Stanford CS224W: Machine Learning with Heterogeneous Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

ANNOUNCEMENTS

- Project Proposal due today

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Today: Heterogeneous Graphs

- So far we only handle graphs with one edge type
- How to handle graphs with multiple nodes or edge types (a.k.a heterogeneous graphs)?
- Goal: Learning with heterogeneous graphs
- Relational GCNs
- Heterogeneous Graph Transformer
- Design space for heterogeneous GNNs

Stanford CS224W: Heterogeneous Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Heterogeneous Graphs: Motivation

2 types of nodes:

- Node type A: Paper nodes
- Node type B: Author nodes

Heterogeneous Graphs: Motivation

2 types of edges:

- Edge type A: Cite
- Edge type B: Like

Heterogeneous Graphs: Motivation

A graph could have multiple types of nodes and edges! $\mathbf{2}$ types of nodes + $\mathbf{2}$ types of edges.

Heterogeneous Graphs: Motivation

8 possible relation types!

(Paper, Cite, Paper)
(Paper, Like, Paper)
(Paper, Cite, Author)
(Paper, Like, Author)

(Author, Cite, Author)
(Author, Like, Author)
(Author, Cite, Paper)
(Author, Like, Paper)
Relation types: (node_start, edge, node_end)

- We use relation type to describe an edge (as opposed to edge type)
- Relation type better captures the interaction between nodes and edges

Heterogeneous Graphs

- A heterogeneous graph is defined as

$$
\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E}, \tau, \phi)
$$

- Nodes with node types $v \in V$
- Node type for node $v: \tau(v)$
- Edges with edge types $(u, v) \in E$

An edge can be described as a pair of nodes

- Edge type for edge $(u, v): \phi(u, v)$
- Relation type for edge e is a tuple: $r(u, v)=$ $(\tau(u), \phi(u, v), \tau(v))$
- There are other definitions for heterogeneous graphs as well - describe graphs with node \& edge types

Many Graphs are Heterogeneous Graphs (1)

Biomedical Knowledge Graphs
Example node: Migraine
Example relation: (fulvestrant, Treats, Breast Neoplasms)
Example node type: Protein
Example edge type: Causes

Event Graphs

Example node: SFO
Example relation: (UA689, Origin, LAX)
Example node type: Flight
Example edge type: Destination

Many Graphs are Heterogeneous Graphs (2)

- Example: E-Commerce Graph
- Node types: User, Item, Query, Location, ...
- Edge types: Purchase, Visit, Guide, Search, ...
- Different node type's features spaces can be different!

Many Graphs are Heterogeneous Graphs (3)

- Example: Academic Graph
- Node types: Author, Paper, Venue, Field, ...
- Edge types: Publish, Cite, ...
- Benchmark dataset: Microsoft Academic Graph

Discussions: Type or Feature?

- Observation: We can also treat types of nodes and edges as features
- Example: Add a one-hot indicator for nodes and edges
- Append feature [1, 0] to each "author node"; Append feature [0, 1] to each "paper node"
- Similarly, we can assign edge features to edges with different types
- Then, a heterogeneous graph reduces to a standard graph
- When do we need a heterogeneous graph?

Discussions: Type or Feature?

- When do we need a heterogeneous graph?
- Case 1: Different node/edge types have different shapes of features
- An "author node" has 4-dim feature, a "paper node" has 5-dim feature
- Case 2: We know different relation types represent different types of interactions
- (English, translate, French) and (English, translate, Chinese) require different models

Discussions: Heterogeneous?

- Ultimately, heterogeneous graph is a more expressive graph representation
- Captures different types of interactions between entities
- But it also comes with costs
- More expensive (computation, storage)
- More complex implementation
- There are many ways to convert a heterogeneous graph to a standard graph (that is, a homogeneous graph)

Stanford CS224W: Relational GCN (RGCN)

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Classical GNN Layers: GCN

- (1) Graph Convolutional Networks (GCN)

$$
\mathbf{h}_{v}^{(l)}=\sigma\left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)
$$

- How to write this as Message + Aggregation?

$$
\begin{aligned}
& \text { Message } \\
& \mathbf{h}_{v}^{(l)}=\sigma\left(\sum_{u \in N(v)} W^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right) \\
& \text { (2) Aggregation } \\
& \text { (1) Message }
\end{aligned}
$$

Aggregation

Relational GCN

- We will extend GCN to handle heterogeneous graphs with multiple edge/relation types
- We start with a directed graph with one relation
- How do we run GCN and update the representation of the target node A on this graph?

Input Graph

Relational GCN

- We will extend GCN to handle heterogeneous graphs with multiple edge/relation types
- We start with a directed graph with one relation
- How do we run GCN and update the representation of the target node A on this graph?

Relational GCN (1)

- What if the graph has multiple relation types?

Input graph

Relational GCN (2)

- What if the graph has multiple relation types?
- Use different neural network weights for different relation types.

Input graph

Relational GCN (3)

- What if the graph has multiple relation types?
- Use different neural network weights for different relation types! Aggregation

Relational GCN (4)

- Introduce a set of neural networks for each relation type!

Weight for rel_1
$\square \square \square$
Weight for rel_N

Relational GCN: Definition

- Relational GCN (RGCN):

$$
\mathbf{h}_{v}^{(l+1)}=\sigma\left(\sum_{r \in R} \sum_{u \in N_{v}^{r}} \frac{1}{c_{v, r}} \mathbf{W}_{r}^{(l)} \mathbf{h}_{u}^{(l)}+\mathbf{W}_{0}^{(l)} \mathbf{h}_{v}^{(l)}\right)
$$

- How to write this as Message + Aggregation?
- Message:
- Each neighbor of a given relation:

Normalized by node degree of the relation $c_{v, r}=\left|N_{v}^{r}\right|$

$$
\mathbf{m}_{u, r}^{(l)}=\frac{1}{c_{v, r}} \mathbf{W}_{r}^{(l)} \mathbf{h}_{u}^{(l)}
$$

- Self-loop:

$$
\mathbf{m}_{v}^{(l)}=\mathbf{W}_{0}^{(l)} \mathbf{h}_{v}^{(l)}
$$

- Aggregation:
- Sum over messages from neighbors and self-loop, then apply activation
- $\mathbf{h}_{v}^{(l+1)}=\sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u, r}^{(l)}, u \in N(v)\right\} \cup\left\{\mathbf{m}_{v}^{(l)}\right\}\right)\right)$

RGCN: Scalability

- Each relation has L matrices: $\mathbf{W}_{r}^{(1)}, \mathbf{W}_{r}^{(2)} \cdots \mathbf{W}_{r}^{(L)}$
- The size of each $\mathbf{W}_{r}^{(l)}$ is $d^{(l+1)} \times d^{(l)} \quad \begin{aligned} & d^{(l)} \text { is the hiddon } \\ & \text { dimension in layer } l\end{aligned}$
- Rapid growth of the number of parameters w.r.t number of relations!
- Overfitting becomes an issue
- Two methods to regularize the weights $\mathbf{W}_{r}^{(l)}$
- (1) Use block diagonal matrices
- (2) Basis/Dictionary learning

(1) Block Diagonal Matrices

- Key insight: make the weights sparse!
- Use block diagonal matrices for \mathbf{W}_{r}

Limitation: only nearby neurons/dimensions
can interact through W

- If use B low-dimensional matrices, then \# param reduces from $d^{(l+1)} \times d^{(l)}$ to $B \times \frac{d^{(l+1)}}{B} \times \frac{d^{(l)}}{B}$

(2) Basis Learning

- Key insight: Share weights across different relations!
- Represent the matrix of each relation as a linear combination of basis transformations $\mathbf{W}_{r}=\sum_{b=1}^{B} a_{r b} \cdot \mathbf{V}_{b}$, where \mathbf{V}_{b} is shared across all relations
- \mathbf{V}_{b} are the basis matrices
- $a_{r b}$ is the importance weight of matrix \mathbf{V}_{b}
- Now each relation only needs to learn $\left\{a_{r b}\right\}_{b=1}^{B}$, which is B scalars

Example: Entity/Node Classification

- Goal: Predict the label of a given node
- RGCN uses the representation of the final layer:
- If we predict the class of node A from k classes
- Take the final layer (prediction head): $\mathbf{h}_{A}^{(L)} \in \mathbb{R}^{k}$, each item in $\mathbf{h}_{A}^{(L)}$ represents the probability of that class

Example: Link Prediction

- Link prediction split:

The original graph

RGCN for Link Prediction (1)

- Assume (E, r_{3}, A) is training supervision edge, all the other edges are training message edges
- Use RGCN to score (E, r_{3}, A)!
- Take the final layer of E and $A: \mathbf{h}_{E}^{(L)}$ and $\mathbf{h}_{A}^{(L)} \in \mathbb{R}^{d}$
- Relation-specific score function $f_{r}: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$
- One example $f_{r_{1}}\left(\mathbf{h}_{E}, \mathbf{h}_{A}\right)=\mathbf{h}_{E}^{T} \mathbf{W}_{r_{1}} \mathbf{h}_{A}, \mathbf{W}_{r_{1}} \in \mathbb{R}^{d \times d}$

RGCN for Link Prediction (2)

- Training:

1. Use RGCN to score the training supervision edge (E, r_{3}, A)
2. Create a negative edge by perturbing the supervision edge $\left(\boldsymbol{E}, r_{3}, \boldsymbol{B}\right)$

- Corrupt the tail of $\left(E, r_{3}, A\right)$
- e.g., $\left(E, r_{3}, B\right),\left(E, r_{3}, D\right)$

Note the negative edges should NOT belong to training message edges or training supervision edges!
e.g., (E, r_{3}, C) is NOT a negative edge
training supervision edges: $\left(\boldsymbol{E}, r_{3}, \boldsymbol{A}\right)$ training message edges: all the rest existing edges (solid lines)
(1) Use training message edges to predict training supervision edges

RGCN for Link Prediction (3)

- Training:

1. Use RGCN to score the training supervision edge $\left(E, r_{3}, A\right)$
2. Create a negative edge by perturbing the supervision edge ($\boldsymbol{E}, r_{3}, \boldsymbol{B}$)
3. Use GNN model to score negative edge
4. Optimize a standard cross entropy loss (as discussed in Lecture 6)
5. Maximize the score of training supervision edge
6. Minimize the score of negative edge

$$
\ell=-\log \sigma\left(f_{r_{3}}\left(h_{E}, h_{A}\right)\right)-\log \left(1-\sigma\left(f_{r_{3}}\left(h_{E}, h_{B}\right)\right)\right)
$$

σ... Sigmoid function

RGCN for Link Prediction (4)

- Evaluation:

- Validation time as an example, same at the test time

Evaluate how the model can predict the validation edges with the relation types. Let's predict validation edge (E, r_{3}, D) Intuition: the score of $\left(E, r_{3}, D\right)$ should be higher than all $\left(E, r_{3}, v\right)$ where $\left(E, r_{3}, v\right)$ is NOT in the training message edges and training supervision edges, e.g., ($\boldsymbol{E}, r_{3}, \boldsymbol{B}$)
validation edges: $\left(E, r_{3}, D\right)$
training message edges \& training supervision
edges: all existing edges (solid lines)
(2) At validation time:

Use training message edges \& training
supervision edges to predict vallidation edges

RGCN for Link Prediction (5)

- Evaluation:

- Validation time as an example, same at the test time

Evaluate how the model can predict the validation edges with the relation types. Let's predict validation edge (E, r_{3}, D) Intuition: the score of $\left(E, r_{3}, D\right)$ should be higher than all $\left(E, r_{3}, v\right)$ where $\left(E, r_{3}, v\right)$ is NOT in the training message edges and training supervision edges, e.g., ($\boldsymbol{E}, r_{3}, \boldsymbol{B}$)

1. Calculate the score of $\left(E, r_{3}, D\right)$
2. Calculate the score of all the negative edges: $\left\{\left(E, r_{3}, v\right) \mid v \in\{B, F\}\right\}$, since $\left(E, r_{3}, A\right)$, (E, r_{3}, C) belong to training message edges $\&$ training supervision edges
3. Obtain the ranking $R K$ of $\left(E, r_{3}, D\right)$.
4. Calculate metrics
5. Hits@k:1[RK $\leq k]$. Higher is better
6. Reciprocal Rank: $\frac{1}{R K}$. Higher is better

Benchmark for Heterogeneous Graphs (1)

- Benchmark dataset
- ogbn-mag from Microsoft Academic Graph (MAG)
- Four (4) types of entities
- Papers: 736k nodes
- Authors: 1.1m nodes
- Institutions:9k nodes
- Fields of study: 60k nodes

Benchmark for Heterogeneous Graphs (2)

- Benchmark dataset
- ogbn-mag from Microsoft Academic Graph (MAG)
- Four (4) directed relations
- An author is "affiliated with" an institution
- An author "writes" a paper
- A paper "cites" a paper
- A paper "has a topic of" a field of study

Benchmark for Heterogeneous Graphs (3)

- Prediction task
- Each paper has a 128-dimensional word2vec feature vector
- Given the content, references, authors, and author affiliations from ogbn-mag, predict the venue of each paper
- 349-class classification problem due to 349 venues considered
- Time-based dataset splitting
- Training set: papers published before 2018
- Test set: papers published after 2018

Benchmark for Heterogeneous Graphs (4)

- Benchmark results:

	Rank	Method	Ext. data	Test Accuracy	Validation Accuracy	Contact	References	\#Params	Hardware	Date
SOTA	1	SeHGNN (ComplEx embs)	No	$\begin{gathered} 0.5719 \pm \\ 0.0012 \end{gathered}$	$\begin{gathered} 0.5917 \pm \\ 0.0009 \end{gathered}$	Xiaocheng Yang (ICTGIMLab)	Paper, Code	8,371,231	NVIDIA Tesla T4 (15 GB)	Jul 7, 2022
$\mathrm{R}-\mathrm{GCN}$	21	NeighborSampling (RGCN aggr)	No	$\begin{gathered} 0.4678 \pm \\ 0.0067 \end{gathered}$	$\begin{gathered} 0.4761 \pm \\ 0.0068 \end{gathered}$	Matthias Fey - OGB team	Paper, Code	154,366,772	GeForce RTX 2080 (11GB GPU)	Jun 26, 2020

- SOTA method: SeHGNN
- ComplEx (Next lecture) + Simplified GCN (Lecture 17)

Summary of RGCN

- Relational GCN, a graph neural network for heterogeneous graphs
- Can perform entity classification as well as link prediction tasks.
- Ideas can easily be extended into RGNN (RGraphSAGE, RGAT, etc.)
- Benchmark: ogbn-mag from Microsoft Academic Graph, to predict paper venues

Stanford CS224W: Heterogeneous Graph Transformer

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Graph Attention Networks

- Graph Attention Networks (GAT)

$$
\mathbf{h}_{v}^{(l)}=\sigma\left(\sum_{u \in N(v)} \alpha_{v u} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}\right)
$$

Attention weights
Not all node's neighbors are equally important

- Attention is inspired by cognitive attention.
- The attention $\boldsymbol{\alpha}_{\boldsymbol{v u}}$ focuses on the important parts of the input data and fades out the rest.
- Idea: the NN should devote more computing power on that small but important part of the data.
- Can we adapt GAT for heterogeneous graphs?

Heterogeneous Graph Transformer

- Motivation: GAT is unable to represent different node \& different edge types
- Introduce a set of neural networks for each relation type is too expensive for attention
- Recall: relation describes (node_s, edge, node_e)

Weight for rel_1

Too expensive!

Basics: Attention in Transformer

- HGT uses Scaled Dot-Product Attention (proposed in Transformer)
$\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V$
- Query: Q, Key: K, Value: V
- Q, K, V have shape (batch_size, dim) How do we obtain Q, K, V ?
- Apply Linear layer to the input
- $Q=Q _$Linear (X)
- $K=K_{\text {_Linear }}(X)$
- $V=V_{-}$Linear (X)

Scaled Dot-Product Attention

Heterogeneous Mutual Attention (1)

- Recall: Applying GAT to a homogeneous graph
- $H^{(l)}$ is the l-th layer representation:
$H^{l}[t] \leftarrow$ Aggregate $_{\forall s \in N(t), \forall e \in E(s, t)} \operatorname{Attention(s,t)}$. Message(s))
How do we take relation type (node_s, edge, node_e) into attention computation?

Heterogeneous Mutual Attention (2)

- Innovation: Decompose heterogeneous attention to Node- and edge-type dependent attention mechanism
- 3 node weight matrices, 2 edge weight matrices
- Without decomposition: $3^{*} 2^{*} 3=18$ relation types -> 18 weight matrices (suppose all relation types exist)

Heterogeneous Mutual Attention (3)

- Heterogeneous Mutual Attention:

$$
\begin{aligned}
& \text { ATT-head }^{i}(s, e, t)=\left(K^{i}(s) W_{\phi(e)}^{A T T} Q^{i}(t)^{T}\right) \\
& K^{i}(s)=\operatorname{K-Linear}_{\tau(s)}^{i}\left(H^{(l-1)}[s]\right) \\
& Q^{i}(t)=Q-\operatorname{Linear}_{\tau(t)}^{i}\left(H^{(l-1)}[t]\right)
\end{aligned}
$$

- Each relation $(T(s), R(e), T(t))$ has a distinct set of projection weights
- $T(s)$: type of node $s, R(e)$: type of edge e
- $T(s) \& T(t)$ parameterize K_{-}Linear $_{T(s)} \& Q_{-}$Linear $_{T(t)}$, which further return Key and Query vectors $K(s) \& Q(t)$
- Edge type $R(e)$ directly parameterizes $W_{R(e)}$

More Details on HGT

- A full HGT layer

$$
\left.\widetilde{H}^{(l)}[t]=\underset{\forall s \in N(t)}{\oplus} \frac{\operatorname{Attention}_{H G T}(s, e, t)}{\text { We have just computed }} \cdot \text { Message }_{H G T}(s, e, t)\right)
$$

- Similarly, HGT decomposes weights with node \& edge types in the message computation

$$
\text { Message }_{H G T}(s, e, t)=\| \operatorname{MSG}^{-h e a d^{i}}(s, e, t)
$$

$$
M S G-h e a d^{i}(s, e, t)=M^{i \in[1, h]}
$$

Weights for each node type

Weights for each edge type

HGT vs R-GCN: Performance

- Benchmark: ogbn-mag from Microsoft Academic Graph, to predict paper venues

Rank	Method	Ext. data	Test Accuracy	Validation Accuracy	Contact	References	\#Params	Hardware	Date
18	HGT (LADIES Sample)	No	$\begin{gathered} 0.4927 \pm \\ 0.0061 \end{gathered}$	$\begin{gathered} 0.4989 \pm \\ 0.0047 \end{gathered}$	Ziniu Hu	Paper, Code	21,173,389	Tesla K80 (12GB GPU)	$\begin{aligned} & \text { Jan 26, } \\ & 2021 \end{aligned}$
21	NeighborSampling (RGCN aggr)	No	$\begin{gathered} 0.4678 \pm \\ 0.0067 \end{gathered}$	$\begin{gathered} 0.4761 \pm \\ 0.0068 \end{gathered}$	Matthias Fey - OGB team	Paper, Code	154,366,772	GeForce RTX 2080 (11GB GPU)	Jun 26, 2020

- HGT uses much fewer parameters, even though the attention computation is expensive, while performs better than R-GCN
- Thanks to the weight decomposition over node \& edge types

Stanford CS224W: Design Space of Heterogeneous GNNs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: GNN Framework

How do we extend the general GNN design space to heterogeneous graphs?

(4) Graph augmentation

Recap: Message Computation

- (1) Message computation
- Message function:

$$
\mathbf{m}_{u}^{(l)}=\operatorname{MSG}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right)
$$

- Intuition: Each node will create a message, which will be sent to other nodes later
- Example: A Linear layer $\mathbf{m}_{u}^{(l)}=\mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$

Heterogeneous Message

- (1) Heterogeneous message computation
- Message function: $\quad \mathbf{m}_{u}^{(l)}=\operatorname{MSG}_{r}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right)$
- Observation: A node could receive multiple types of messages. Num of message type $=$ Num of relation type
- Idea: Create a different message function for each relation type
${ }^{-} \mathbf{m}_{u}^{(l)}=\operatorname{MSG}_{r}^{(l)}\left(\mathbf{h}_{u}^{(l-1)}\right), r=(u, e, v)$ is the relation type between node u that sends the message, edge type e, and node v that receive the message
- Example: A Linear layer $\mathbf{m}_{u}^{(l)}=\mathbf{W}_{r}^{(l)} \mathbf{h}_{u}^{(l-1)}$

Recap: Message Aggregation

- (2) Aggregation
- Intuition: Each node will aggregate the messages from node v 's neighbors

$$
\mathbf{h}_{v}^{(l)}=\operatorname{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)
$$

- Example: Sum (\cdot), Mean (\cdot) or $\operatorname{Max}(\cdot)$ aggregator ${ }^{-} \mathbf{h}_{v}^{(l)}=\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$
target node
$\stackrel{\rightharpoonup}{A}$
D
(3)

INPUT GRAPH

(2) Aggregation
(1) Message

Heterogeneous Aggregation

- (2) Heterogeneous Aggregation
- Observation: Each node could receive multiple types of messages from its neighbors, and multiple neighbors may belong to each message type.
- Idea: We can define a 2-stage message passing

$$
\mathbf{h}_{v}^{(l)}=\mathrm{AGG}_{a l l}^{(l)}\left(\operatorname{AGG}_{r}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N_{r}(v)\right\}\right)\right)
$$

- Given all the messages sent to a node
- Within each message type, aggregate the messages that belongs to the edge type with $\mathrm{AGG}_{r}^{(l)}$
- Aggregate across the edge types with $\mathrm{AGG}_{\text {all }}^{(l)}$
- Example: $\mathbf{h}_{v}^{(l)}=\operatorname{Concat}\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N_{r}(v)\right\}\right)\right)$

Recap: Layer connectivity

- (3) Layer connectivity
- Add skip connections, pre/post-process layers

Pre-processing layers: Important when encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Heterogeneous GNN Layers

- Heterogeneous pre/post-process layers:
- MLP layers with respect to each node type
- Since the output of GNN are node embeddings
${ }^{-} \mathbf{h}_{v}^{(l)}=\operatorname{MLP}_{T(v)}\left(\mathbf{h}_{v}^{(l)}\right)$
- $T(v)$ is the type of node v
- Other successful GNN designs are also encouraged for heterogeneous GNNs: skip connections, batch/layer normalization, ...

Recap: Graph Manipulation

- Graph Feature manipulation
- The input graph lacks features \rightarrow feature augmentation
- Graph Structure manipulation
- The graph is too sparse \rightarrow Add virtual nodes / edges
- The graph is too dense \rightarrow Sample neighbors when doing message passing
- The graph is too large \rightarrow Sample subgraphs to compute embeddings
- Will cover later in lecture: Scaling up GNNs

Heterogeneous Graph Manipulation

- Graph Feature manipulation
- 2 Common options: compute graph statistics (e.g., node degree) within each relation type, or across the full graph (ignoring the relation types)
- Graph Structure manipulation
- Neighbor and subgraph sampling are also common for heterogeneous graphs.
- 2 Common options: sampling within each relation type (ensure neighbors from each type are covered), or sample across the full graph

Recap: GNN Prediction Heads

Node-level prediction:

- $\widehat{\boldsymbol{y}}_{v}=\operatorname{Head}_{\text {node }}\left(\mathbf{h}_{v}^{(L)}\right)=\mathbf{W}^{(H)} \mathbf{h}_{v}^{(L)}$ Edge-level prediction:
- $\widehat{\boldsymbol{y}}_{\boldsymbol{u} \boldsymbol{v}}=\operatorname{Head}_{\mathrm{edge}}\left(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)}\right)=$ Linear $\left(\operatorname{Concat}\left(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)}\right)\right)$
Graph-level prediction:
- $\widehat{\boldsymbol{y}}_{G}=\operatorname{Head}_{\text {graph }}\left(\left\{\mathbf{h}_{v}^{(L)} \in \mathbb{R}^{d}, \forall v \in G\right\}\right)$

Heterogeneous Prediction Heads

Node-level prediction:

- $\widehat{\boldsymbol{y}}_{v}=\operatorname{Head}_{\text {node }, T(v)}\left(\mathbf{h}_{v}^{(L)}\right)=\mathbf{W}_{T(v)}^{(H)} \mathbf{h}_{v}^{(L)}$ Edge-level prediction:
- $\widehat{\boldsymbol{y}}_{\boldsymbol{u} v}=\operatorname{Head}_{\text {edge }, r}\left(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)}\right)=$ $\operatorname{Linear}_{r}\left(\operatorname{Concat}\left(\mathbf{h}_{u}^{(L)}, \mathbf{h}_{v}^{(L)}\right)\right)$
Graph-level prediction:
- $\widehat{\boldsymbol{y}}_{G}=\operatorname{AGG}\left(\right.$ Head $_{\text {graph }, i}\left(\left\{\mathbf{h}_{v}^{(L)} \in\right.\right.$ $\left.\left.\left.\mathbb{R}^{d}, \forall T(v)=i\right\}\right)\right)$

Summary: Heterogeneous GNN

Heterogeneous GNNs extend GNNs by separately modeling node/relation types + additional AGG

(4) Graph augmentation

Summary of the Lecture

- Heterogeneous graphs: graphs with multiple nodes or edge types
- Key concept: relation type (node_s, edge, node_e)
- Be aware that we don't always need heterogeneous graphs
- Learning with heterogeneous graphs
" Key idea: separately model each relation type
- Relational GCNs
- Heterogeneous Graph Transformer
- Design space for heterogeneous GNNs

