_{r}(h,t) = <\mathbf{h}, \mathbf{r}, \mathbf{t} > = \sum_{i} \mathbf{h}_{i} \cdot \mathbf{r}_{i} \cdot \mathbf{t}_{i} = <\mathbf{t}, \mathbf{r}, \mathbf{h} > = f_{r}(t,h)$$

Limitation: Antisymmetric Relations

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \quad \forall h,t$$

- Example: Hypernym
- **DistMult cannot** model antisymmetric relations $f_r(h, t) = < \mathbf{h}, \mathbf{r}, \mathbf{t} > = < \mathbf{t}, \mathbf{r}, \mathbf{h} > = f_r(t, h) \times$
 - r(h, t) and r(t, h) always have same score!

Limitation: Inverse Relations

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example : (Advisor, Advisee)
- DistMult cannot model inverse relations ×
 - If it does model inverse relations:
 - $f_{r_2}(h,t) = <\mathbf{h}, \mathbf{r}_2, \mathbf{t}> = <\mathbf{t}, \mathbf{r_1}, \mathbf{h}> = f_{r_1}(t,h)$
 - This means $\mathbf{r}_2 = \mathbf{r}_1$
 - But semantically this does not make sense: The embedding of "Advisor" should not be the same with "Advisee".

Composition Relations:

 $r_1(x, y) \wedge r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$

• **Example**: My mother's husband is my father.

DistMult cannot model composition relations ×

Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r₁, r₂), cannot be expressed using a single hyperplane.

Composition Relations:

 $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$

• Example: My mother's husband is my father.

- DistMult cannot model composition relations ×
- Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r₁, r₂), cannot be expressed using a single hyperplane.

Detailed derivation

y₂ Pick one *y* s.t. $f_{r_1}(x, y) > 0$, e.g., y_2 Then $\mathbf{y}_2 \cdot \mathbf{r}_2$ defines a new hyperplane

Composition Relations:

 $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$

• **Example**: My mother's husband is my father.

- DistMult cannot model composition relations ×
- Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r₁, r₂), cannot be expressed using a single hyperplane.

Detailed derivation

Pick another *y* s.t. $f_{r_1}(x, y) > 0$, e.g., y_3 Then $y_3 \cdot r_2$ defines another hyperplane

Composition Relations:

 $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$

• Example: My mother's husband is my father.

- DistMult cannot model composition relations ×
 - Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r₁, r₂), cannot be expressed using a single hyperplane.

Detailed derivation

Combine both hyperplanes together, then for all z in the shadow area, there exists $y \in \{y_2, y_3\}$, s.t., $f_{r_2}(y, z) > 0$

Composition Relations:

 $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$

• Example: My mother's husband is my father.

- DistMult cannot model composition relations ×
 - Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r₁, r₂), cannot be expressed using a single hyperplane.

Detailed derivation

Combine both hyperplanes together, then for all z in the shadow area, there exists $y \in \{y_2, y_3\}$, s.t., $f_{r_2}(y, z) > 0$

Composition Relations:

 $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$

• Example: My mother's husband is my father.

- DistMult cannot model composition relations ×
 - Intuition: DistMult defines a hyperplane for each (head, relation), the union of the hyperplane induced by multi-hops of relations, e.g., (r₁, r₂), cannot be expressed using a single hyperplane.

Detailed derivation

According to the composition relations, we also want $f_{r_3}(x,z) > 0$, $\forall z \in \{\text{shadow area}\}$. However, this area inherently cannot be expressed by a single hyperplane defined by $x \cdot r_3$, no matter what r_3 is.

Stanford CS224W: Knowledge Graph Completion: ComplEx

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

ComplEx

 Based on Distmult, ComplEx embeds entities and relations in Complex vector space
 ComplEx: model entities and relations using vectors in C^k

ComplEx

- Based on Distmult, Complex embeds entities and relations in Complex vector space
- ComplEx: model entities and relations using vectors in \mathbb{C}^k
- Score function $f_r(h, t) = \text{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \overline{\mathbf{t}}_i)$

Antisymmetric Relations in ComplEx

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \quad \forall h,t$$

- Example: Hypernym
- Complex can model antisymmetric relations
 - The model is expressive enough to learn
 - High $f_r(h, t) = \operatorname{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \overline{\mathbf{t}}_i)$
 - Low $f_r(t,r) = \operatorname{Re}(\sum_i t_i \cdot \mathbf{r}_i \cdot \overline{\mathbf{h}}_i)$

Due to the asymmetric modeling using complex conjugate.

Symmetric Relations in ComplEx

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \quad \forall h,t$$

• **Example**: Family, Roommate

Complex can model symmetric relations

• When
$$Im(\mathbf{r}) = 0$$
, we have

•
$$f_{r}(h,t) = \operatorname{Re}(\sum_{i} \mathbf{h}_{i} \cdot \mathbf{r}_{i} \cdot \bar{\mathbf{t}}_{i}) = \sum_{i} \operatorname{Re}(\mathbf{r}_{i} \cdot \mathbf{h}_{i} \cdot \bar{\mathbf{t}}_{i})$$

 $= \sum_{i} \mathbf{r}_{i} \cdot \operatorname{Re}(\mathbf{h}_{i} \cdot \bar{\mathbf{t}}_{i}) = \sum_{i} \mathbf{r}_{i} \cdot \operatorname{Re}(\bar{\mathbf{h}}_{i} \cdot \mathbf{t}_{i}) = \sum_{i} \operatorname{Re}(\mathbf{r}_{i} \cdot \bar{\mathbf{h}}_{i} \cdot \mathbf{t}_{i})$
 $\mathbf{t}_{i} = f_{r}(t,h)$

Inverse Relations in ComplEx

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

Example : (Advisor, Advisee)

Complex can model inverse relations

$$\mathbf{r}_1 = \bar{\mathbf{r}}_2$$

Complex conjugate of

Composition and 1-to-N

Composition Relations:

- $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$
- Example: My mother's husband is my father.

1-to-N Relations:

- Example: If (h, r, t₁) and (h, r, t₂) exist in the knowledge graph
- ComplEx share the same property with DistMult
 - Cannot model composition relations
 - Can model 1-to-N relations

Expressiveness of All Models

Properties and expressive power of different
 KG completion methods:

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	h , t , $\mathbf{r} \in \mathbb{R}^k$	×	\checkmark	\checkmark	\checkmark	×
TransR	$-\ \boldsymbol{M}_r\mathbf{h}+\mathbf{r}\\-\boldsymbol{M}_r\mathbf{t}\ $	h , t , r $\in \mathbb{R}^k$, $M_r \in \mathbb{R}^{d \times k}$	\checkmark	\checkmark	~	\checkmark	\checkmark
DistMult	< h, r, t >	h , t , $\mathbf{r} \in \mathbb{R}^k$	\checkmark	×	×	×	\checkmark
ComplEx	Re(< h , r , t >)	h , t , $\mathbf{r} \in \mathbb{C}^k$	\checkmark	\checkmark	\checkmark	×	\checkmark

KG Embeddings in Practice

- Different KGs may have drastically different relation patterns!
- 2. There is not a general embedding that works for all KGs, use the **table** to select models
- 3. Try **TransE** for a quick run if the target KG does not have much symmetric relations
- 4. Then use more expressive models, e.g.,
 Complex, RotatE (TransE in Complex space)

Summary of Knowledge Graph

- Link prediction / Graph completion is one of the prominent tasks on knowledge graphs
- Introduce TransE / TransR / DistMult / ComplEx models with different embedding space and expressiveness
- Next: Reasoning in Knowledge Graphs