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ANNOUNCEMENTS
• Project Proposal due today



 So far we only handle graphs with one edge 
type

 How to handle graphs with multiple nodes or 
edge types (a.k.a heterogeneous graphs)?

 Goal: Learning with heterogeneous graphs

▪ Relational GCNs

▪ Heterogeneous Graph Transformer

▪ Design space for heterogeneous GNNs
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2 types of nodes:
 Node type A: Paper nodes
 Node type B: Author nodes
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2 types of edges:
 Edge type A: Cite
 Edge type B: Like
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A graph could have multiple types of nodes and 
edges! 2 types of nodes + 2 types of edges.
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Relation types: (node_start, edge, node_end)
 We use relation type to describe an edge (as 

opposed to edge type)
 Relation type better captures the interaction 

between nodes and edges

(Paper, Cite, Paper)

(Paper, Like, Paper)

(Paper, Cite, Author)

(Paper, Like, Author)

(Author, Cite, Author)

(Author, Like, Author)

(Author, Cite, Paper)

(Author, Like, Paper)

8 possible relation types!



 A heterogeneous graph is defined as 
𝑮 = 𝑽,𝑬, 𝜏, 𝜙

▪ Nodes with node types 𝑣 ∈ 𝑉

▪Node type for node 𝑣: 𝜏 𝑣

▪ Edges with edge types (𝑢, 𝑣) ∈ 𝐸

▪ Edge type for edge (𝑢, 𝑣): 𝜙 𝑢, 𝑣

▪ Relation type for edge 𝑒 is a tuple: 𝑟 𝑢, 𝑣 =
(𝜏 𝑢 ,𝜙 𝑢, 𝑣 , 𝜏(𝑣))

 There are other definitions for heterogeneous graphs 
as well – describe graphs with node & edge types
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An edge can be 

described as a 

pair of nodes
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Event GraphsBiomedical Knowledge Graphs

Example node: SFO
Example relation: (UA689, Origin, 
LAX) 
Example node type: Flight
Example edge type: Destination

Example node: Migraine
Example relation: (fulvestrant, 
Treats, Breast Neoplasms) 
Example node type: Protein
Example edge type: Causes



 Example: E-Commerce Graph

▪ Node types: User, Item, Query, Location, ...

▪ Edge types: Purchase, Visit, Guide, Search, …

▪ Different node type's features spaces can be different!
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 Example: Academic Graph

▪ Node types: Author, Paper, Venue, Field, ...

▪ Edge types: Publish, Cite, …

▪ Benchmark dataset: Microsoft Academic Graph
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 Observation: We can also treat types of 
nodes and edges as features

▪ Example: Add a one-hot indicator for nodes and 
edges

▪ Append feature [1, 0] to each “author node”; Append 
feature [0, 1] to each “paper node”

▪ Similarly, we can assign edge features to edges with 
different types

▪ Then, a heterogeneous graph reduces to a 
standard graph

 When do we need a heterogeneous graph?
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 When do we need a heterogeneous graph?

▪ Case 1: Different node/edge types have different 
shapes of features

▪ An “author node” has 4-dim feature, a “paper node” has 
5-dim feature

▪ Case 2: We know different relation types 
represent different types of interactions

▪ (English, translate, French) and (English, translate, 
Chinese) require different models
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 Ultimately, heterogeneous graph is a more 
expressive graph representation

▪ Captures different types of interactions between 
entities

 But it also comes with costs

▪ More expensive (computation, storage)

▪ More complex implementation

 There are many ways to convert a 
heterogeneous graph to a standard graph 
(that is, a homogeneous graph)
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 (1) Graph Convolutional Networks (GCN)

 How to write this as Message + Aggregation?
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Aggregation

Message

Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf


 We will extend GCN to handle heterogeneous 
graphs with multiple edge/relation types

 We start with a directed graph with one relation

▪ How do we run GCN and update the representation of 
the target node A on this graph?
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 We will extend GCN to handle heterogeneous 
graphs with multiple edge/relation types

 We start with a directed graph with one relation

▪ How do we run GCN and update the representation of 
the target node A on this graph?
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 What if the graph has multiple relation types?
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 What if the graph has multiple relation types?
 Use different neural network weights for 

different relation types.

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

Weights 𝐖𝑟1
for 𝑟1

Weights 𝐖𝑟2
for 𝑟2

Weights 𝐖𝑟3
for 𝑟3
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 What if the graph has multiple relation types?
 Use different neural network weights for 

different relation types!
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 Introduce a set of neural networks for each 
relation type!
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…
Weight for rel_1

Weight for rel_N

…

Weight for self-loop



 Relational GCN (RGCN):

 How to write this as Message + Aggregation?
 Message:
▪ Each neighbor of a given relation: 

𝐦𝑢,𝑟
(𝑙)

=
1

𝑐𝑣,𝑟
𝐖𝑟

𝑙
𝐡𝑢
(𝑙)

▪ Self-loop:

𝐦𝑣
(𝑙)

= 𝐖0
𝑙
𝐡𝑣
(𝑙)

 Aggregation:
▪ Sum over messages from neighbors and self-loop, then apply activation

▪ 𝐡𝑣
𝑙+1

= 𝜎 Sum 𝐦𝑢,𝑟
𝑙
, 𝑢 ∈ 𝑁(𝑣) ∪ 𝐦𝑣

𝑙
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Normalized by node degree 
of the relation 𝑐𝑣,𝑟 = 𝑁𝑣

𝑟



 Each relation has 𝐿 matrices: 𝐖𝑟
1
,𝐖𝑟

2
⋯𝐖𝑟

𝐿

 The size of each 𝐖𝑟
𝑙

is 𝑑(𝑙+1) × 𝑑(𝑙)

 Rapid growth of the number of parameters w.r.t
number of relations!

▪ Overfitting becomes an issue

 Two methods to regularize the weights 𝐖𝒓
(𝒍)

▪ (1) Use block diagonal matrices

▪ (2) Basis/Dictionary learning
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𝑑(𝑙) is the hidden 

dimension in layer 𝑙



 Key insight: make the weights sparse!
 Use block diagonal matrices for 𝐖𝑟

 If use 𝐵 low-dimensional matrices, then # param 

reduces from to 
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𝐖𝑟 =

Limitation: only nearby 

neurons/dimensions

can interact through 𝑊



 Key insight: Share weights across different 
relations!

 Represent the matrix of each relation as a linear 
combination of basis transformations
𝐖𝑟 = σ𝑏=1

𝐵 𝑎𝑟𝑏 ⋅ 𝐕𝑏, where 𝐕𝑏 is shared across 
all relations
▪ 𝐕𝑏 are the basis matrices

▪ 𝑎𝑟𝑏 is the importance weight of matrix 𝐕𝑏

 Now each relation only needs to learn 𝑎𝑟𝑏 𝑏=1
𝐵 , 

which is 𝐵 scalars
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 Goal: Predict the label of a given node
 RGCN uses the representation of the final layer:

▪ If we predict the class of node 𝑨 from 𝒌 classes

▪ Take the final layer (prediction head): 𝐡𝐴
(𝐿)

∈ ℝ𝑘, 

each item in 𝐡𝐴
(𝐿)

represents the probability of that 

class
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 Link prediction split:
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The original graph
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2
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Split Graph with 4
categories of edges

Split

Training message edges
Training supervision edges
Validation edges
Test edges

Every edge also has a 
relation type, this is 
independent of the 4 
categories.

Training message edges for 𝒓𝟏
Training supervision edges for 𝒓𝟏
Validation edges for 𝒓𝟏
Test edges for 𝒓𝟏

Training message edges for 𝒓𝒏
Training supervision edges for 𝒓𝒏
Validation edges for 𝒓𝒏
Test edges for 𝒓𝒏

…
..

In a heterogeneous 
graph, the homogeneous 
graphs formed by every 
single relation also have 
the 4 splits.



 Assume 𝑬, 𝒓𝟑 , 𝑨 is training supervision edge, 
all the other edges are training message edges

 Use RGCN to score 𝑬, 𝒓𝟑 , 𝑨 ! 

▪ Take the final layer of 𝐸 and 𝐴: 𝐡𝐸
𝐿

and 𝐡𝐴
(𝐿)

∈ ℝ𝑑

▪ Relation-specific score function 𝑓𝑟: ℝ
𝑑 × ℝ𝑑 → ℝ

▪ One example 𝑓𝑟1 𝐡𝐸 , 𝐡𝐴 = 𝐡𝐸
𝑇𝐖𝑟1𝐡𝐴, 𝐖𝑟1 ∈ ℝ𝑑×𝑑
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 Training:
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training supervision edges: 𝑬, 𝒓𝟑,𝑨
training message edges: all the rest 

existing edges (solid lines)

(1) Use training message edges to 
predict training supervision edges

1. Use RGCN to score the training 
supervision edge 𝑬, 𝒓𝟑, 𝑨

2. Create a negative edge by perturbing 
the supervision edge 𝑬,𝒓𝟑 , 𝑩
• Corrupt the tail of 𝑬, 𝒓𝟑 , 𝑨

• e.g., 𝑬,𝒓𝟑 , 𝑩 , 𝑬, 𝒓𝟑, 𝑫

Note the negative edges should NOT 
belong to training message edges or 
training supervision edges!
e.g., 𝑬, 𝒓𝟑, 𝑪 is NOT a negative edge
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 Training:
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1. Use RGCN to score the training 
supervision edge 𝑬, 𝒓𝟑, 𝑨

2. Create a negative edge by perturbing 
the supervision edge 𝑬,𝒓𝟑 , 𝑩

3. Use GNN model to score negative edge
4. Optimize a standard cross entropy loss 

(as discussed in Lecture 6)
1. Maximize the score of training supervision edge
2. Minimize the score of negative edge
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Input Graph
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𝑟2 𝑟2

𝑟3

𝑟3

𝑟1
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ℓ = − log𝜎 𝑓𝑟3 ℎ𝐸 , ℎ𝐴 − log(1 − 𝜎 𝑓𝑟3 (ℎ𝐸 , ℎ𝐵))

𝜎 … Sigmoid function



 Evaluation:

▪ Validation time as an example, same at the test time

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

Evaluate how the model can predict the 
validation edges with the relation types.
Let’s predict validation edge 𝑬, 𝒓𝟑, 𝑫
Intuition: the score of 𝑬, 𝒓𝟑, 𝑫 should be 
higher than all 𝑬, 𝒓𝟑, 𝒗 where 𝑬,𝒓𝟑, 𝒗 is NOT
in the training message edges and training 
supervision edges, e.g., 𝑬, 𝒓𝟑, 𝑩

validation edges: 𝑬,𝒓𝟑, 𝑫
training message edges & training supervision 

edges: all existing edges (solid lines)

(2) At validation time:
Use training message edges & training 

supervision edges to predict validation edges
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 Evaluation:

▪ Validation time as an example, same at the test time
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Evaluate how the model can predict the 
validation edges with the relation types.
Let’s predict validation edge 𝑬, 𝒓𝟑, 𝑫
Intuition: the score of 𝑬, 𝒓𝟑, 𝑫 should be 
higher than all 𝑬, 𝒓𝟑, 𝒗 where 𝑬,𝒓𝟑, 𝒗 is NOT
in the training message edges and training 
supervision edges, e.g., 𝑬, 𝒓𝟑, 𝑩
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1. Calculate the score of 𝑬,𝒓𝟑, 𝑫
2. Calculate the score of all the negative edges: 𝑬,𝒓𝟑, 𝒗 𝒗 ∈ 𝑩,𝑭 , since 𝑬,𝒓𝟑, 𝑨 , 

𝑬,𝒓𝟑, 𝑪 belong to training message edges & training supervision edges
3. Obtain the ranking 𝑹𝑲 of 𝑬,𝒓𝟑,𝑫 .
4. Calculate metrics

1. Hits@𝒌: 𝟏 𝑹𝑲 ≤ 𝒌 . Higher is better

2. Reciprocal Rank: 
𝟏

𝑹𝑲
. Higher is better



 Benchmark dataset

▪ ogbn-mag from Microsoft Academic Graph (MAG)

 Four (4) types of entities

▪ Papers: 736k nodes

▪ Authors: 1.1m nodes

▪ Institutions: 9k nodes

▪ Fields of study: 60k nodes
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Wang et al. Microsoft academic graph: When experts are not enough.Quantitative Science Studies 2020.

https://ogb.stanford.edu/docs/nodeprop/
https://direct.mit.edu/qss/article/1/1/396/15572/Microsoft-Academic-Graph-When-experts-are-not


 Benchmark dataset

▪ ogbn-mag from Microsoft Academic Graph (MAG)

 Four (4) directed relations

▪ An author is "affiliated with" an institution

▪ An author "writes" a paper

▪ A paper "cites" a paper

▪ A paper "has a topic of" a field of study

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Wang et al. Microsoft academic graph: When experts are not enough.Quantitative Science Studies 2020.

https://ogb.stanford.edu/docs/nodeprop/
https://direct.mit.edu/qss/article/1/1/396/15572/Microsoft-Academic-Graph-When-experts-are-not


 Prediction task

▪ Each paper has a 128-dimensional word2vec feature vector

▪ Given the content, references, authors, and author affiliations
from ogbn-mag, predict the venue of each paper

▪ 349-class classification problem due to 349 venues considered

 Time-based dataset splitting

▪ Training set: papers published before 2018

▪ Test set: papers published after 2018
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Wang et al. Microsoft academic graph: When experts are not enough.Quantitative Science Studies 2020.

https://direct.mit.edu/qss/article/1/1/396/15572/Microsoft-Academic-Graph-When-experts-are-not


 Benchmark results:

▪ SOTA method: SeHGNN

▪ ComplEx (Next lecture) + Simplified GCN (Lecture 17)
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Wang et al. Microsoft academic graph: When experts are not enough.Quantitative Science Studies 2020.

SOTA

R-GCN

https://direct.mit.edu/qss/article/1/1/396/15572/Microsoft-Academic-Graph-When-experts-are-not


 Relational GCN, a graph neural network for 
heterogeneous graphs

 Can perform entity classification as well as 
link prediction tasks.

 Ideas can easily be extended into RGNN 
(RGraphSAGE, RGAT, etc.)

 Benchmark: ogbn-mag from Microsoft 
Academic Graph, to predict paper venues
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 Graph Attention Networks (GAT)

Not all node’s neighbors are equally important

▪ Attention is inspired by cognitive attention. 

▪ The attention 𝜶𝒗𝒖 focuses on the important parts of 
the input data and fades out the rest. 

▪ Idea: the NN should devote more computing power on that 
small but important part of the data. 

 Can we adapt GAT for heterogeneous graphs?

𝐡𝑣
(𝑙)

= 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖
(𝑙)𝐡𝑢

(𝑙−1)
)
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Attention weights



 Motivation: GAT is unable to represent different 
node & different edge types

 Introduce a set of neural networks for each 
relation type is too expensive for attention

▪ Recall: relation describes (node_s, edge, node_e)
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Hu et al. Heterogeneous Graph Transformer. WWW 2020.

Weight for rel_1

Weight for rel_N

… Too expensive! 

https://arxiv.org/abs/2003.01332


 HGT uses Scaled Dot-Product Attention 
(proposed in Transformer)
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 Query: 𝑄, Key: 𝐾, Value: 𝑉

▪ 𝑄, 𝐾, 𝑉 have shape (batch_size, dim)
How do we obtain 𝑄, 𝐾, 𝑉?
 Apply Linear layer to the input

▪ 𝑄 = 𝑄_𝐿𝑖𝑛𝑒𝑎𝑟(𝑋)

▪ 𝐾 = 𝐾_𝐿𝑖𝑛𝑒𝑎𝑟(𝑋)

▪ 𝑉 = 𝑉_𝐿𝑖𝑛𝑒𝑎𝑟(𝑋)



 Recall: Applying GAT to a homogeneous graph

▪ 𝐻 𝑙 is the 𝑙-th layer representation:
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Hu et al. Heterogeneous Graph Transformer. WWW 2020.

How do we take relation type (node_s, edge, 
node_e) into attention computation?

https://arxiv.org/abs/2003.01332


 Innovation: Decompose heterogeneous attention to 
Node- and edge-type dependent attention mechanism

▪ 3 node weight matrices, 2 edge weight matrices

▪ Without decomposition: 3*2*3=18 relation types -> 18 
weight matrices (suppose all relation types exist)
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Hu et al. Heterogeneous Graph Transformer. WWW 2020.

…
…
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 Heterogeneous Mutual Attention: 

 Each relation (𝑇 𝑠 , 𝑅 𝑒 , 𝑇 𝑡 ) has a distinct set 
of projection weights

▪ 𝑇 𝑠 : type of node 𝑠, 𝑅 𝑒 : type of edge 𝑒

▪ 𝑇(𝑠) & 𝑇(𝑡) parameterize 𝐾_𝐿𝑖𝑛𝑒𝑎𝑟𝑇 𝑠 & 𝑄_𝐿𝑖𝑛𝑒𝑎𝑟𝑇 𝑡 , 

which further return Key and Query vectors 𝐾(𝑠)& 𝑄(𝑡)

▪ Edge type 𝑅(𝑒) directly parameterizes WR(e)
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Hu et al. Heterogeneous Graph Transformer. WWW 2020.

https://arxiv.org/abs/2003.01332
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We have just computed

 Similarly, HGT decomposes weights with node & edge 
types in the message computation

Weights for 

each node type

Weights for 

each edge type

 A full HGT layer
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Hu et al. Heterogeneous Graph Transformer. WWW 2020.

 Benchmark: ogbn-mag from Microsoft 
Academic Graph, to predict paper venues

 HGT uses much fewer parameters, even 
though the attention computation is expensive, 
while performs better than R-GCN

▪ Thanks to the weight decomposition over node & 
edge types

https://arxiv.org/abs/2003.01332


CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu
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(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we extend the general GNN design 
space to heterogeneous graphs?

https://arxiv.org/pdf/2011.08843.pdf


 (1) Message computation

▪ Message function: 

▪ Intuition: Each node will create a message, which will be 
sent to other nodes later

▪ Example: A Linear layer 𝐦𝑢
(𝑙)

=𝐖 𝑙 𝐡𝑢
𝑙−1
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(2) Aggregation

(1) Message

Node 𝒗

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1



 (1) Heterogeneous message computation

▪ Message function: 

▪ Observation: A node could receive multiple types of 
messages. Num of message type = Num of relation 
type

▪ Idea: Create a different message function for each 
relation type

▪𝐦𝑢
(𝑙)

= MSG𝑟
𝑙

𝐡𝑢
𝑙−1

, 𝑟 = (𝑢, 𝑒, 𝑣) is the relation 

type between node 𝑢 that sends the message, edge 
type 𝑒 , and node 𝑣 that receive the message

▪ Example: A Linear layer 𝐦𝑢
(𝑙)
= 𝐖𝑟

𝑙
𝐡𝑢

𝑙−1
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𝐦𝑢
(𝑙)

= MSG𝑟
𝑙

𝐡𝑢
𝑙−1



 (2) Aggregation
▪ Intuition: Each node will aggregate the messages from 

node 𝑣’s neighbors

▪ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

▪𝐡𝑣
𝑙
= Sum({𝐦𝑢

𝑙
, 𝑢 ∈ 𝑁(𝑣)})

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙 , 𝑢 ∈ 𝑁 𝑣
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(2) Aggregation

(1) Message

Node 𝒗



 (2) Heterogeneous Aggregation
▪ Observation: Each node could receive multiple types of 

messages from its neighbors, and multiple neighbors 
may belong to each message type.

▪ Idea: We can define a 2-stage message passing

▪Given all the messages sent to a node

▪Within each message type, aggregate the messages 

that belongs to the edge type with AGG𝑟
𝑙

▪Aggregate across the edge types with AGG𝑎𝑙𝑙
𝑙

▪ Example: 𝐡𝑣
𝑙
= Concat Sum 𝐦𝑢

𝑙
, 𝑢 ∈ 𝑁𝑟 𝑣
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 (3) Layer connectivity

▪ Add skip connections, pre/post-process layers
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Pre-processing layers: Important when 
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when 
reasoning / transformation over node 
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!



 Heterogeneous pre/post-process layers: 

▪ MLP layers with respect to each node type

▪ Since the output of GNN are node embeddings

▪ 𝐡𝑣
(𝑙)

= MLP𝑇(𝑣)(𝐡𝑣
(𝑙)
)

▪ 𝑇(𝑣) is the type of node 𝑣
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 Other successful GNN designs are 
also encouraged for heterogeneous 
GNNs: skip connections, batch/layer 
normalization, …



 Graph Feature manipulation

▪ The input graph lacks features → feature 
augmentation

 Graph Structure manipulation

▪ The graph is too sparse → Add virtual nodes / edges

▪ The graph is too dense → Sample neighbors when 
doing message passing

▪ The graph is too large → Sample subgraphs to 
compute embeddings 

▪ Will cover later in lecture: Scaling up GNNs

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58



 Graph Feature manipulation

▪ 2 Common options: compute graph statistics (e.g., 
node degree) within each relation type, or across the 
full graph (ignoring the relation types)

 Graph Structure manipulation

▪ Neighbor and subgraph sampling are also common 
for heterogeneous graphs.

▪ 2 Common options: sampling within each relation 
type (ensure neighbors from each type are covered), 
or sample across the full graph
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Node-level prediction: 

Edge-level prediction:

 =

Linear(Concat(𝐡𝑢
𝐿
,𝐡𝑣

𝐿
))

Graph-level prediction:
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Node-level prediction: 

Edge-level prediction:

 =

Linear𝑟(Concat(𝐡𝑢
𝐿
, 𝐡𝑣

𝐿
))

Graph-level prediction:

ℝ𝑑 , ∀𝑇 𝑣 = 𝑖}))
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(2) Aggregation

(1) Message

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Heterogeneous GNNs extend GNNs by separately 
modeling node/relation types + additional AGG

https://arxiv.org/pdf/2011.08843.pdf


 Heterogeneous graphs: graphs with multiple 
nodes or edge types

▪ Key concept: relation type (node_s, edge, node_e)

▪ Be aware that we don’t always need 
heterogeneous graphs

 Learning with heterogeneous graphs

▪ Key idea: separately model each relation type

▪ Relational GCNs

▪ Heterogeneous Graph Transformer

▪ Design space for heterogeneous GNNs
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